1
|
Redell JB, Maynard ME, Hylin MJ, Hood KN, Sedlock A, Maric D, Zhao J, Moore AN, Roysam B, Pati S, Dash PK. A Combination of Low Doses of Lithium and Valproate Improves Cognitive Outcomes after Mild Traumatic Brain Injury. J Neurotrauma 2025; 42:437-453. [PMID: 39463282 PMCID: PMC11971536 DOI: 10.1089/neu.2024.0311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
The prevalence of mild traumatic brain injury (mTBI) is high compared with moderate and severe TBI, comprising almost 80% of all brain injuries. mTBI activates a complex cascade of biochemical, molecular, structural, and pathological changes that can result in neurological and cognitive impairments. These impairments can manifest even in the absence of overt brain damage. Given the complexity of changes triggered by mTBI, a combination of drugs that target multiple TBI-activated cascades may be required to improve mTBI outcomes. It has been previously demonstrated that cotreatment with the U.S. Food and Drug Administration (FDA)-approved drugs lithium plus valproate (Li + VPA) for 3 weeks after a moderate-to-severe controlled cortical impact injury reduced cortical tissue loss and improved motor function. Since both lithium and valproate can exhibit toxicity at high doses, it would be beneficial to determine if this combination treatment is effective when administered at low doses and for a shorter duration, and if it can improve cognitive function, after a mild diffuse TBI. In the present study, we tested if the combination of low doses of lithium (1 mEq/kg or 0.5 mEq/kg) plus valproate (20 mg/kg) administered for 3 days after a mild fluid percussion injury can improve hippocampal-dependent learning and memory. Our data show that the combination of low-dose Li + VPA improved spatial learning and memory, effects not seen when either drug was administered alone. In addition, postinjury Li + VPA treatment improved recognition memory and sociability and reduced fear generalization. Postinjury Li + VPA also reduced the number of anti-ionized calcium binding adaptor molecule 1 (Iba1)-positive microglia counted using a convolutional neural network, indicating a reduction in neuroinflammation. These findings indicate that low-dose Li + VPA administered acutely after mTBI may have translational utility to reduce pathology and improve cognitive function.
Collapse
Affiliation(s)
- John B. Redell
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Mark E. Maynard
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, USA
| | - Michael J. Hylin
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Kimberly N. Hood
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Andrea Sedlock
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NINDS/NIH), Bethesda, Maryland, USA
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NINDS/NIH), Bethesda, Maryland, USA
| | - Jing Zhao
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Anthony N. Moore
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Badrinath Roysam
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, USA
| | - Shibani Pati
- Departments of Pathology and Laboratory Medicine, UCSF, San Francisco, California, USA
| | - Pramod K. Dash
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas, USA
| |
Collapse
|
2
|
Rana AK, Kumar R, Shukla DN, Singh D. Lithium co-administration with rutin improves post-stroke neurological outcomes via suppressing Gsk-3β activity in a rat model. Free Radic Biol Med 2023; 207:107-119. [PMID: 37414348 DOI: 10.1016/j.freeradbiomed.2023.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/24/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Cerebral ischemic stroke is one of the leading causes of adult disability worldwide. Reperfusion is the only therapeutic option with a lot of side effects. In the current study, we investigated the efficacy of rutin and lithium co-treatment in improving post-stroke neurological outcomes in a transient global cerebral ischemia-reperfusion injury rat model. Middle-aged male rats were subjected to transient global cerebral ischemia-reperfusion. NORT and Y-maze were used to assess the cognitive processes. Lipid peroxidation, protein carbonylation, and nitric oxide assays were performed to study oxidative stress. The excitotoxicity index was calculated by HPLC. Real time-PCR and western blotting were performed to study gene and protein expressions. The co-administration of rutin and lithium improved the overall survival, recognition memory, spatial working memory, and neurological score following cerebral ischemia-reperfusion in rats. Further, a marked decrease in malonaldehyde, protein carbonyls, and nitric oxide levels was observed following combined treatment. The mRNA expression of antioxidant (Hmox1 and Nqo1) and pro-inflammatory (Il2, Il6, and Il1β) markers were significantly attenuated in the rutin and lithium co-administrated group. The treatment inhibited the Gsk-3β and maintained a normal pool of the downstream β-catenin and Nrf2 proteins. The results revealed that co-administration of rutin and lithium had a neuroprotective potential, suggesting it to be a viable treatment to overcome post-stroke deaths and neurological complications.
Collapse
Affiliation(s)
- Anil Kumar Rana
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rajneesh Kumar
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Durgesh Nandan Shukla
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
| | - Damanpreet Singh
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Almeida OP, Singulani MP, Ford AH, Hackett ML, Etherton-Beer C, Flicker L, Hankey GJ, De Paula VJR, Penteado CT, Forlenza OV. Lithium and Stroke Recovery: A Systematic Review and Meta-Analysis of Stroke Models in Rodents and Human Data. Stroke 2022; 53:2935-2944. [PMID: 35968702 DOI: 10.1161/strokeaha.122.039203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND Lithium has neuroprotective effects in animal models of stroke, but benefits in humans remain uncertain. This article aims to systematically review the available evidence of the neuroprotective and regenerative effects of lithium in animal models of stroke, as well as in observational and trial stroke studies in humans. METHODS This systematic review and meta-analysis was conducted according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We searched Medline, Embase, and PsycINFO for preclinical and clinical studies published between January 2000 and September 2021. A random-effects meta-analysis was conducted from observational studies. RESULTS From 1625 retrieved studies, 42 were included in the systematic review. Of those, we identified 36 rodent models of stroke using preinsult or postinsult treatment with lithium, and 6 studies were conducted in human samples, of which 4 could be meta-analyzed. The review of animal models was stratified according to the type of stroke and outcomes. Human data were subdivided into observational and intervention studies. Treatment of rodents with lithium was associated with smaller stroke volumes, decreased apoptosis, and improved poststroke function. In humans, exposure to lithium was associated with a lower risk of stroke among adults with bipolar disorder in 2 of 4 studies. Two small trials showed equivocal clinical benefits of lithium poststroke. CONCLUSIONS Animal models of stroke show consistent biological and functional evidence of benefits associated with lithium treatment, whereas human evidence remains sparse and inconclusive. The potential role of lithium in poststroke recovery is yet to be adequately tested in humans.
Collapse
Affiliation(s)
- Osvaldo P Almeida
- Medical School, University of Western Australia, Perth, Australia (O.P.A., A.H.F., C.E.B., L.F., G.J.H.)
| | - Monique P Singulani
- Laboratory of Neuroscience LIM27, Department and Institute of Psychiatry HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, Brazil (M.P.S., V.J.R.D.P., C.T.P., O.V.F.)
| | - Andrew H Ford
- Medical School, University of Western Australia, Perth, Australia (O.P.A., A.H.F., C.E.B., L.F., G.J.H.)
| | - Maree L Hackett
- The George Institute for Global Health, the University of New South Wales, Sydney, Australia (M.L.H.)
| | - Christopher Etherton-Beer
- Medical School, University of Western Australia, Perth, Australia (O.P.A., A.H.F., C.E.B., L.F., G.J.H.)
| | - Leon Flicker
- Medical School, University of Western Australia, Perth, Australia (O.P.A., A.H.F., C.E.B., L.F., G.J.H.)
| | - Graeme J Hankey
- Medical School, University of Western Australia, Perth, Australia (O.P.A., A.H.F., C.E.B., L.F., G.J.H.)
| | - Vanessa J R De Paula
- Laboratory of Neuroscience LIM27, Department and Institute of Psychiatry HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, Brazil (M.P.S., V.J.R.D.P., C.T.P., O.V.F.)
| | - Camila T Penteado
- Laboratory of Neuroscience LIM27, Department and Institute of Psychiatry HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, Brazil (M.P.S., V.J.R.D.P., C.T.P., O.V.F.)
| | - Orestes V Forlenza
- Laboratory of Neuroscience LIM27, Department and Institute of Psychiatry HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, Brazil (M.P.S., V.J.R.D.P., C.T.P., O.V.F.)
| |
Collapse
|
4
|
Tai SH, Huang SY, Chao LC, Lin YW, Huang CC, Wu TS, Shan YS, Lee AH, Lee EJ. Lithium upregulates growth-associated protein-43 (GAP-43) and postsynaptic density-95 (PSD-95) in cultured neurons exposed to oxygen-glucose deprivation and improves electrophysiological outcomes in rats subjected to transient focal cerebral ischemia following a long-term recovery period. Neurol Res 2022; 44:870-878. [PMID: 35348035 DOI: 10.1080/01616412.2022.2056817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Lithium has numerous neuroplastic and neuroprotective effects in patients with stroke. Here, we evaluated whether delayed and short-term lithium treatment reduces brain infarction volume and improves electrophysiological and neurobehavioral outcomes following long-term recovery after cerebral ischemia and the possible contributions of lithium-mediated mechanisms of neuroplasticity. METHODS Male Sprague Dawley rats were subjected to right middle cerebral artery occlusion for 90 min, followed by 28 days of recovery. Lithium chloride (1 mEq/kg) or vehicle was administered via intraperitoneal infusion once per day at 24 h after reperfusion onset. Neurobehavioral outcomes and somatosensory evoked potentials (SSEPs) were examined before and 28 days after ischemia-reperfusion. Brain infarction was assessed using Nissl staining. Primary cortical neuron cultures were exposed to oxygen-glucose deprivation (OGD) and treated with 2 or 20 μM lithium for 24 or 48 h; subsequent brain-derived neurotrophic factor (BDNF), growth-associated protein-43 (GAP-43), postsynaptic density-95 (PSD-95), and synaptosomal-associated protein-25 (SNAP-25) levels were analyzed using western blotting. RESULTS Compared to controls, lithium significantly reduced infarction volume in the ischemic brain and improved electrophysiological and neurobehavioral outcomes at 28 days post-insult. In cultured cortical neurons, BDNF, GAP-43, and PSD-95 expression were enhanced by 24- and 48-h treatment with lithium after OGD. CONCLUSION Lithium upregulates BDNF, GAP-43, and PSD-95, which partly accounts for its improvement of neuroplasticity and provision of long-term neuroprotection in the ischemic brain.Abbreviations: BDNF: brain-derived neurotrophic factor; ECM: extracellular matrix; EDTA: ethylenediaminetetraacetic acid; GAP-43: growth-associated protein-43; GSK-3β: glycogen synthase kinase-3β; HBSS: Hank's balanced salt solution; LCBF: local cortical blood perfusion; LDF: laser-Doppler flowmetry; MCAO: middle cerebral artery occlusion; MMP: matrix metalloproteinase; NMDA: N-methyl-D-aspartate; NMDAR: N-methyl-D-aspartate receptor; OCT: optimal cutting temperature compound; OGD: oxygen-glucose deprivation; PSD-95: postsynaptic density-95; SDS: sodium dodecyl sulfate; SNAP-25: synaptosomal-associated protein-25; SSEP: somatosensory evoked potential.
Collapse
Affiliation(s)
- Shih-Huang Tai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Yang Huang
- Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Liang-Chun Chao
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Wen Lin
- Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Chih Huang
- Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tian-Shung Wu
- School of Pharmacy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yan-Shen Shan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ai-Hua Lee
- Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - E-Jian Lee
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
5
|
Tai SH, Chao LC, Huang TY, Chang CC, Huang SY, Wu TS, Lee EJ. Short-term lithium treatment protects the brain against ischemia-reperfusion injury by enhancing the neuroplasticity of cortical neurons. Neurol Res 2021; 44:128-138. [PMID: 34396932 DOI: 10.1080/01616412.2021.1965427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVES Lithium exerts a broad neuroprotective effect on the brain. This study examined whether lithium exerts therapeutic effects on stroke by restoring neural connections at the ischemic core of cortices post brain insult. METHODS We treated rats with lithium or vehicle (saline) every 24 h for the first 72 h, starting at the beginning of reperfusion after inducing middle cerebral artery occlusion (MCAO) in rats. Somatosensory evoked potential (SSEP) recording and behavioral testing were employed to evaluate the beneficial effects of lithium treatment. To examine the effects of lithium-induced neuroplasticity, we evaluated the dendritic morphology in cortex pyramidal cells and the primary neuronal cell culture that underwent brain insults and oxygen and glucose deprivation (OGD), respectively. RESULTS The results demonstrated that rats subjected to MCAO had prolonged N1 latency and a decreased N1/P1 amplitude at the ipsilateral cortex. Four doses of lithium reduced the brain infarction volume and enhanced the SSEP amplitude. The results of neurobehavioral tests demonstrated that lithium treatment improved sensory function, as demonstrated by improved 28-point clinical scale scores. In vitro study results showed that lithium treatment increased the dendritic lengths and branches of cultured neurons and reversed the suppressive effects of OGD. The in vivo study results indicated that lithium treatment increased cortical spine density in various layers and resulted in the development of the dendritic structure in the contralateral hemisphere. CONCLUSION Our study confirmed that neuroplasticity in cortical neurons is crucial for lithium-induced brain function 50 recovery after brain ischemia.
Collapse
Affiliation(s)
- Shih-Huang Tai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Neurophysiology Laboratory and Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Liang-Chun Chao
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Neurophysiology Laboratory and Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tung-Yi Huang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Che-Chao Chang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Yang Huang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tian-Shung Wu
- School of Pharmacy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - E-Jian Lee
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Neurophysiology Laboratory and Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
6
|
Szabó MR, Pipicz M, Csont T, Csonka C. Modulatory Effect of Myokines on Reactive Oxygen Species in Ischemia/Reperfusion. Int J Mol Sci 2020; 21:ijms21249382. [PMID: 33317180 PMCID: PMC7763329 DOI: 10.3390/ijms21249382] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
There is a growing body of evidence showing the importance of physical activity against acute ischemic events in various organs. Ischemia/reperfusion injury (I/R) is characterized by tissue damage as a result of restriction and subsequent restoration of blood supply to an organ. Oxidative stress due to increased reactive oxygen species formation and/or insufficient antioxidant defense is considered to play an important role in I/R. Physical activity not only decreases the general risk factors for ischemia but also confers direct anti-ischemic protection via myokine production. Myokines are skeletal muscle-derived cytokines, representing multifunctional communication channels between the contracting skeletal muscle and other organs through an endocrine manner. In this review, we discuss the most prominent members of the myokines (i.e., brain-derived neurotrophic factor (BDNF), cathepsin B, decorin, fibroblast growth factors-2 and -21, follistatin, follistatin-like, insulin-like growth factor-1; interleukin-6, interleukin-7, interleukin-15, irisin, leukemia inhibitory factor, meteorin-like, myonectin, musclin, myostatin, and osteoglycin) with a particular interest in their potential influence on reactive oxygen and nitrogen species formation or antioxidant capacity. A better understanding of the mechanism of action of myokines and particularly their participation in the regulation of oxidative stress may widen their possible therapeutic use and, thereby, may support the fight against I/R.
Collapse
Affiliation(s)
- Márton Richárd Szabó
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, University of Szeged, Dóm tér 9, 6720 Szeged, Hungary; (M.R.S.); (M.P.); (T.C.)
- Interdisciplinary Centre of Excellence, University of Szeged, Dugonics tér 13, 6720 Szeged, Hungary
| | - Márton Pipicz
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, University of Szeged, Dóm tér 9, 6720 Szeged, Hungary; (M.R.S.); (M.P.); (T.C.)
- Interdisciplinary Centre of Excellence, University of Szeged, Dugonics tér 13, 6720 Szeged, Hungary
| | - Tamás Csont
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, University of Szeged, Dóm tér 9, 6720 Szeged, Hungary; (M.R.S.); (M.P.); (T.C.)
- Interdisciplinary Centre of Excellence, University of Szeged, Dugonics tér 13, 6720 Szeged, Hungary
| | - Csaba Csonka
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, University of Szeged, Dóm tér 9, 6720 Szeged, Hungary; (M.R.S.); (M.P.); (T.C.)
- Interdisciplinary Centre of Excellence, University of Szeged, Dugonics tér 13, 6720 Szeged, Hungary
- Department of Sports Medicine, University of Szeged, Tisza Lajos krt 107, 6725 Szeged, Hungary
- Correspondence: ; Tel.: +36-30-5432-693
| |
Collapse
|
7
|
Liu L, Ji CH, Wang Y, Zhao J, Liu Y, Tang WQ, Gu JH, Jiang B. Antidepressant-like activity of L-701324 in mice: A behavioral and neurobiological characterization. Behav Brain Res 2020; 399:113038. [PMID: 33276033 DOI: 10.1016/j.bbr.2020.113038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/12/2020] [Accepted: 11/27/2020] [Indexed: 11/19/2022]
Abstract
Antidepressants currently used in clinical practice have limitations such as low efficacy, slow onset and various adverse reactions. It has become necessary to develop novel antidepressants beyond monoaminergic drugs. L-701,324 is a potent NMDA receptor antagonist, and the purpose of this study was to investigate the possible antidepressant effects of L-701,324 in mice. Here, various methods including the forced swim test (FST), tail suspension test (TST), chronic unpredictable mild stress (CUMS) model of depression, western blotting and immunofluorescence, were used together. A single injection of L-701,324 exhibited antidepressant-like potential in the FST and TST without affecting the locomotor activity of mice. Repeated injection of L-701,324 not only prevented CUMS-induced depressive-like behaviors in mice, but also ameliorated the downregulating effects of CUMS on the hippocampal BDNF signaling cascade and neurogenesis. Furthermore, K252a, a potent inhibitor of the BDNF system, fully blocked the antidepressant-like activity of L-701,324 in mice. K252a administration also abolished the activating actions of L-701,324 on the hippocampal BDNF signaling cascade and neurogenesis in CUMS-treated mice. Collectively, these data indicated that L-701,324 possesses antidepressant-like activity in mice, which was mediated, at least in part, by promoting the hippocampal BDNF system.
Collapse
Affiliation(s)
- Ling Liu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China; Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, 226001, Jiangsu, China
| | - Chun-Hui Ji
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China; Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, 226001, Jiangsu, China
| | - Yuan Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China; Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, 226001, Jiangsu, China
| | - Jie Zhao
- Department of Pharmacy, The Sixth People's Hospital of Nantong, Nantong, 226011, Jiangsu, China
| | - Yue Liu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China; Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, 226001, Jiangsu, China
| | - Wen-Qian Tang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China; Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, 226001, Jiangsu, China
| | - Jiang-Hong Gu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China; Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, 226001, Jiangsu, China
| | - Bo Jiang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China; Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
8
|
Xu D, Li F, Xue G, Hou K, Fang W, Li Y. Effect of Wnt signaling pathway on neurogenesis after cerebral ischemia and its therapeutic potential. Brain Res Bull 2020; 164:1-13. [PMID: 32763283 DOI: 10.1016/j.brainresbull.2020.07.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 12/08/2019] [Accepted: 07/08/2020] [Indexed: 02/07/2023]
Abstract
Neurogenesis process in the chronic phase of ischemic stroke has become the focus of research on stroke treatment recently, mainly through the activation of related pathways to increase the differentiation of neural stem cells (NSCs) in the brain sub-ventricular zone (SVZ) and subgranular zone (SGZ) of hippocampal dentate gyrus (DG) areas into neurons, promoting neurogenesis. While there is still debate about the longevity of active adult neurogenesis in humans, the SVZ and SGZ have the capacity to upregulate neurogenesis in response to cerebral ischemia, which opens discussion about potential treatment strategies to harness this neuronal regenerative response. Wnt signaling pathway is one of the most important approaches potentially targeting on neurogenesis after cerebral ischemia, appropriate activation of which in NSCs may help to improve the sequelae of cerebral ischemia. Various therapeutic approaches are explored on preclinical stage to target endogenous neurogenesis induced by Wnt signaling after stroke onset. This article describes the composition of Wnt signaling pathway and the process of neurogenesis after cerebral ischemia, and emphatically introduces the recent studies on the mechanisms of this pathway for post-stroke neurogenesis and the therapeutic possibility of activating the pathway to improve neurogenesis after stroke.
Collapse
Affiliation(s)
- Dan Xu
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009, China.
| | - Fengyang Li
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009, China.
| | - Gou Xue
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009, China.
| | - Kai Hou
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009, China.
| | - Weirong Fang
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009, China.
| | - Yunman Li
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
9
|
Saito M, Smiley JF, Hui M, Masiello K, Betz J, Ilina M, Saito M, Wilson DA. Neonatal Ethanol Disturbs the Normal Maturation of Parvalbumin Interneurons Surrounded by Subsets of Perineuronal Nets in the Cerebral Cortex: Partial Reversal by Lithium. Cereb Cortex 2020; 29:1383-1397. [PMID: 29462278 DOI: 10.1093/cercor/bhy034] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/02/2018] [Accepted: 01/25/2018] [Indexed: 02/07/2023] Open
Abstract
Reduction in parvalbumin-positive (PV+) interneurons is observed in adult mice exposed to ethanol at postnatal day 7 (P7), a late gestation fetal alcohol spectrum disorder model. To evaluate whether PV+ cells are lost, or PV expression is reduced, we quantified PV+ and associated perineuronal net (PNN)+ cell densities in barrel cortex. While PNN+ cell density was not reduced by P7 ethanol, PV cell density decreased by 25% at P90 with no decrease at P14. PNN+ cells in controls were virtually all PV+, whereas more than 20% lacked PV in ethanol-treated adult animals. P7 ethanol caused immediate apoptosis in 10% of GFP+ cells in G42 mice, which express GFP in a subset of PV+ cells, and GFP+ cell density decreased by 60% at P90 without reduction at P14. The ethanol effect on PV+ cell density was attenuated by lithium treatment at P7 or at P14-28. Thus, reduced PV+ cell density may be caused by disrupted cell maturation, in addition to acute apoptosis. This effect may be regionally specific: in the dentate gyrus, P7 ethanol reduced PV+ cell density by 70% at P14 and both PV+ and PNN+ cell densities by 50% at P90, and delayed lithium did not alleviate ethanol's effect.
Collapse
Affiliation(s)
- Mariko Saito
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA.,Department of Psychiatry, NYU School of Medicine, New York, NY, USA
| | - John F Smiley
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA.,Department of Psychiatry, NYU School of Medicine, New York, NY, USA
| | - Maria Hui
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Kurt Masiello
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Judith Betz
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Maria Ilina
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Mitsuo Saito
- Department of Psychiatry, NYU School of Medicine, New York, NY, USA.,Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Donald A Wilson
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA.,Department of Child and Adolescent Psychiatry, NYU School of Medicine, New York, NY, USA
| |
Collapse
|
10
|
Gerace E, Scartabelli T, Pellegrini-Giampietro DE, Landucci E. Tolerance Induced by (S)-3,5-Dihydroxyphenylglycine Postconditioning is Mediated by the PI3K/Akt/GSK3β Signalling Pathway in an In Vitro Model of Cerebral Ischemia. Neuroscience 2020; 433:221-229. [DOI: 10.1016/j.neuroscience.2019.12.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/13/2019] [Accepted: 12/30/2019] [Indexed: 12/16/2022]
|
11
|
Kamarudin SN, Iezhitsa I, Tripathy M, Alyautdin R, Ismail NM. Neuroprotective effect of poly(lactic-co-glycolic acid) nanoparticle-bound brain-derived neurotrophic factor in a permanent middle cerebral artery occlusion model of ischemia in rats. Acta Neurobiol Exp (Wars) 2020. [DOI: 10.21307/ane-2020-001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
Yangyin Tongnao granules enhance neurogenesis in the peri-infarct area and upregulate brain-derived neurotrophic factor and vascular endothelial growth factor after focal cerebral ischemic infarction in rats. Mol Biol Rep 2019; 46:3817-3826. [DOI: 10.1007/s11033-019-04824-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/13/2019] [Indexed: 10/27/2022]
|
13
|
Balkaya M, Cho S. Genetics of stroke recovery: BDNF val66met polymorphism in stroke recovery and its interaction with aging. Neurobiol Dis 2018; 126:36-46. [PMID: 30118755 DOI: 10.1016/j.nbd.2018.08.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/24/2018] [Accepted: 08/13/2018] [Indexed: 12/13/2022] Open
Abstract
Stroke leads to long term sensory, motor and cognitive impairments. Most patients experience some degree of spontaneous recovery which is mostly incomplete and varying greatly among individuals. The variation in recovery outcomes has been attributed to numerous factors including lesion size, corticospinal tract integrity, age, gender and race. It is well accepted that genetics play a crucial role in stroke incidence and accumulating evidence suggests that it is also a significant determinant in recovery. Among the number of genes and variations implicated in stroke recovery the val66met single nucleotide polymorphism (SNP) in the BDNF gene influences post-stroke plasticity in the most significant ways. Val66met is the most well characterized BDNF SNP and is common (40-50 % in Asian and 25-32% in Caucasian populations) in humans. It reduces activity-dependent BDNF release, dampens cortical plasticity and is implicated in numerous diseases. Earlier studies on the effects of val66met on stroke outcome and recovery presented primarily a maladaptive role. Novel findings however indicate a much more intricate interaction between val66met and stroke recovery which appears to be influenced by lesion location, post-stroke stage and age. This review will focus on the role of BDNF and val66met SNP in relation to stroke recovery and try to identify potential pathophysiologic mechanisms involved. The effects of age on val66met associated alterations in plasticity and potential consequences in terms of stroke are also discussed.
Collapse
Affiliation(s)
- Mustafa Balkaya
- Burke-Cornell Medical Research Institute, 785 Mamaroneck Ave, White Plains, NY 10605, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine at Burke Medical Research Institute, 785 Mamaroneck Ave, White Plains, NY 10605, USA
| | - Sunghee Cho
- Burke-Cornell Medical Research Institute, 785 Mamaroneck Ave, White Plains, NY 10605, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine at Burke Medical Research Institute, 785 Mamaroneck Ave, White Plains, NY 10605, USA.
| |
Collapse
|
14
|
Ramagiri S, Taliyan R. Protective effect of remote limb post conditioning via upregulation of heme oxygenase-1/BDNF pathway in rat model of cerebral ischemic reperfusion injury. Brain Res 2017; 1669:44-54. [DOI: 10.1016/j.brainres.2017.05.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 05/10/2017] [Accepted: 05/15/2017] [Indexed: 12/16/2022]
|
15
|
Ramagiri S, Taliyan R. Remote limb ischemic post conditioning during early reperfusion alleviates cerebral ischemic reperfusion injury via GSK-3β/CREB/ BDNF pathway. Eur J Pharmacol 2017; 803:84-93. [DOI: 10.1016/j.ejphar.2017.03.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/06/2017] [Accepted: 03/15/2017] [Indexed: 01/07/2023]
|
16
|
Lei P, Ayton S, Appukuttan AT, Moon S, Duce JA, Volitakis I, Cherny R, Wood SJ, Greenough M, Berger G, Pantelis C, McGorry P, Yung A, Finkelstein DI, Bush AI. Lithium suppression of tau induces brain iron accumulation and neurodegeneration. Mol Psychiatry 2017; 22:396-406. [PMID: 27400857 DOI: 10.1038/mp.2016.96] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/25/2016] [Accepted: 05/09/2016] [Indexed: 02/05/2023]
Abstract
Lithium is a first-line therapy for bipolar affective disorder. However, various adverse effects, including a Parkinson-like hand tremor, often limit its use. The understanding of the neurobiological basis of these side effects is still very limited. Nigral iron elevation is also a feature of Parkinsonian degeneration that may be related to soluble tau reduction. We found that magnetic resonance imaging T2 relaxation time changes in subjects commenced on lithium therapy were consistent with iron elevation. In mice, lithium treatment lowers brain tau levels and increases nigral and cortical iron elevation that is closely associated with neurodegeneration, cognitive loss and parkinsonian features. In neuronal cultures lithium attenuates iron efflux by lowering tau protein that traffics amyloid precursor protein to facilitate iron efflux. Thus, tau- and amyloid protein precursor-knockout mice were protected against lithium-induced iron elevation and neurotoxicity. These findings challenge the appropriateness of lithium as a potential treatment for disorders where brain iron is elevated (for example, Alzheimer's disease), and may explain lithium-associated motor symptoms in susceptible patients.
Collapse
Affiliation(s)
- P Lei
- Department of Neurology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, China.,Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - S Ayton
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - A T Appukuttan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - S Moon
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - J A Duce
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.,Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, West Yorkshire, UK
| | - I Volitakis
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - R Cherny
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - S J Wood
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Parkville, VIC, Australia.,School of Psychology, University of Birmingham, Birmingham, UK
| | - M Greenough
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - G Berger
- ORYGEN Research Centre, University of Melbourne and Melbourne Health, Parkville, VIC, Australia.,Department of Child and Adolescent Psychiatry, University of Zürich, Zurich, Switzerland
| | - C Pantelis
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.,Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Parkville, VIC, Australia.,Centre for Neural Engineering, Department of Electrical and Electronic Engineering, University of Melbourne, Parkville, VIC, Australia
| | - P McGorry
- ORYGEN Research Centre, University of Melbourne and Melbourne Health, Parkville, VIC, Australia
| | - A Yung
- Institute of Brain, Behaviour and Mental Health, University of Manchester and Greater Manchester West NHS Mental Health Trust, Manchester, UK
| | - D I Finkelstein
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - A I Bush
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
17
|
Jia Z, Dong A, Che H, Zhang Y. 17-DMAG Protects Against Hypoxia-/Reoxygenation-Induced Cell Injury in HT22 Cells Through Akt/Nrf2/HO-1 Pathway. DNA Cell Biol 2017; 36:95-102. [PMID: 27982695 DOI: 10.1089/dna.2016.3445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Zhuopeng Jia
- Department of Neurosurgery, The First Affiliated hospital of Xi'an Medical University, Xi'an, China
| | - Arui Dong
- Department of Neurosurgery, Shaanxi Second Provincial People's Hospital, Xi'an, China
| | - Hongmin Che
- Department of Neurosurgery, The First Affiliated hospital of Xi'an Medical University, Xi'an, China
| | - Yu Zhang
- Department of Neurosurgery, No. 215 Hospital of Shaanxi Nuclear Industry, Xianyang, China
| |
Collapse
|