1
|
Sinha P, Yadav AK. Repurposing integrase inhibitors against human T-lymphotropic virus type-1: a computational approach. J Biomol Struct Dyn 2024:1-12. [PMID: 38234060 DOI: 10.1080/07391102.2024.2304681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/07/2024] [Indexed: 01/19/2024]
Abstract
Adult T-cell Lymphoma (ATL) is caused by the delta retrovirus family member known as Human T-cell Leukaemia Type I (HTLV-1). Due to the unavailability of any cure, the study gained motivation to identify some repurposed drugs against the virus. A quick and accurate method of screening licensed medications for finding a treatment for HTLV-1 is by cheminformatics drug repurposing in order to analyze a dataset of FDA approved integrase antivirals against HTLV-1 infection. To determine how the antiviral medications interacted with the important residues in the HTLV-1 integrase active regions, molecular docking modeling was used. The steady behavior of the ligands inside the active region was then confirmed by molecular dynamics for the probable receptor-drug complexes. Cabotegravir, Raltegravir and Elvitegravir had the best docking scores with the target, indicating that they can tightly bind to the HTLV-1 integrase. Moreover, MD simulation revealed that the Cabotegravir-HTLV-1, Raltegravir-HTLV-1 and Elvitegravir-HTLV-1 interactions were stable. It is obvious that more testing of these medicines in both clinical trials and experimental tests is necessary to demonstrate their efficacy against HTLV-1 infection.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Prashasti Sinha
- Department of Physics, School of Physical & Decision Science, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Anil Kumar Yadav
- Department of Physics, School of Physical & Decision Science, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| |
Collapse
|
2
|
da Silva MCM, Pereira RSB, Araujo ACA, Filho EGDS, Dias ADL, Cavalcante KS, de Sousa MS. New Perspectives about Drug Candidates Targeting HTLV-1 and Related Diseases. Pharmaceuticals (Basel) 2023; 16:1546. [PMID: 38004412 PMCID: PMC10674638 DOI: 10.3390/ph16111546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 11/26/2023] Open
Abstract
Among the human T-lymphotropic virus (HTLV) types, HTLV-1 is the most prevalent, and it has been linked to a spectrum of diseases, including HAM/TSP, ATLL, and hyperinfection syndrome or disseminated strongyloidiasis. There is currently no globally standard first-line treatment for HTLV-1 infection and its related diseases. To address this, a comprehensive review was conducted, analyzing 30 recent papers from databases PubMed, CAPES journals, and the Virtual Health Library (VHL). The studies encompassed a wide range of therapeutic approaches, including antiretrovirals, immunomodulators, antineoplastics, amino acids, antiparasitics, and even natural products and plant extracts. Notably, the category with the highest number of articles was related to drugs for the treatment of ATLL. Studies employing mogamulizumab as a new perspective for ATLL received greater attention in the last 5 years, demonstrating efficacy, safe use in the elderly, significant antitumor activity, and increased survival time for refractory patients. Concerning HAM/TSP, despite corticosteroid being recommended, a more randomized clinical trial is needed to support treatment other than corticoids. The study also included a comprehensive review of the drugs used to treat disseminated strongyloidiasis in co-infection with HTLV-1, including their administration form, in order to emphasize gaps and facilitate the development of other studies aiming at better-directed methodologies. Additionally, docking molecules and computer simulations show promise in identifying novel therapeutic targets and repurposing existing drugs. These advances are crucial in developing more effective and targeted treatments against HTLV-1 and its related diseases.
Collapse
Affiliation(s)
| | | | | | | | - Anderson de Lima Dias
- Institute of Health Sciences, Faculty of Pharmacy, Federal University of Para, Belem 66079-420, Brazil
| | - Kassio Silva Cavalcante
- Institute of Health Sciences, Faculty of Pharmacy, Federal University of Para, Belem 66079-420, Brazil
| | | |
Collapse
|
3
|
Ahmadi Ghezeldasht S, Momen Heravi M, Valizadeh N, Rafatpanah H, Shamsian SA, Mosavat A, Rezaee SA. Development of a Novel HTLV-1 Protease: Human Fcγ1 Recombinant Fusion Molecule in the CHO Eukaryotic Expression System. Appl Biochem Biotechnol 2023; 195:1862-1876. [PMID: 36399306 PMCID: PMC9673214 DOI: 10.1007/s12010-022-04259-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 11/19/2022]
Abstract
Human T-cell leukaemia virus type 1 (HTLV-1) is the causative agent of two life-threatening diseases, adult T cell leukaemia/lymphoma (ATLL), and HTLV-1-associated myelopathy/tropical spastic (HAM/TSP). HTLV-1 protease (HTLV-1-PR) is an aspartic protease that represents a promising target for therapeutic purposes like human immunodeficiency virus-PR inhibitors (HIV-PR). Therefore, in this study, the human Fc fusion recombinant-PR (HTLV-1-PR:hFcγ1) was designed and expressed for two applications, finding a blocking substrate as a potential therapeutic or a potential subunit peptide vaccine. The PCR amplified DNA sequences encoding the HTLV-1-PR from the MT2-cell line using specific primers with restriction enzyme sites of Not1 and Xba1. The construct was then cloned to pTZ57R/T TA plasmid and, after confirming the PR sequence, subcloned into the pDR2ΔEF1α Fc-expression vector to create pDR2ΔEF1α.HTLV-1-PR:hFcγ1. The integrity of recombinant DNA was confirmed by sequencing to ensure that the engineered construct was in the frame. The recombinant fusion protein was then produced in the Chinese hamster ovary cell (CHO) system and was purified from its supernatant using HiTrap-rPA column affinity chromatography. Then, the immunofluorescence assay (IFA) co-localisation method showed that HTLV-1-PR:hFc recombinant fusion protein has appropriate folding as it binds to the anti-Fcγ antibody; the Fcγ1 tag participates to have HTLV-1-PR:hFcγ1 as a dimeric secretory protein. The development and production of HTLV-1-PR can be used to find a blocking substrate as a potential therapeutic molecule and apply it in an animal model to assess its immunogenicity and potential protection against HTLV-1 infection.
Collapse
Affiliation(s)
- Sanaz Ahmadi Ghezeldasht
- Inflammation and Inflammatory Diseases Division, Medical Campus, Immunology Research Center, Mashhad University of Medical Sciences, Azadi Square, Mashhad, 9177948564 Iran
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR), Azadi Square, Ferdowsi University Campus, Razavi Khorasan, Mashhad, 9177949367 Iran
| | - Mastoureh Momen Heravi
- Inflammation and Inflammatory Diseases Division, Medical Campus, Immunology Research Center, Mashhad University of Medical Sciences, Azadi Square, Mashhad, 9177948564 Iran
| | - Narges Valizadeh
- Inflammation and Inflammatory Diseases Division, Medical Campus, Immunology Research Center, Mashhad University of Medical Sciences, Azadi Square, Mashhad, 9177948564 Iran
| | - Houshang Rafatpanah
- Inflammation and Inflammatory Diseases Division, Medical Campus, Immunology Research Center, Mashhad University of Medical Sciences, Azadi Square, Mashhad, 9177948564 Iran
| | - Seyed Aliakbar Shamsian
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR), Azadi Square, Ferdowsi University Campus, Razavi Khorasan, Mashhad, 9177949367 Iran
- Department of Parasitology and Mycology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arman Mosavat
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR), Azadi Square, Ferdowsi University Campus, Razavi Khorasan, Mashhad, 9177949367 Iran
| | - Seyed Abdolrahim Rezaee
- Inflammation and Inflammatory Diseases Division, Medical Campus, Immunology Research Center, Mashhad University of Medical Sciences, Azadi Square, Mashhad, 9177948564 Iran
| |
Collapse
|
4
|
Jahantigh H, Ahmadi N, Lovreglio P, Stufano A, Enayatkhani M, Shahbazi B, Ahmadi K. Repurposing antiviral drugs against HTLV-1 protease by molecular docking and molecular dynamics simulation. J Biomol Struct Dyn 2022:1-10. [PMID: 35612907 DOI: 10.1080/07391102.2022.2078411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Human T-cell leukemia virus type I (HTLV-1) belongs to the delta retrovirus family and the etiological agent of adult T-cell leukemia (ATL(. While the current HTLV-1 therapy, relies on using Zidovudine plus IFN-γ, there is no FDA approved drugs against it. In silico drug repurposing is a fast and accurate way for screening US-FDA approved drugs to find a therapeutic option for the HTLV-1 infection. So that, this research aims to analyze a dataset of approved antiviral drugs as a potential prospect for an anti-viral drug against HTLV-1 infection. Molecular docking simulation was performed to identify interactions of the antiviral drugs with the key residues in the HTLV-1 protease binding site. Then, molecular dynamics simulation was also performed for the potential protein-ligand complexes to confirm the stable behavior of the ligands inside the binding pocket. The best docking scores with the target was found to be Simeprevir, Atazanavir, and Saquinavir compounds which indicate that these drugs can firmly bind to the HTLV-1 protease. The MD simulation confirmed the stability of Simeprevir-protease, Atazanavir-Protease, and Saquinavir-Protease interactions. Clearly, these compounds should be further evaluated in experimental assays and clinical trials to confirm their actual activity against HTLV-1 infection.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hamidreza Jahantigh
- Interdisciplinary Department of Medicine - Section of Occupational Medicine, University of Bari, Bari, Italy.,Animal Health and Zoonosis PhD Course, Department of Veterinary Medicine, University of Bari, Bari, Italy
| | - Nahid Ahmadi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Piero Lovreglio
- Interdisciplinary Department of Medicine - Section of Occupational Medicine, University of Bari, Bari, Italy
| | - Angela Stufano
- Interdisciplinary Department of Medicine - Section of Occupational Medicine, University of Bari, Bari, Italy
| | - Maryam Enayatkhani
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Behzad Shahbazi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Khadijeh Ahmadi
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
5
|
Selvaraj C, Dinesh DC, Panwar U, Boura E, Singh SK. High-Throughput Screening and Quantum Mechanics for Identifying Potent Inhibitors Against Mac1 Domain of SARS-CoV-2 Nsp3. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:1262-1270. [PMID: 33306471 PMCID: PMC8769010 DOI: 10.1109/tcbb.2020.3037136] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/06/2020] [Accepted: 10/26/2020] [Indexed: 05/30/2023]
Abstract
SARS-CoV-2 encodes the Mac1 domain within the large nonstructural protein 3 (Nsp3), which has an ADP-ribosylhydrolase activity conserved in other coronaviruses. The enzymatic activity of Mac1 makes it an essential virulence factor for the pathogenicity of coronavirus (CoV). They have a regulatory role in counteracting host-mediated antiviral ADP-ribosylation, which is unique part of host response towards viral infections. Mac1 shows highly conserved residues in the binding pocket for the mono and poly ADP-ribose. Therefore, SARS-CoV-2 Mac1 enzyme is considered as an ideal drug target and inhibitors developed against them can possess a broad antiviral activity against CoV. ADP-ribose-1 phosphate bound closed form of Mac1 domain is considered for screening with large database of ZINC. XP docking and QPLD provides strong potential lead compounds, that perfectly fits inside the binding pocket. Quantum mechanical studies expose that, substrate and leads have similar electron donor ability in the head regions, that allocates tight binding inside the substrate-binding pocket. Molecular dynamics study confirms the substrate and new lead molecules presence of electron donor and acceptor makes the interactions tight inside the binding pocket. Overall binding phenomenon shows both substrate and lead molecules are well-adopt to bind with similar binding mode inside the closed form of Mac1.
Collapse
Affiliation(s)
| | | | - Umesh Panwar
- Department of BioinformaticsAlagappa UniversityKaraikudiTamil Nadu630003India
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry AS CR160 00PragueCzechia
| | - Sanjeev Kumar Singh
- Department of BioinformaticsAlagappa UniversityKaraikudiTamil Nadu630003India
| |
Collapse
|
6
|
Selvaraj C, Selvaraj G, Mohamed Ismail R, Vijayakumar R, Baazeem A, Wei DQ, Singh SK. Interrogation of Bacillus anthracis SrtA active site loop forming open/close lid conformations through extensive MD simulations for understanding binding selectivity of SrtA inhibitors. Saudi J Biol Sci 2021; 28:3650-3659. [PMID: 34220215 PMCID: PMC8241892 DOI: 10.1016/j.sjbs.2021.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/25/2021] [Accepted: 05/02/2021] [Indexed: 02/07/2023] Open
Abstract
Bacillus anthracis is a gram positive, deadly spore forming bacteria causing anthrax and these bacteria having the complex mechanism in the cell wall envelope, which can adopt the changes in environmental conditions. In this, the membrane bound cell wall proteins are said to progressive drug target for the inhibition of Bacillus anthracis. Among the cell wall proteins, the SrtA is one of the important mechanistic protein, which mediate the ligation with LPXTG motif by forming the amide bonds. The SrtA plays the vital role in cell signalling, cell wall formation, and biofilm formations. Inhibition of SrtA leads to rupture of the cell wall and biofilm formation, and that leads to inhibition of Bacillus anthracis and thus, SrtA is core important enzyme to study the inhibition mechanism. In this study, we have examined 28 compounds, which have the inhibitory activity against the Bacillus anthracis SrtA for developing the 3D-QSAR and also, compounds binding selectivity with both open and closed SrtA conformations, obtained from 100 ns of MD simulations. The binding site loop deviate in forming the open and closed gate mechanism is investigated to understand the inhibitory profile of reported compounds, and results show the closed state active site conformations are required for ligand binding specificity. Overall, the present study may offer an opportunity for better understanding of the mechanism of action and can be aided to further designing of a novel and highly potent SrtA inhibitors.
Collapse
Affiliation(s)
- Chandrabose Selvaraj
- Department of Bioinformatics, Computer Aided Drug Design and Molecular Modelling Lab, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Gurudeeban Selvaraj
- Centre for Research in Molecular Modelling, Concordia University, 5618 Montreal, Quebec, Canada
| | - Randa Mohamed Ismail
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia
- Department of Microbiology and Immunology, Veterinary Research Division, National Research Center (NRC), Giza, Egypt
| | - Rajendran Vijayakumar
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Alaa Baazeem
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sanjeev Kumar Singh
- Department of Bioinformatics, Computer Aided Drug Design and Molecular Modelling Lab, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India
| |
Collapse
|
7
|
Kassay N, Mótyán JA, Matúz K, Golda M, Tőzsér J. Biochemical Characterization, Specificity and Inhibition Studies of HTLV-1, HTLV-2, and HTLV-3 Proteases. Life (Basel) 2021; 11:life11020127. [PMID: 33562087 PMCID: PMC7915765 DOI: 10.3390/life11020127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 01/03/2023] Open
Abstract
The human T-lymphotropic viruses (HTLVs) are causative agents of severe diseases including adult T-cell leukemia. Similar to human immunodeficiency viruses (HIVs), the viral protease (PR) plays a crucial role in the viral life-cycle via the processing of the viral polyproteins. Thus, it is a potential target of anti-retroviral therapies. In this study, we performed in vitro comparative analysis of human T-cell leukemia virus type 1, 2, and 3 (HTLV-1, -2, and -3) proteases. Amino acid preferences of S4 to S1′ subsites were studied by using a series of synthetic oligopeptide substrates representing the natural and modified cleavage site sequences of the proteases. Biochemical characteristics of the different PRs were also determined, including catalytic efficiencies and dependence of activity on pH, temperature, and ionic strength. We investigated the effects of different HIV-1 PR inhibitors (atazanavir, darunavir, DMP-323, indinavir, ritonavir, and saquinavir) on enzyme activities, and inhibitory potentials of IB-268 and IB-269 inhibitors that were previously designed against HTLV-1 PR. Comparative biochemical analysis of HTLV-1, -2, and -3 PRs may help understand the characteristic similarities and differences between these enzymes in order to estimate the potential of the appearance of drug-resistance against specific HTLV-1 PR inhibitors.
Collapse
Affiliation(s)
- Norbert Kassay
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (N.K.); (K.M.); (M.G.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - János András Mótyán
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (N.K.); (K.M.); (M.G.)
- Correspondence: (J.A.M.); (J.T.); Tel.: +36-52-512-900 (J.A.M. & J.T.)
| | - Krisztina Matúz
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (N.K.); (K.M.); (M.G.)
| | - Mária Golda
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (N.K.); (K.M.); (M.G.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - József Tőzsér
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (N.K.); (K.M.); (M.G.)
- Correspondence: (J.A.M.); (J.T.); Tel.: +36-52-512-900 (J.A.M. & J.T.)
| |
Collapse
|
8
|
Al-Malki ES. Understanding the structural insights of enzymatic conformations for adenylosuccinate lyase receptor in malarial parasite Plasmodium falciparum. J Recept Signal Transduct Res 2020; 41:566-573. [PMID: 33073638 DOI: 10.1080/10799893.2020.1835960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The dreadful disease malaria is one among the infectious diseases that comes in third number after the tuberculosis and HIV. This disease is spread by female Anopheles mosquito and caused by the malarial parasite sp notably Plasmodium falciparum. In this, the organism has several enzymes for processing the infection and growth mechanism and among that, the adenylosuccinate lyase is an enzyme that plays a critical role in metabolism and cellular replication via its action in the de novo purine biosynthetic pathway. Adenylosuccinate has been studied for two reaction mechanisms, and in that, the adenylosuccinate to AMP and fumarate is core important. As of now, there have been several studies indicating the reaction mechanism of adenylosuccinate lyase, this study projects the conformations of the reactant and product changes through molecular docking and molecular dynamic simulations. Adenylosuccinate bound complex involves His role in the product than the reactant complex, and the complex shows high flexibility due to fumarate. Thus, identifying the core inhibitor that binds to His rings could be a standard adenylosuccinate lyase inhibitor, that can block the malarial diseases in humans. In addition to the competitive inhibition site, we also predicted the uncompetitive ligand binding site, which suggest the alternate region to be targeted. Thus, from this work, we suggest both competitive and uncompetitive binding regions for the purpose identifying the malarial inhibitors.
Collapse
Affiliation(s)
- Esam S Al-Malki
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah, Saudi Arabia
| |
Collapse
|
9
|
Selvaraj C, Dinesh DC, Panwar U, Abhirami R, Boura E, Singh SK. Structure-based virtual screening and molecular dynamics simulation of SARS-CoV-2 Guanine-N7 methyltransferase (nsp14) for identifying antiviral inhibitors against COVID-19. J Biomol Struct Dyn 2020; 39:4582-4593. [PMID: 32567979 PMCID: PMC7332868 DOI: 10.1080/07391102.2020.1778535] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The recent pandemic caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) calls the whole world into a medical emergency. For tackling Coronavirus Disease 2019 (COVID-19), researchers from around the world are swiftly working on designing and identifying inhibitors against all possible viral key protein targets. One of the attractive drug targets is guanine-N7 methyltransferase which plays the main role in capping the 5′-ends of viral genomic RNA and sub genomic RNAs, to escape the host’s innate immunity. We performed homology modeling and molecular dynamic (MD) simulation, in order to understand the molecular architecture of Guanosine-P3-Adenosine-5’,5’-Triphosphate (G3A) binding with C-terminal N7-MTase domain of nsp14 from SARS-CoV-2. The residue Asn388 is highly conserved in present both in N7-MTase from SARS-CoV and SARS-CoV-2 and displays a unique function in G3A binding. For an in-depth understanding of these substrate specificities, we tried to screen and identify inhibitors from the Traditional Chinese Medicine (TCM) database. The combination of several computational approaches, including screening, MM/GBSA, MD simulations, and PCA calculations, provides the screened compounds that readily interact with the G3A binding site of homology modeled N7-MTase domain. Compounds from this screening will have strong potency towards inhibiting the substrate-binding and efficiently hinder the viral 5’-end RNA capping mechanism. We strongly believe the final compounds can become COVID-19 therapeutics, with huge international support. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Chandrabose Selvaraj
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, India
| | - Dhurvas Chandrasekaran Dinesh
- Section of Molecular Biology and Biochemistry, Institute of Organic Chemistry and Biochemistry AS CR, v.v.i, Prague 6, Czech Republic
| | - Umesh Panwar
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, India
| | - Rajaram Abhirami
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, India
| | - Evzen Boura
- Section of Molecular Biology and Biochemistry, Institute of Organic Chemistry and Biochemistry AS CR, v.v.i, Prague 6, Czech Republic
| | - Sanjeev Kumar Singh
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, India
| |
Collapse
|
10
|
Selvaraj C, Krishnasamy G, Jagtap SS, Patel SK, Dhiman SS, Kim TS, Singh SK, Lee JK. Structural insights into the binding mode of d-sorbitol with sorbitol dehydrogenase using QM-polarized ligand docking and molecular dynamics simulations. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Muthusamy K, Krishnasamy G. A computational study on role of 6-(hydroxymethyl)-3-[3,4,5-trihydroxy-6-[(3,4,5-trihydroxyoxan-2-yl)oxymethyl]oxan-2-yl]oxyoxane-2,4,5-triol in the regulation of blood glucose level. J Biomol Struct Dyn 2016; 34:2599-2618. [PMID: 26610163 DOI: 10.1080/07391102.2015.1124289] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
6-(hydroxymethyl)-3-[3,4,5-trihydroxy-6-[(3,4,5-trihydroxyoxan-2-yl)oxymethyl]oxan-2-yl]oxyoxane-2,4,5-triol (SID 242078875) was isolated from the fruits of Syzygium densiflorum Wall. ex Wight & Arn (Myrtaceae), which has been traditionally used in the treatment of diabetes by the tribes of The Nilgiris, Tamil Nadu, India. In this study, reverse pharmacophore mapping approach and text-based database search identified the dipeptidyl peptidase-IV, protein-tyrosine phosphatase 1B, phosphoenolpyruvate carboxykinase, glycogen synthase kinase-3β and glucokinase as potential targets of SID 242078875 in diabetes management. Further, molecular docking was performed to predict the binding pose of SID 242078875 in the active site region of the target protein. In addition, dynamic behaviour and stability of protein-ligand complexes were observed for a period of 50 ns through molecular dynamics simulation.
Collapse
Affiliation(s)
- Karthikeyan Muthusamy
- a Department of Bioinformatics , Alagappa University , Science Block, Karaikudi , 630 004 Tamil Nadu , India
| | - Gopinath Krishnasamy
- a Department of Bioinformatics , Alagappa University , Science Block, Karaikudi , 630 004 Tamil Nadu , India
| |
Collapse
|
12
|
Sasikala D, Jeyakanthan J, Srinivasan P. Structural insights on identification of potential lead compounds targeting WbpP in Vibrio vulnificus through structure-based approaches. J Recept Signal Transduct Res 2016; 36:515-30. [PMID: 26795501 DOI: 10.3109/10799893.2015.1132237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
WbpP encoding UDP-GlcNAC C4 epimerase is responsible for the activation of virulence factor in marine pathogen Vibrio vulnificus (V. vulnificus) and it is linked to many aquatic diseases, thus making it a potential therapeutic target. There are few reported compounds that include several natural products and synthetic compounds targeting Vibrio sp, but specific inhibitor targeting WbpP are unavailable. Here, we performed structure-based virtual screening using chemical libraries such as Binding, TOSLab and Maybridge to identify small molecule inhibitors of WbpP with better drug-like properties. Deficient structural information forced to model the structure and the stable protein structure was obtained through 30 ns of MD simulations. Druggability regions are focused for new lead compounds and our screening protocol provides fast docking of entire small molecule library with screening criteria of ADME/Lipinski filter/Docking followed by re-docking of top hits using a method that incorporates both ligand and protein flexibility. Docking conformations of lead molecules interface displays strong H-bond interactions with the key residues Gly101, Ser102, Val195, Tyr165, Arg298, Val209, Ser142, Arg233 and Gln200. Subsequently, the top-ranking compounds were prioritized using the molecular dynamics simulation-based conformation and stability studies. Our study suggests that the proposed compounds may aid as a starting point for the rational design of novel therapeutic agents.
Collapse
Affiliation(s)
- Dakshinamurthy Sasikala
- a Science Block, Department of Bioinformatics, Alagappa University , Karaikudi, Tamil Nadu , India and
| | - Jeyaraman Jeyakanthan
- a Science Block, Department of Bioinformatics, Alagappa University , Karaikudi, Tamil Nadu , India and
| | - Pappu Srinivasan
- b Science Block, Department of Animal Health and Management, Alagappa University , Karaikudi, Tamil Nadu , India
| |
Collapse
|
13
|
Selvaraj C, Singh P, Singh SK. Molecular insights on analogs of HIV PR inhibitors toward HTLV-1 PR through QM/MM interactions and molecular dynamics studies: comparative structure analysis of wild and mutant HTLV-1 PR. J Mol Recognit 2015; 27:696-706. [PMID: 25319617 DOI: 10.1002/jmr.2395] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 05/03/2014] [Accepted: 05/09/2014] [Indexed: 12/21/2022]
Abstract
Retroviruses HTLV-1 and HIV-1 are the primary causative agents of fatal adult T-cell leukemia and acquired immune deficiency syndrome (AIDS) disease. Both retroviruses are similar in characteristics mechanism, and it encodes for protease that mainly involved in the viral replication process. On the basis of the therapeutic success of HIV-1 PR inhibitors, the protease of HTLV-1 is mainly considered as a potential target for chemotherapy. At the same time, structural similarities in both enzymes that originate HIV PR inhibitors can also be an HTLV-1 PR inhibitor. But the expectations failed because of rejection of HIV PR inhibitors from the HTLV-1 PR binding pocket. In this present study, the reason for the HIV PR inhibitor rejection from the HTLV-1 binding site was identified through sequence analysis and molecular dynamics simulation method. Functional analysis of M37A mutation in HTLV PR clearly shows that the MET37 specificity and screening of potential inhibitors targeting MET37 is performed by using approved 90% similar HIV PR inhibitor compounds. From this approach, we report few compounds with a tendency to accept/donate electron specifically to an important site residue MET37 in HTLV-1 PR binding pocket.
Collapse
Affiliation(s)
- Chandrabose Selvaraj
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, 630004, Tamilnadu, India
| | | | | |
Collapse
|
14
|
Omer A, Suryanarayanan V, Selvaraj C, Singh SK, Singh P. Explicit Drug Re-positioning: Predicting Novel Drug-Target Interactions of the Shelved Molecules with QM/MM Based Approaches. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 100:89-112. [PMID: 26415842 DOI: 10.1016/bs.apcsb.2015.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
With the demand to enhance the speed of the drug discovery process there has been an increased usage of computational approaches in drug discovery studies. However because of their probabilistic outcomes, the challenge is to exactly mimic the natural environment which can provide the exact charge polarization effect while estimating the binding energy between protein and ligand. There has been a large number of scoring functions from simple one to the complex one available for estimating binding energy. The quantum mechanics/molecular mechanics (QM/MM) hybrid approach has been the preferred choice of interest since last decade for modeling reactions in biomolecular systems. The application of QM/MM approach has been expanded right from rescoring the already known complexes and depicting the correct position of some novel molecule to ranking a large number of molecules. It is expected that the application of QM/MM-based scoring will grow in all areas of drug discovery. However, the most promising area will be its application in repositioning, that is, assigning novel functions or targets to the already existing drugs, as this would stop the rising attrition rates as well as reduce the overall time and cost of drug discovery procedure.
Collapse
Affiliation(s)
- Ankur Omer
- Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India; Academy of Scientific & Innovative Research (AcSIR), New Delhi, India
| | - Venkatesan Suryanarayanan
- Department of Bioinformatics, Computer Aided Drug Design and Molecular Modeling Lab, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Chandrabose Selvaraj
- Department of Bioinformatics, Computer Aided Drug Design and Molecular Modeling Lab, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Sanjeev Kumar Singh
- Department of Bioinformatics, Computer Aided Drug Design and Molecular Modeling Lab, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India.
| | - Poonam Singh
- Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India; Academy of Scientific & Innovative Research (AcSIR), New Delhi, India.
| |
Collapse
|
15
|
Selvaraj C, Omer A, Singh P, Singh SK. Molecular insights of protein contour recognition with ligand pharmacophoric sites through combinatorial library design and MD simulation in validating HTLV-1 PR inhibitors. MOLECULAR BIOSYSTEMS 2014; 11:178-89. [PMID: 25335799 DOI: 10.1039/c4mb00486h] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Retroviruses HIV-1 and HTLV-1 are chiefly considered to be the most dangerous pathogens in Homo sapiens. These two viruses have structurally unique protease (PR) enzymes, which are having common function of its replication mechanism. Though HIV PR drugs failed to inhibit HTLV-1 infections, they emphatically emphasise the need for designing new lead compounds against HTLV-1 PR. Therefore, we tried to understand the binding level interactions through the charge environment present in both ligand and protein active sites. The domino effect illustrates that libraries of purvalanol-A are attuned to fill allosteric binding site of HTLV-1 PR through molecular recognition and shows proper binding of ligand pharmacophoric features in receptor contours. Our screening evaluates seven compounds from purvalanol-A libraries, and these compounds' pharmacophore searches for an appropriate place in the binding site and it places well according to respective receptor contour surfaces. Thus our result provides a platform for the progress of more effective compounds, which are better in free energy calculation, molecular docking, ADME and molecular dynamics studies. Finally, this research provided novel chemical scaffolds for HTLV-1 drug discovery.
Collapse
Affiliation(s)
- Chandrabose Selvaraj
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi-630004, Tamilnadu, India.
| | | | | | | |
Collapse
|