1
|
Singh M, Alka, Shukla P, Wen ZH, Ko CY, Vinayagam R. TPGS-modified Chitosan Nanoparticles of EGFR Inhibitor: Physicochemical and In vitro Evaluation against HepG2 Cell Lines. Curr Drug Deliv 2025; 22:465-478. [PMID: 38204256 DOI: 10.2174/0115672018268315231206045504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Gefitinib (GFN) is an Epithelial Growth Factor Receptor (EGFR) inhibitor, and Food and Drug Administration (FDA) has approved medication to treat lung cancer. However, this investigation aimed to produce and characterize Gefitinib (GFN)-loaded chitosan and soy lecithin nanoparticles (NPs) modified with D-α-tocopheryl polyethylene glycol 1000 succinate mono ester (TPGS) and assess their therapeutic potential against HepG2 liver cell lines. METHODS Chitosan, a cationic polymer with biocompatible and biodegradable properties, was combined with soy lecithin to develop the NPs loaded with GFN using a self-organizing ionic interaction methodology. RESULTS The entrapment efficiency and drug loading were found to be 59.04±4.63 to 87.37±3.82% and 33.46±3.76 to 49.50±4.35%, respectively, and results indicated the encapsulation of GEN in NPs. The pH of the formulations was observed between 4.48-4.62. Additionally, all the prepared NPs showed the size and PDI range of 89.2±15.9 nm to 799.2±35.8 nm and 0.179±0.065 to 0.455±0.097, respectively. The FTIR bands in optimized formulation (GFN-NP1) indicated that the drug might be contained within the NP's core. The SEM photograph revealed the spherical shape of NPs. The kinetic release model demonstrated the combination of diffusion and erosion mechanisms. The IC50 value of GFN and GFN-NP1 formulation against the HepG2 cell lines were determined and found to be 63.22±3.36 μg/ml and 45.80±2.53 μg/ml, respectively. DAPI and PI staining agents were used to detect nuclear morphology. CONCLUSION It was observed that the optimized GFN-NP1 formulation successfully internalized and inhibited the growth of HepG2 cells. Hence, it can be concluded that the prepared NPs can be a new therapeutic option for treating liver cancer.
Collapse
Affiliation(s)
- Mahendra Singh
- Department of Biotechnology, Institute of Biotechnology, Life and Applied Sciences, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Alka
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India
| | - Prashant Shukla
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - Chou-Yuan Ko
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Ramachandran Vinayagam
- Department of Biotechnology, Institute of Biotechnology, Life and Applied Sciences, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| |
Collapse
|
2
|
Abdallah MH, Shahien MM, El-Horany HES, Ahmed EH, El-Nahas HM, Abdulla NA, Ibrahim TM. Evaluation of Mucoadhesive Nano-Bilosomal In Situ Gels Containing Anti-Psychotic Clozapine for Treatment of Schizophrenia: In Vitro and In Vivo Studies. Pharmaceuticals (Basel) 2024; 17:1404. [PMID: 39459043 PMCID: PMC11510079 DOI: 10.3390/ph17101404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Patients with schizophrenia have significant challenges in adhering to and complying with oral medicines, resulting in adverse consequences such as symptom worsening and psychotic relapse. Methods: This study aimed to develop clove oil-based bilosomes using definitive screening design (DSD) to maximize the anti-schizophrenic action of clozapine and promote its nose-to-brain delivery. The target was to optimize the physicochemical properties of bilosomes and incorporate them into mucoadhesive intranasal in situ gels, searching for augmented ex vivo and in vivo clozapine delivery. Results: The bilosomes' particle size was decreased by increasing the span, SDC, and clove oil amounts. In addition to using a high lipid amount, the aforementioned components also helped increase the entrapment efficiency values. Increased zeta potential was only observed by increasing surfactant amount and reducing clozapine concentration. After incorporation of optimized liquid clove oil-based bilosomes, which had a spherical nano-sized vesicular shape, into P 407-dependent gels, an HPMC (2% w/w)/P 407 (20% w/w)-containing formulation (G6) was selected as an optimized gel owing to its acceptable gelation time (13.28 s), gel strength (27.72 s), viscosity (12,766.67 cP), and mucoadhesive strength (4273.93 dyne/cm2). The optimized G6 exhibited higher Jss (50.86 μg/cm2·h-1) through the nasal mucosa compared to the control gel (23.03 μg/cm2·h-1). Compared to the control gel, G6 displayed higher relative bioavailability (491.37%) than a commercial tablet (264.46%). Following ELISA analysis, dopamine and serotonin were significantly reduced, while BDNF was remarkably increased after administration of optimized G6 into schizophrenic rats. Conclusion: Our study indicates the potential of intranasal bilosomal gels in upgrading the anti-schizophrenic and neuroprotective activity of clozapine.
Collapse
Affiliation(s)
- Marwa H. Abdallah
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Mona M. Shahien
- Department of Pediatrics, College of Medicine, University of Ha’il, Ha’il 81442, Saudi Arabia;
| | - Hemat El-Sayed El-Horany
- Department of Biochemistry, College of Medicine, University of Ha’il, Ha’il 81442, Saudi Arabia;
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
| | - Enas Haridy Ahmed
- Department of Anatomy, College of Medicine, University of Ha’il, Ha’il 81442, Saudi Arabia;
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Hanan M. El-Nahas
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (H.M.E.-N.); (N.A.A.); (T.M.I.)
| | - Nourhan A. Abdulla
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (H.M.E.-N.); (N.A.A.); (T.M.I.)
| | - Tarek M. Ibrahim
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (H.M.E.-N.); (N.A.A.); (T.M.I.)
| |
Collapse
|
3
|
Sierri G, Patrucco M, Ferrario D, Renda A, Comi S, Ciprandi M, Fontanini V, Sica FS, Sesana S, Costa Verdugo M, Kravicz M, Salassa L, Busnelli M, Re F. Targeting specific brain districts for advanced nanotherapies: A review from the perspective of precision nanomedicine. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1991. [PMID: 39251878 PMCID: PMC11670049 DOI: 10.1002/wnan.1991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 09/11/2024]
Abstract
Numerous studies are focused on nanoparticle penetration into the brain functionalizing them with ligands useful to cross the blood-brain barrier. However, cell targeting is also crucial, given that cerebral pathologies frequently affect specific brain cells or areas. Functionalize nanoparticles with the most appropriate targeting elements, tailor their physical parameters, and consider the brain's complex anatomy are essential aspects for precise therapy and diagnosis. In this review, we addressed the state of the art on targeted nanoparticles for drug delivery in diseased brain regions, outlining progress, limitations, and ongoing challenges. We also provide a summary and overview of general design principles that can be applied to nanotherapies, considering the areas and cell types affected by the most common brain disorders. We then emphasize lingering uncertainties that hinder the translational possibilities of nanotherapies for clinical use. Finally, we offer suggestions for continuing preclinical investigations to enhance the overall effectiveness of precision nanomedicine in addressing neurological conditions. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Giulia Sierri
- School of Medicine and SurgeryUniversity of Milano‐BicoccaMonzaItaly
| | - Michela Patrucco
- School of Medicine and SurgeryUniversity of Milano‐BicoccaMonzaItaly
- PhD program in Neuroscience, School of Medicine and Surgery, University of Milano‐Bicocca, Italy
| | - Davide Ferrario
- School of Medicine and SurgeryUniversity of Milano‐BicoccaMonzaItaly
| | - Antonio Renda
- School of Medicine and SurgeryUniversity of Milano‐BicoccaMonzaItaly
| | - Susanna Comi
- School of Medicine and SurgeryUniversity of Milano‐BicoccaMonzaItaly
| | - Matilde Ciprandi
- Department of Biotechnology and BiosciencesUniversity of Milano‐BicoccaMilanItaly
| | | | | | - Silvia Sesana
- School of Medicine and SurgeryUniversity of Milano‐BicoccaMonzaItaly
| | | | - Marcelo Kravicz
- School of Medicine and SurgeryUniversity of Milano‐BicoccaMonzaItaly
| | - Luca Salassa
- Donostia International Physics Center (DIPC)DonostiaEuskadiSpain
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika FakultateaEuskal Herriko Unibertsitatea UPV/EHUDonostiaSpain
- Basque Foundation for ScienceIkerbasqueBilbaoSpain
| | - Marta Busnelli
- Institute of Neuroscience, National Research CouncilItaly
| | - Francesca Re
- School of Medicine and SurgeryUniversity of Milano‐BicoccaMonzaItaly
| |
Collapse
|
4
|
Block M, Sieger P, Truenkle C, Saal C, Simon R, Truebenbach I. Miniaturized screening and performance prediction of tailored subcutaneous extended-release formulations for preclinical in vivo studies. Eur J Pharm Sci 2024; 196:106733. [PMID: 38408709 DOI: 10.1016/j.ejps.2024.106733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Microencapsulation of active pharmaceutical ingredients (APIs) for preparation of long acting injectable (LAI) formulations is an auspicious technique to enable preclinical characterization of a broad variety of APIs, ideally independent of their physicochemical and pharmacokinetic (PK) characteristics. During early API discovery, tunable LAI formulations may enable pharmacological proof-of-concept for the given variety of candidates by tailoring the level of plasma exposure over the duration of various timespans. Although numerous reports on small scale preparation methods for LAIs utilizing copolymers of lactic and glycolic acid (PLGA) and polymers of lactic acid (PLA) highlight their potential, application in formulation screening and use in preclinical in vivo studies is yet very limited. Transfer from downscale formulation preparation to in vivo experiments is hampered in early preclinical API screening by the large number of API candidates with simultaneously very limited available amount in the lower sub-gram scale, lack of formulation stability and deficient tunability of sustained release. We hereby present a novel comprehensive platform tool for tailored extended-release formulations, aiming to support a variety of preclinical in vivo experiments with ranging required plasma exposure levels and timespans. A novel small-scale spray drying process was successfully implemented by using an air brush based instrument for preparation of PLGA and PLA based formulations. Using Design of Experiments (DoE), required API amount of 250 mg was demonstrated to suffice for identification of dominant polymer characteristics with largest impact on sustained release capability for an individual API. BI-3231, a hydrophilic and weakly acidic small compound with good water solubility and permeability, but low metabolic stability, was used as an exemplary model for one of the many candidates during API discovery. Furthermore, an in vitro to in vivo correlation (IVIVC) of API release rate was established in mice, which enabled the prediction of in vivo plasma concentration plateaus after single subcutaneous injection, using only in vitro dissolution profiles of screened formulations. By tailoring LAI formulations and their doses for acute and sub-chronic preclinical experiments, we exemplary demonstrate the practical use for BI-3231. Pharmacological proof-of-concept could be enabled whilst circumventing the need of multiple administration as result of extensive hepatic metabolism and simultaneously superseding numerous in vivo experiments for formulation tailoring.
Collapse
Affiliation(s)
- Marco Block
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß 88397, Germany
| | - Peter Sieger
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß 88397, Germany
| | - Cornelius Truenkle
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß 88397, Germany
| | - Christoph Saal
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß 88397, Germany
| | - Roman Simon
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß 88397, Germany
| | - Ines Truebenbach
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß 88397, Germany.
| |
Collapse
|
5
|
Yekeler HB, Guler E, Beato PS, Priya S, Abobakr FKM, Dogan M, Uner B, Kalaskar DM, Cam ME. Design and in vitro evaluation of curcumin-loaded PLGA nanoparticle-embedded sodium alginate/gelatin 3D printed scaffolds for Alzheimer's disease. Int J Biol Macromol 2024; 268:131841. [DOI: 6.https:/doi.org/10.1016/j.ijbiomac.2024.131841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2025]
|
6
|
Yekeler HB, Guler E, Beato PS, Priya S, Abobakr FKM, Dogan M, Uner B, Kalaskar DM, Cam ME. Design and in vitro evaluation of curcumin-loaded PLGA nanoparticle-embedded sodium alginate/gelatin 3D printed scaffolds for Alzheimer's disease. Int J Biol Macromol 2024; 268:131841. [PMID: 38679260 DOI: 10.1016/j.ijbiomac.2024.131841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Targeted nanoparticles (NPs) are aimed at improving clinical outcomes by enhancing the diagnostic and therapeutic efficacy of drugs in the treatment of Alzheimer's disease (AD). METHODS Curcumin (CUR)-loaded poly-lactic-co-glycolic acid (PLGA) NPs (CNPs) were produced to demonstrate a prolonged release and successfully embedded into 3D printed sodium alginate (SA)/gelatin (GEL) scaffolds that can dissolve rapidly sublingually. Characterization and in vitro activity of the NPs and scaffolds were evaluated. RESULTS Based on the in vitro drug release studies, 99.6 % of the encapsulated CUR was released in a controlled manner within 18 days for the CNPs. In vitro cell culture studies showed that all samples exhibited cell viability above 84.2 % and no significant cytotoxic effect on SH-SY5Y cells. The samples were analyzed through 2 different pathways by PCR analysis. Real-time PCR results indicated that CNP and CNP-embedded SA/GEL scaffolds (CNPSGS) may show neuroprotective effects by modulating the Wnt/β-catenin pathway. The gene expression level of β-catenin slightly increased compared to the gene expression levels of other proteins and enzymes with these treatments. However, the PI3K/Akt/GSK-3β signaling pathway was regulated at the same time because of the crosstalk between these 2 pathways. CONCLUSION CNPSGS might be an effective therapeutic alternative for AD treatment.
Collapse
Affiliation(s)
- Humeyra Betul Yekeler
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34854, Türkiye; Center for Nanotechnology and Biomaterials Application and Research, Marmara University, Istanbul 34722, Türkiye; UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, Rowland Hill Street, NW3 2PF, UK; MecNano Technologies, Cube Incibation, Teknopark Istanbul, Istanbul 34906, Türkiye
| | - Ece Guler
- Center for Nanotechnology and Biomaterials Application and Research, Marmara University, Istanbul 34722, Türkiye; UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, Rowland Hill Street, NW3 2PF, UK; MecNano Technologies, Cube Incibation, Teknopark Istanbul, Istanbul 34906, Türkiye; Department of Pharmacology, Faculty of Pharmacy, Istanbul Kent University, Kagithane 34406, Istanbul, Türkiye
| | - Patricia Santos Beato
- UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, Rowland Hill Street, NW3 2PF, UK
| | - Sushma Priya
- UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, Rowland Hill Street, NW3 2PF, UK
| | | | - Murat Dogan
- Department of Pharmaceutical Biotechnology, Cumhuriyet University, Sivas 58140, Türkiye; Cancer Survivorship Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 625 N. Michigan Ave., Suite 2100, Chicago, IL, 60611, USA
| | - Burcu Uner
- Department of Pharmaceutical and Administrative Sciences, University of Health Science and Pharmacy in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul Kent University, Kagithane 34406, Istanbul, Türkiye
| | - Deepak M Kalaskar
- UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, Rowland Hill Street, NW3 2PF, UK
| | - Muhammet Emin Cam
- Center for Nanotechnology and Biomaterials Application and Research, Marmara University, Istanbul 34722, Türkiye; UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, Rowland Hill Street, NW3 2PF, UK; MecNano Technologies, Cube Incibation, Teknopark Istanbul, Istanbul 34906, Türkiye; Department of Pharmacology, Faculty of Pharmacy, Istanbul Kent University, Kagithane 34406, Istanbul, Türkiye; Biomedical Engineering Department, University of Aveiro, Aveiro 3810-193, Portugal; Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, Istanbul 34854, Türkiye.
| |
Collapse
|
7
|
Fischer D. Sustainability in Drug and Nanoparticle Processing. Handb Exp Pharmacol 2024; 284:45-68. [PMID: 37306814 DOI: 10.1007/164_2023_659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The formulation of drugs in poly(lactic-co-glycolic acid) (PLGA) nanoparticles can be accomplished by various methods, with nanoprecipitation and nanoemulsion being among the most commonly used manufacturing techniques to provide access to high-quality nanomaterials with reproducible quality. Current trends turned to sustainability and green concepts leading to a re-thinking of these techniques, particularly as the conventional solvents for the dissolution of the polymer suffer from limitations like hazards for human health and natural environment. This chapter gives an overview about the different excipients used in classical nanoformulations with a special focus on the currently applied organic solvents. As alternatives, the status quo of green, sustainable, and alternative solvents regarding their application, advantages, and limitations will be highlighted as well as the role of physicochemical solvent characteristics like water miscibility, viscosity, and vapor pressure for the selection of the formulation process, and for particle characteristics. New alternative solvents will be introduced for PLGA nanoparticle formation and compared regarding particle characteristics and biological effects as well as for in situ particle formation in a matrix consisting of nanocellulose. Conclusively, new alternative solvents are available that present a significant advancement toward the replacement of organic solvents in PLGA nanoparticle formulations.
Collapse
Affiliation(s)
- Dagmar Fischer
- Division of Pharmaceutical Technology and Biopharmacy, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
8
|
Panda SP, Singh V. The Dysregulated MAD in Mad: A Neuro-theranostic Approach Through the Induction of Autophagic Biomarkers LC3B-II and ATG. Mol Neurobiol 2023; 60:5214-5236. [PMID: 37273153 DOI: 10.1007/s12035-023-03402-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/24/2023] [Indexed: 06/06/2023]
Abstract
The word mad has historically been associated with the psyche, emotions, and abnormal behavior. Dementia is a common symptom among psychiatric disorders or mad (schizophrenia, depression, bipolar disorder) patients. Autophagy/mitophagy is a protective mechanism used by cells to get rid of dysfunctional cellular organelles or mitochondria. Autophagosome/mitophagosome abundance in autophagy depends on microtubule-associated protein light chain 3B (LC3B-II) and autophagy-triggering gene (ATG) which functions as an autophagic biomarker for phagophore production and quick mRNA disintegration. Defects in either LC3B-II or the ATG lead to dysregulated mitophagy-and-autophagy-linked dementia (MAD). The impaired MAD is closely associated with schizophrenia, depression, and bipolar disorder. The pathomechanism of psychosis is not entirely known, which is the severe limitation of today's antipsychotic drugs. However, the reviewed circuit identifies new insights that may be especially helpful in targeting biomarkers of dementia. Neuro-theranostics can also be achieved by manufacturing either bioengineered bacterial and mammalian cells or nanocarriers (liposomes, polymers, and nanogels) loaded with both imaging and therapeutic materials. The nanocarriers must cross the BBB and should release both diagnostic agents and therapeutic agents in a controlled manner to prove their effectiveness against psychiatric disorders. In this review, we highlighted the potential of microRNAs (miRs) as neuro-theranostics in the treatment of dementia by targeting autophagic biomarkers LC3B-II and ATG. Focus was also placed on the potential for neuro-theranostic nanocells/nanocarriers to traverse the BBB and induce action against psychiatric disorders. The neuro-theranostic approach can provide targeted treatment for mental disorders by creating theranostic nanocarriers.
Collapse
Affiliation(s)
- Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Uttar Pradesh, Mathura, India.
| | - Vikrant Singh
- Research Scholar, Institute of Pharmaceutical Research, GLA University, Uttar Pradesh, Mathura, India
| |
Collapse
|
9
|
Controlled release and targeted drug delivery with poly(lactic-co-glycolic acid) nanoparticles: reviewing two decades of research. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00584-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Abdulla NA, Balata GF, El-ghamry HA, Gomaa E. Intranasal delivery of Clozapine using nanoemulsion-based in-situ gels: An approach for bioavailability enhancement. Saudi Pharm J 2022; 29:1466-1485. [PMID: 35002385 PMCID: PMC8720818 DOI: 10.1016/j.jsps.2021.11.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/10/2021] [Indexed: 12/18/2022] Open
Abstract
Limited solubility and hepatic first-pass metabolism are the main causes of low bioavailability of anti-schizophrenic drug, Clozapine (CZP). The objective of the study was to develop and validate nanoemulsion (NE) based in-situ gel of CZP for intranasal administration as an approach for bioavailability enhancement. Solubility of CZP was initially investigated in different oils, surfactants and co-surfactants, then pseudoternary phase diagrams were constructed to select the optimized ratio of oil, surfactant and co-surfactant. Clear and transparent NE formulations were characterized in terms of droplet size, viscosity, solubilization capacity, transmission electron microscopy, in-vitro drug release and compatibility studies. Selected NEs were incorporated into different in-situ gel bases using combination of two thermosensitive polymers; Pluronic® F-127 (PF127) and F-68 (PF68). NE-based gels (NG) were investigated for gelation temperature, viscosity, gel strength, spreadability and stability. Moreover, selected NGs were evaluated for ex-vivo permeation, mucoadhesive strength and nasal ciliotoxicity. Peppermint oil, tween 80 and transcutol P were chosen for NE preparation owing to their maximum CZP solubilization. Clear NE points extrapolated from tween 80:transcutol P (1:1) phase diagram and passed dispersibility and stability tests, demonstrated globule size of 67.99 to 354.96 nm and zeta potential of −12.4 to −3.11 mV with enhanced in-vitro CZP release (>90% in some formulations). After incorporation of the selected N3 and N9 formulations of oil:Smix of 1:7 and 2:7, respectively to a mixture of PF127 and PF68 (20:2% w/w), the resultant NG formulations exhibited optimum gelation temperature and viscosity with enhanced CZP permeation and retention through sheep nasal mucosa. Ciliotoxicity examinations of the optimum NGs displayed no inflammation or damage of the lining epithelium and the underlying cells of the nasal mucosa. In conclusion, NE-based gels may be a promising dosage form of CZP for schizophrenia treatment.
Collapse
Affiliation(s)
- Nourhan A. Abdulla
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
- Corresponding author.
| | - Gehan F. Balata
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
- Department of Pharmacy Practice, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Hanaa A. El-ghamry
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Eman Gomaa
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
11
|
Rathee J, Kaur A, Kanwar R, Kaushik D, Kumar R, Salunke DB, Mehta S. Polymeric Nanoparticles as a Promising Drug Delivery Platform for the Efficacious Delivery of Toll-Like Receptor 7/8 Agonists and IDO-Inhibitor. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Sayed S, Elsharkawy FM, Amin MM, Shamsel-Din HA, Ibrahim AB. Brain targeting efficiency of intranasal clozapine-loaded mixed micelles following radio labeling with Technetium-99m. Drug Deliv 2021; 28:1524-1538. [PMID: 34266360 PMCID: PMC8288143 DOI: 10.1080/10717544.2021.1951895] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
The research objective is to design intranasal (IN) brain targeted CLZ-loaded polymeric nanomicellar systems (PNMS) aiming to improve central systemic CLZ bioavailability. Direct equilibrium method was used to prepare CLZ-PNMS using two hydrophobic poloxamines; Tetronic® 904 (T904) and Tetronic® 701 (T701) and one hydrophilic poloxamer; Synperonic® PE/F127 (F127). Optimization is based on higher percent transmittance, solubilizing efficiency, and in vitro release after 24 h with smaller particle size was achieved using Design-Expert® software. The optimized formula was further evaluated via TEM, ex vivo nasal permeation in addition to in vivo biodistribution using radiolabeling technique of the optimized formula by Technetium-99m (99mTc). The optimized formula M5 has small size (217 nm) with relative high percentage of transmittance (97.72%) and high solubilization efficacy of 60.15-fold following 92.79% of CLZ released after 24 h. Ex vivo nasal permeation showed higher flux of 36.62 μg/cm2.h compared to 7.324 μg/cm2.h for CLZ suspension with no histological irritation. In vivo biodistribution results showed higher values of radioactivity percentage of the labeled optimized formula (99mTc-M5) in brain and brain/blood ratio following IN administration of 99mTc-M5 complex which were greater than their corresponding values following intravenous route. It is obvious that nasal delivery of CLZ-PNMS could be a promising way to improve central systemic CLZ bioavailability.
Collapse
Affiliation(s)
- Sinar Sayed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Fatma M. Elsharkawy
- Regulatory Affairs Department, Al Andalous for Pharmaceutical Industries, Giza, Egypt
| | - Maha M. Amin
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hesham A. Shamsel-Din
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Ahmed B. Ibrahim
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
13
|
Mehta CH, Narayan R, Acharya S, Nayak UY. Design and development of surface modified epigallocatechin 3-gallate NanoCubogel for localized delivery to oral submucous fibrosis therapy. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Rajendran R, Menon KN, Nair SC. Nanotechnology Approaches for Enhanced CNS Drug Delivery in the Management of Schizophrenia. Adv Pharm Bull 2021; 12:490-508. [PMID: 35935056 PMCID: PMC9348538 DOI: 10.34172/apb.2022.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 06/02/2021] [Accepted: 09/27/2021] [Indexed: 11/09/2022] Open
Abstract
Schizophrenia is a neuropsychiatric disorder mainly affecting the central nervous system, presented with auditory and visual hallucinations, delusion and withdrawal from society. Abnormal dopamine levels mainly characterise the disease; various theories of neurotransmitters explain the pathophysiology of the disease. The current therapeutic approach deals with the systemic administration of drugs other than the enteral route, altering the neurotransmitter levels within the brain and providing symptomatic relief. Fluid biomarkers help in the early detection of the disease, which would improve the therapeutic efficacy. However, the major challenge faced in CNS drug delivery is the blood-brain barrier. Nanotherapeutic approaches may overcome these limitations, which will improve safety, efficacy, and targeted drug delivery. This review article addresses the main challenges faced in CNS drug delivery and the significance of current therapeutic strategies and nanotherapeutic approaches for a better understanding and enhanced drug delivery to the brain, which improve the quality of life of schizophrenia patients.
Collapse
Affiliation(s)
| | - Krishnakumar Neelakandha Menon
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Science and Research Centre, Amrita Vishwa Vidyapeetham, Kochi-682041, Kerala, India
| | | |
Collapse
|
15
|
Applications of innovative technologies to the delivery of antipsychotics. Drug Discov Today 2021; 27:401-421. [PMID: 34601123 DOI: 10.1016/j.drudis.2021.09.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/27/2021] [Accepted: 09/25/2021] [Indexed: 12/24/2022]
Abstract
Psychosis is a high-incidence pathology associated with a profound alteration in the perception of reality. The limitations of drugs available on the market have stimulated the search for alternative solutions to achieve effective antipsychotic therapies. In this review, we evaluate innovative formulations of antipsychotic drugs developed through the application of modern pharmaceutical technologies, including classes of micro and nanocarriers, such as lipid formulations, polymeric nanoparticles (NPs), solid dispersions, and cyclodextrins (CDs). We also consider alternative routes of administration to the oral and parenteral ones currently used. Improved solubility, stability of preparations, and pharmacokinetic (PK) and pharmacodynamic (PD) parameters confirm the potential of these new formulations in the treatment of psychotic disorders.
Collapse
|
16
|
Öztürk AA, Arpagaus C. Nano Spray-Dried Drugs for Oral Administration: A Review. Assay Drug Dev Technol 2021; 19:412-441. [PMID: 34550790 DOI: 10.1089/adt.2021.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Spray drying is an important technology that is fast, simple, reproducible, and scalable. It has a wide application range, that is, in food, chemicals, and encapsulation of pharmaceuticals. The technology can be divided into conventional spray drying and nano spray drying. The key advantage of nano spray drying is the production of drug-loaded nanosized particles for various drug delivery applications. The recent developments in nano spray dryer technology and the market launch of the Nano Spray Dryer B-90 by Büchi Labortechnik AG in 2009 enabled the production of submicron spray-dried particles. This review focuses on nanosized drug delivery systems intended for oral administration produced by nano spray drying. First, the nano spray drying concept, the basic technologies implemented in the equipment, and the effects of the various process parameters on the final dry submicron powder properties are presented. Then, the topics of new formulation strategies of oral drugs are highlighted with examples that have entered the research literature in recent years. Next, the subjects of direct conversion of poorly water-soluble drugs, encapsulation of drugs, and drying of preformed nanoparticles are considered. Finally, topics such as morphology, particle size, size distribution, surface analysis, bioavailability, drug release, release kinetics, and solid-state characterization (by differential scanning calorimetry, X-ray diffraction, Fourier transform infrared spectroscopy, nuclear magnetic resonance) of oral drug delivery systems produced by nano spray drying are discussed. The review attempts to provide a comprehensive knowledge base with current literature and foresight to researchers working in the field of pharmaceutical technology and nanotechnology and especially in the field of nano spray drying.
Collapse
Affiliation(s)
- A Alper Öztürk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Cordin Arpagaus
- Institute for Energy Systems, Eastern Switzerland University of Applied Sciences of Technology, Buchs, Switzerland
| |
Collapse
|
17
|
Jafari SM, Arpagaus C, Cerqueira MA, Samborska K. Nano spray drying of food ingredients; materials, processing and applications. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.061] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Song J, Zhang Z. Brinzolamide loaded core-shell nanoparticles for enhanced coronial penetration in the treatment of glaucoma. J Appl Biomater Funct Mater 2020; 18:2280800020942712. [PMID: 33151769 DOI: 10.1177/2280800020942712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A neurodegenerative disorder, glaucoma is a leading cause of blindness in the world. The conventional treatment strategies do not allow the significant penetration of the drug in the cornea. Therefore, we prepare a brinzolamide (Brz) loaded core-shell nanoparticles (NPs) to enhance the coronial penetration of the drug and thus treating the glaucoma. The shell of the NPs was composed of phosphatidylserine (PS; 1,2-diacyl-sn-glycero-3-phospho-L-serine), whereas the core of the NPs contains the Brz encapsulated in brinzolamide–phosphatidylserine–polymer poly-(DL-lactic acid-co-glycolic acid)–phosphatidylserine (Brz-PS-PLGA). The synthesis of Brz-PS-PLGA was achieved by using a coaxial electrospray process (CEP), which allows the preparation of the particles in a single step. The size of Brz-PS-PLGA with PS shell and brinzolamide–poly (lactic-co-glycolic) acid (Brz-PLGA) without shell was 571 ± 27.02 nm and 456 ± 19.17 nm, respectively. The charges on the surface of Brz-PS-PLGA and Brz-PLGA were (-) 27.45 ± 2.98 mV and (-) 19.47 ± 2.83 mV. The transmission electron microscopy images clearly reveal the PS shell as a light black layer over the dark black PLGA core. The CEP allows the high encapsulation of Brz in Brz-PS-PLGA where percentage of entrapment efficiency for Brz-PS-PLGA was 88.13 ± 6.43%. The release study conducted in a simulated tear fluid revealed the sustained release patterns of Brz from Brz-PS-PLGA and these were nontoxic to the cells as revealed by the cytotoxicity studies. Further, the Brz-PS-PLGA enhanced the coronial penetration of Brz and was capable of significantly reducing the intraocular pressure (IOP) after administration to the rabbit eye in comparison to the Brz-PLGA and free Brz. The results clearly suggest that the PS coating significantly enhances the capability of the particles in reducing IOP.
Collapse
Affiliation(s)
- Jing Song
- Department of Ophthalmology, The First People’s Hospital of Lianyungang, Lianyungang, Jiangsu, People’s Republic of China
| | - Ziping Zhang
- Department of Ophthalmology, The First People’s Hospital of Lianyungang, Lianyungang, Jiangsu, People’s Republic of China
| |
Collapse
|
19
|
Effect of N-terminal poly histidine-tag on immunogenicity of Streptococcus pneumoniae surface protein SP0845. Int J Biol Macromol 2020; 163:1240-1248. [DOI: 10.1016/j.ijbiomac.2020.07.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 12/29/2022]
|
20
|
Radaic A, Martins-de-Souza D. The state of the art of nanopsychiatry for schizophrenia diagnostics and treatment. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 28:102222. [DOI: 10.1016/j.nano.2020.102222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/18/2020] [Accepted: 05/02/2020] [Indexed: 02/07/2023]
|
21
|
Meena J, Kumar R, Singh M, Ahmed A, Panda AK. Modulation of immune response and enhanced clearance of Salmonella typhi by delivery of Vi polysaccharide conjugate using PLA nanoparticles. Eur J Pharm Biopharm 2020; 152:270-281. [DOI: 10.1016/j.ejpb.2020.05.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/17/2020] [Accepted: 05/24/2020] [Indexed: 10/24/2022]
|
22
|
Tareen FK, Shah KU, Ahmad N, Ur Rehman A, Shah SU, Ullah N. Proniosomes as a Carrier System for Transdermal Delivery of Clozapine. Drug Dev Ind Pharm 2020; 46:1-24. [PMID: 32362194 DOI: 10.1080/03639045.2020.1764020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 03/16/2020] [Accepted: 04/26/2020] [Indexed: 12/19/2022]
Abstract
The current study aimed to formulate the clozapine (CLZ) loaded proniosomal gel (PN) and evaluate it's in vitro release, ex vivo permeation and gel properties. CLZ is a BCS class II drug with low bioavailability of 27% and severe adverse drug reactions (ADRs) due to frequent dosing. Proniosomes offer a versatile pro-vesicular approach with potential in transdermal drug delivery. PN-CLZ gel was prepared by the coacervation phase separation method utilizing span-60, cholesterol and lecithin. Optimization of PN gel was done by hit & trial method and the formulations were characterized for particle size, entrapment efficiency (EE), polydispersity index (PDI) and zeta potential (ZP). The optimized formulation had the highest entrapment efficiency of 90% and the average particle size of approx. 325 nm. PDI reflected homogeneity in the formulation. ZP was -59.76 mV, high enough to indicate a stable formulation. The in vitro release studies manifested a sustained release behavior of clozapine from the proniosomal gel. The ex vivo permeation showed noteworthy permeation of the drug through stratum corneum with a steady state flux of 18.26 ug/cm2/hr. The optimized gel was analyzed for pH, spreadability, bioadhesion and rheology. The results suggested that clozapine could be effectively loaded into proniosomal gel for administration through skin.
Collapse
Affiliation(s)
- Fahad Khan Tareen
- Department of Pharmacy, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Kifayat Ullah Shah
- Department of Pharmacy, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Naveed Ahmad
- Department of Pharmacy, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Asim Ur Rehman
- Department of Pharmacy, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Shefaat Ullah Shah
- Deaprtment of Pharmaceutics, Faculty of Pharmacy, Gomal University, D.I.Khan, Pakistan
| | - Naseem Ullah
- Department of Pharmacy, Quaid-i-Azam University Islamabad, 45320, Pakistan
| |
Collapse
|
23
|
Akhter MH, Kumar S, Nomani S. Sonication tailored enhance cytotoxicity of naringenin nanoparticle in pancreatic cancer: design, optimization, and in vitro studies. Drug Dev Ind Pharm 2020; 46:659-672. [PMID: 32208984 DOI: 10.1080/03639045.2020.1747485] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Objective: In vitro, optimization, characterization, and cytotoxic studies of NAR nanoparticles (NPs) to against pancreatic cancer.Method: The sonication tailored Naringenin (NARG)-loaded poly (lactide-co-glycolic acid) (PLGA) NPs was fabricated for potential cytotoxic effect against pancreatic cancer. NARG NPs were prepared by emulsion-diffusion evaporation technique applying BoxBehnken experimental design based on three-level and three-factors. The effect of independent variables surfactant concentration (X1), polymer concentration (X2), and sonication time (X3) were studied on responses particle size (Y1), and drug release % (Y2). NPs characterized for particles size and size distribution, polydispersity index (PDI), zeta potential, transmission electron microscope (TEM), scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), Differential scanning calorimeter (DSC), and X-ray diffraction (XRD) studies. Further, the studies was fitted to various drug release kinetic model and cytotoxicity evaluated in vitro.Results: The nanosized particles were spherical, uniform with an average size of 150.45 ± 12.45 nm, PDI value 0.132 ± 0.026, zeta potential -20.5 ± 2.5 mV, and cumulative percentage release 85.67 ± 6.23%. In vitro release of NARG from nanoparticle evaluated initially burst followed by sustained release behavior. The Higuchi was best fitted model to drug release from NARG NPs. The cytotoxicity study of NARG NPs apparently showed higher cytotoxic effect over free NARG (p < 0.05). The stability study of optimized formulation revealed no significant physico-chemical changes during 3 months.Conclusions: Thus, NARG-loaded NPs gave ameliorated anticancer effect over plain NARG.
Collapse
Affiliation(s)
| | - Sandeep Kumar
- Alwar Pharmacy College Rajasthan University of Health Sciences (RUHS), M.I.A. Alwar-Rajasthan, Alwar, India.,Karnataka Antibiotics and Pharmaceutical Limited, Bengaluru, India
| | | |
Collapse
|
24
|
Pourtalebi Jahromi L, Ghazali M, Ashrafi H, Azadi A. A comparison of models for the analysis of the kinetics of drug release from PLGA-based nanoparticles. Heliyon 2020; 6:e03451. [PMID: 32140583 PMCID: PMC7049635 DOI: 10.1016/j.heliyon.2020.e03451] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/07/2019] [Accepted: 02/17/2020] [Indexed: 12/22/2022] Open
Abstract
Purpose Poly (lactic-co-glycolic acid) has received much academic attention for developing nanotherapeutics and FDA has approved it for several applications. An important parameter that dictates the bioavailability and hence the biological effect of the drug is drug release from its delivering system. This study offers a comparative mathematical analysis of drug release from Poly (lactic-co-glycolic acid)–based nanoparticles to suggest a general model explaining multi-mechanistic release they provide. Methods Eight release models, zero order, first order, Higuchi, Hixson-Crowell, the square root of mass, the three-second root of mass, Weibull and Korsmeyer-Peppas, as well as the second degree polynomial equation were applied to 60 data sets. The models analysed regarding several types of errors, regression parameters and average Akaike information criterion. Results and discussion Most of the data sets present the highest R2, the lowest overall error and AIC for the Weibull model. Weibull model with the mean AIC = -36.37 and mean OE = 7.24 and the highest NE less than 5, 10, 15 and 20 % in most of the cases best fits the release data from various PLGA-based drug delivery systems that are studied. Weibull model seems to show enough flexibility to describe various release patterns PLGA provides.
Collapse
Affiliation(s)
| | - Mohammad Ghazali
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hajar Ashrafi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Azadi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
25
|
Pedrozo RC, Antônio E, Khalil NM, Mainardes RM. Bovine serum albumin-based nanoparticles containing the flavonoid rutin produced by nano spray drying. BRAZ J PHARM SCI 2020. [DOI: 10.1590/s2175-97902019000317692] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
26
|
Li X, Wang J, Li S, Liu Z, Zheng Z, Zhang Y. Development and Evaluation of Multifunctional Poly(Lactic-co-glycolic acid) Nanoparticles Embedded in Carboxymethyl β-Glucan Porous Microcapsules as a Novel Drug Delivery System for Gefitinib. Pharmaceutics 2019; 11:E469. [PMID: 31547272 PMCID: PMC6781315 DOI: 10.3390/pharmaceutics11090469] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/08/2019] [Accepted: 09/09/2019] [Indexed: 12/20/2022] Open
Abstract
In this study, a new kind of folic acid (FA)-conjugated and chitosan (CS)-coated poloxamer 407 (P407)/poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs), FCPP NPs, were prepared, and further micro-encapsulated by carboxymethyl β-glucan microcapsules (MCs) to produce a multifunctional system of NPs embedded in MCs (NEMs) for potential lung tumor-targeted delivery of gefitinib. The prepared gefitinib-loaded FCPP (GFB/FCPP) NPs showed a hydrodynamic diameter of 255.4 ± 14.5 nm and existed in an amorphous state. After encapsulation in carboxymethyl β-glucan MCs, the GFB/FCPP-based NEMs (GFB/FCPP-NEMs) also exhibited a spherical morphology with a median diameter (d50) of around 2.2 μm. After hydration, GFB/FCPP- NEMs can quickly dissociate into its primary particles, GFB/FCPP NPs. Our in vitro drug release study revealed that these GFB/FCPP-NEMs exhibited a pH-responsive prolonged release property. In addition, the cellular uptake study demonstrated that FCPP-NEMs serve as an efficient carrier to enhance the delivery of the entrapped drug into the target lung tumor cells. Moreover, the GFB/FCPP-NEMs induced a superior cytotoxic effect compared with free gefitinib. The inhibitory concentration to achieve 50% cell death (IC50) of GFB/FCPP-NEMs in A549 cells was 3.82-fold lower than that of free gefitinib. According to these results, FCPP-NEMs hold a great potential as a multifunctional and high-performance biomaterial for lung tumor targeting delivery, pH-responsive sustained release, facilitated cellular uptake, and enhanced antitumor effect of antitumor drugs, like gefitinib.
Collapse
Affiliation(s)
- Xiaonan Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
- Department of Pharmaceutics, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Jinglei Wang
- Department of Pharmaceutics, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Shang Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Zhaorong Liu
- Department of Pharmaceutics, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Zhiru Zheng
- Department of Pharmaceutics, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Yanzhuo Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
- Department of Pharmaceutics, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
27
|
Polymeric nanoparticles as carrier for targeted and controlled delivery of anticancer agents. Ther Deliv 2019; 10:527-550. [DOI: 10.4155/tde-2019-0044] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In recent decades, many novel methods by using nanoparticles (NPs) have been investigated for diagnosis, drug delivery and treatment of cancer. Accordingly, the potential of NPs as carriers is very significant for the delivery of anticancer drugs, because cancer treatment with NPs has led to the improvement of some of the drug delivery limitations such as low blood circulation time and bioavailability, lack of water solubility, drug adverse effect. In addition, the NPs protect drugs against enzymatic degradation and can lead to the targeted and/or controlled release of the drug. The present review focuses on the potential of NPs that can help the targeted and/or controlled delivery of anticancer agents for cancer therapy.
Collapse
|
28
|
|
29
|
Pudziuvelyte L, Marksa M, Jakstas V, Ivanauskas L, Kopustinskiene DM, Bernatoniene J. Microencapsulation of Elsholtzia ciliata Herb Ethanolic Extract by Spray-Drying: Impact of Resistant-Maltodextrin Complemented with Sodium Caseinate, Skim Milk, and Beta-Cyclodextrin on the Quality of Spray-Dried Powders. Molecules 2019; 24:molecules24081461. [PMID: 31013876 PMCID: PMC6515367 DOI: 10.3390/molecules24081461] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 12/30/2022] Open
Abstract
Spray-drying is the most popular encapsulation method used for the stabilization and protection of biologically active compounds from various environmental conditions, such as oxidation, moisture, pH, and temperature. Spray-drying increases the bioavailability of the natural active compounds and improves the solubility of low-soluble compounds. The aim of this work was to study the effects of different wall materials and optimize wall material solution's composition on physicochemical properties of microcapsules loaded with phenolics, extract rich in volatile compounds and essential oil from Elsholtzia ciliata herb. For encapsulation of elsholtzia and dehydroelsholtzia ketones, more suitable wall materials were used-beta-cyclodextrin and sodium caseinate. Four phenolics-sodium caseinate, skim milk, beta-cyclodextrin, and resistant-maltodextrin-were used. A D-optimal mixture composition design was used to evaluate the effect of wall material solution's composition using sodium caseinate (0.5-1 g), skim milk (6-10 g), resistant-maltodextrin (8-12 g), and beta-cyclodextrin (0.5-1 g) for the encapsulation efficiency, drying yield, and physicochemical properties. The optimal mixture composition was 0.54 g of sodium caseinate, 10 g of skim milk, 8.96 g of resistant-maltodextrin, and 0.5 g of beta-cyclodextrin. These encapsulating agents had a good performance in the microencapsulation of E. ciliata ethanolic extracts by the spray-drying technique. It is proven that the produced microparticles have a good potential to be included in various pharmaceutical forms or food supplements.
Collapse
Affiliation(s)
- Lauryna Pudziuvelyte
- Institute of Pharmaceutical Technologies, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, Kaunas LT-50161, Lithuania.
- Department of Drug Technology and Social Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, Kaunas LT-50161, Lithuania.
| | - Mindaugas Marksa
- Department of Analytical and Toxicological Chemistry, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, Kaunas LT-50161, Lithuania.
| | - Valdas Jakstas
- Institute of Pharmaceutical Technologies, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, Kaunas LT-50161, Lithuania.
- Department of Pharmacognosy Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, Kaunas LT-50161, Lithuania.
| | - Liudas Ivanauskas
- Department of Analytical and Toxicological Chemistry, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, Kaunas LT-50161, Lithuania.
| | - Dalia M Kopustinskiene
- Institute of Pharmaceutical Technologies, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, Kaunas LT-50161, Lithuania.
| | - Jurga Bernatoniene
- Institute of Pharmaceutical Technologies, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, Kaunas LT-50161, Lithuania.
- Department of Drug Technology and Social Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, Kaunas LT-50161, Lithuania.
| |
Collapse
|
30
|
Baranauskaite J, Adomavičiūtė E, Jankauskaitė V, Marksa M, Barsteigienė Z, Bernatoniene J. Formation and Investigation of Electrospun Eudragit E100/Oregano Mats. Molecules 2019; 24:E628. [PMID: 30754653 PMCID: PMC6384711 DOI: 10.3390/molecules24030628] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 01/31/2019] [Accepted: 02/09/2019] [Indexed: 11/16/2022] Open
Abstract
An electrospun mat of Eudragit E100 (EE100) (a cationic copolymer based on dimethylaminoethyl methacrylate, butyl methacrylate, and methyl methacrylate) was used as a delivery system for oregano ethanolic extract (OEE). Oregano is a biologically active material which is widely used because of the antibacterial and antifungal activity. The oregano herb consists of phenolic compounds, the main of which are rosmarinic acid and from essential oil-carvacrol. Such a material could be an ideal candidate for oral drug systems. The influence of the EE100 concentration in the OEE on the structure of electrospun mats, encapsulation efficiency, dissolution profile, release kinetics and the stability of biologically active compounds was investigated. The concentration of the solution is a critical parameter for the structure and properties of electrospun mats. The diameter of electrospun fibers increased with the increase of EE100 concentration in the OEE. Electrospun mats obtained from 24% to 32% EE100 solutions showed high encapsulation efficiency, quick release and high stability of rosmarinic acid and carvacrol. Dissolution tests showed that 99% of carvacrol and 80% of rosmarinic acid were released after 10 min from electrospun nano-microfiber mats and capsules obtained from such formulations. The stability tests showed that physicochemical properties, dissolution profiles, and rosmarinic acid and carvacrol contents of the formulations were not significantly affected by storage.
Collapse
Affiliation(s)
- Juste Baranauskaite
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Medical Academy, Sukileliu pr. 13, LT-50162 Kaunas, Lithuania.
- Department of Analytical and Toxicological Chemistry, Lithuanian University of Health Sciences, Medical Academy, A. Mickeviciaus g. 9, LT-44307 Kaunas, Lithuania.
| | - Erika Adomavičiūtė
- Department of Production Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentu st. 56, LT-51424 Kaunas, Lithuania.
| | - Virginija Jankauskaitė
- Department of Production Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentu st. 56, LT-51424 Kaunas, Lithuania.
| | - Mindaugas Marksa
- Department of Analytical and Toxicological Chemistry, Lithuanian University of Health Sciences, Medical Academy, A. Mickeviciaus g. 9, LT-44307 Kaunas, Lithuania.
| | - Zita Barsteigienė
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Medical Academy, A. Mickeviciaus g. 9, LT-44307 Kaunas, Lithuania.
| | - Jurga Bernatoniene
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Medical Academy, Sukileliu pr. 13, LT-50162 Kaunas, Lithuania.
- Department of Drugs Technology and Social Pharmacy, Lithuanian University of Health Sciences, Medical Academy, A. Mickeviciaus g. 9, LT-44307 Kaunas, Lithuania.
| |
Collapse
|
31
|
Baranauskaite J, Kopustinskiene DM, Bernatoniene J. Impact of Gelatin Supplemented with Gum Arabic, Tween 20, and β-Cyclodextrin on the Microencapsulation of Turkish Oregano Extract. Molecules 2019; 24:molecules24010176. [PMID: 30621233 PMCID: PMC6337591 DOI: 10.3390/molecules24010176] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/28/2018] [Accepted: 12/28/2018] [Indexed: 11/16/2022] Open
Abstract
Microencapsulation protects core materials from deteriorating due to environmental conditions, such as moisture or oxidation, and improves the bioavailability of active compounds, allowing one to make solid formulations from oils and increase their solubility. Wall and core material properties determine the microencapsulation efficiency and the best results are achieved when a wall material mixture is used to prepare the microcapsules. In this work, we optimized the wall material composition (gelatin supplemented with gum Arabic, Tween 20, and β-cyclodextrin) of Turkish oregano microcapsules prepared by spray-drying technology to increase the product yield, the encapsulation efficiency, and to achieve narrower particle size distribution. When the wall material solution contained 10 g of gelatin, 7.5 g of gum Arabic, 1.99 g of Tween 20, 1.98 g of β-cyclodextrin, and 20 g of ethanolic oregano extract, the encapsulation efficiency of oregano's active compounds, rosmarinic acid and carvacrol, were 96.7% and 99.8%, respectively, and the product yield was 85.63%. The physicochemical properties, microscopic morphology, and in vitro release of the prepared microcapsules were characterized in the study. The use of gelatin as the main coating material, in supplementation with gum Arabic, Tween 20, and β-cyclodextrin, not only improved the encapsulation efficiency, but also increased the in vitro release of both main active compounds of Turkish oregano extract-rosmarinic acid and carvacrol.
Collapse
Affiliation(s)
- Juste Baranauskaite
- Institute of Pharmaceutical Technologies, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania.
- Department of Analytical and Toxicological Chemistry, Lithuanian University of Health Sciences, Medical Academy, A. Mickeviciaus g. 9, LT-44307 Kaunas, Lithuania.
| | - Dalia M Kopustinskiene
- Institute of Pharmaceutical Technologies, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania.
| | - Jurga Bernatoniene
- Institute of Pharmaceutical Technologies, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania.
- Department of Drug Technology and Social Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13-527, LT-50161 Kaunas, Lithuania.
| |
Collapse
|
32
|
Lee PW, Pokorski JK. Poly(lactic-co-glycolic acid) devices: Production and applications for sustained protein delivery. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2018; 10:e1516. [PMID: 29536634 PMCID: PMC6136991 DOI: 10.1002/wnan.1516] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 01/30/2018] [Accepted: 02/14/2018] [Indexed: 12/12/2022]
Abstract
Injectable or implantable poly(lactic-co-glycolic acid) (PLGA) devices for the sustained delivery of proteins have been widely studied and utilized to overcome the necessity of repeated administrations for therapeutic proteins due to poor pharmacokinetic profiles of macromolecular therapies. These devices can come in the form of microparticles, implants, or patches depending on the disease state and route of administration. Furthermore, the release rate can be tuned from weeks to months by controlling the polymer composition, geometry of the device, or introducing additives during device fabrication. Slow-release devices have become a very powerful tool for modern medicine. Production of these devices has initially focused on emulsion-based methods, relying on phase separation to encapsulate proteins within polymeric microparticles. Process parameters and the effect of additives have been thoroughly researched to ensure protein stability during device manufacturing and to control the release profile. Continuous fluidic production methods have also been utilized to create protein-laden PLGA devices through spray drying and electrospray production. Thermal processing of PLGA with solid proteins is an emerging production method that allows for continuous, high-throughput manufacturing of PLGA/protein devices. Overall, polymeric materials for protein delivery remain an emerging field of research for the creation of single administration treatments for a wide variety of disease. This review describes, in detail, methods to make PLGA devices, comparing traditional emulsion-based methods to emerging methods to fabricate protein-laden devices. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Implantable Materials and Surgical Technologies > Nanomaterials and Implants Biology-Inspired Nanomaterials > Peptide-Based Structures.
Collapse
Affiliation(s)
- Parker W. Lee
- Department of Macromolecular Science and Engineering, School of Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Jonathan K. Pokorski
- Department of Macromolecular Science and Engineering, School of Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
33
|
Turek A, Borecka A, Janeczek H, Sobota M, Kasperczyk J. Formulation of delivery systems with risperidone based on biodegradable terpolymers. Int J Pharm 2018; 548:159-172. [DOI: 10.1016/j.ijpharm.2018.06.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 10/28/2022]
|
34
|
Dauda K, Busari Z, Morenikeji O, Afolayan F, Oyeyemi O, Meena J, Sahu D, Panda A. Poly(D,L-lactic-co-glycolic acid)-based artesunate nanoparticles: formulation, antimalarial and toxicity assessments. J Zhejiang Univ Sci B 2018; 18:977-985. [PMID: 29119735 DOI: 10.1631/jzus.b1600389] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The aim of this study was to formulate polymer-based artesunate nanoparticles for malaria treatment. METHODS Artesunate was loaded with poly(D,L-lactic-co-glycolic acid) (PLGA) by solvent evaporation from an oil-in-water single emulsion. Nanoparticles were characterized by X-ray diffraction and differential scanning calorimetry analyses. In vivo antimalarial studies at 4 mg/kg were performed on Swiss male albino mice infected with Plasmodium berghei. Hematological and hepatic toxicity assays were performed. In vitro cytotoxicity of free and encapsulated artesunate (Art-PLGA) to cell line RAW 264.7 was determined at concentrations of 7.8-1000 µg/ml. RESULTS The particle size of the formulated drug was (329.3±21.7) nm and the entrapment efficiency was (38.4±10.1)%. Art-PLGA nanoparticles showed higher parasite suppression (62.6%) compared to free artesunate (58.2%, P<0.05). Platelet counts were significantly higher in controls (305 000.00±148 492.40) than in mice treated with free artesunate (139 500.00±20 506.10) or Art-PLGA (163 500.00±3535.53) (P<0.05). There was no sign of hepatic toxicity following use of the tested drugs. The half maximal inhibitory concentration (IC50) of Art-PLGA (468.0 µg/ml) was significantly higher (P<0.05) than that of free artesunate (7.3 µg/ml) in the in vitro cytotoxicity assay. CONCLUSIONS A simple treatment of PLGA-entrapped artesunate nanoparticles with dual advantages of low toxicity and better antiplasmodial efficacy has been developed.
Collapse
Affiliation(s)
- Kabiru Dauda
- Department of Zoology, University of Ibadan, Ibadan 200284, Nigeria
| | - Zulaikha Busari
- Department of Zoology, University of Ibadan, Ibadan 200284, Nigeria
| | | | | | - Oyetunde Oyeyemi
- Department of Basic Sciences (Biology Programme), Babcock University, Ilishan-Remo 121103, Nigeria.,Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Jairam Meena
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Debasis Sahu
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Amulya Panda
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
35
|
Baranauskaite J, Duman G, Corapcıoğlu G, Baranauskas A, Taralp A, Ivanauskas L, Bernatoniene J. Liposomal Incorporation to Improve Dissolution and Stability of Rosmarinic Acid and Carvacrol Extracted from Oregano ( O. onites L.). BIOMED RESEARCH INTERNATIONAL 2018; 2018:6147315. [PMID: 30140697 PMCID: PMC6081540 DOI: 10.1155/2018/6147315] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/22/2018] [Indexed: 12/25/2022]
Abstract
The potential antimicrobial benefit of high levels of rosmarinic acid (RA) and carvacrol (CA) in oregano (O. onites L.) extract has been limited until now by poor bioavailability arising from the low aqueous-phase solubility and slow dissolution behaviour of the lyophilized extract (E). To address this issue, various ratios of phospholipon 90H (P90H) and 1,2-dimyristoyl-sn-glycero-3-phospho-(1'-rac-glycerol), sodium salt (DMPG) were sonicated, yielding four empty liposomes (L1, L2, L3, and L90). After an initial selection process, Turkish oregano extract was internalized into the more promising candidates. Each empty liposome, extract-loaded liposome (LE1, LE2, and LE3), and freeze-dried control (E) was assessed in terms of structure, composition, RA and CA dissolution profile, storage stability, and, when relevant, zeta potential. Empty liposome L1, which was prepared using P90H and DMPG in a 1:1 ratio, displayed the most convenient encapsulation traits among the four unloaded types. Loaded liposome LE1, obtained by combining oregano extract and L1 in a 1:1 ratio, proved superior as a vehicle to deliver RA & CA when compared against control freeze-dried E and test liposomes LE2 and LE3. Dissolution profiles of the active compounds RA and CA in loaded liposomes were determined using a semi-automated dissolution tester. The basket method was applied using artificial gastric juice without pepsin (AGJ, 50rpm, 500mL). The pH value was maintained at 1.5 (37 ± 0.5°C). Aliquots (5ml) were manually extracted from parallel dissolution vessels at 1, 3, 5, 7, 10, 15, 20, 25, 30, 45, and 60-minute time points. Dissolution tests, run to completion on LE1, showed that approximately 99% of loaded CA and 88% of RA had been released. Shorter dissolution times were also noted in using LE1. In particular, the release profile of CA and RA had levelled off after only 25 minutes, respectively, depicting an impressive 3.0-3.3 and 2.3-2.6 rate increase compared to the freeze-dried control extract. The improved dispersibility of RA and CA in the form of LE1 was supported by particle size and zeta potential measurements of the liposome, yielding 234.3nm and -30.9mV, respectively. The polydispersity index value was 0.35, indicating a reasonable particle size distribution. To study storage stability, liposomes were stored (4°C, 6 months) in amber coloured glass containers (4 oz.). Each container held 30 capsules, which were stored according to the ICH guidelines prescribed for long-term storage (25°C ± 2°C; 60% ± 5% RH). Triplicate samples were withdrawn after 0, 3, 6, 9, and 12 months for analysis. Lastly, LE1 displayed good storage stability. The results imply that RA and CA can be conveniently and routinely delivered via oral and mucosal routes by first internalizing oregano extracts into appropriately engineered liposomes.
Collapse
Affiliation(s)
- Juste Baranauskaite
- Department of Analytical and Toxicological Chemistry, Lithuanian University of Health Sciences, Medical Academy, Sukileliu pr. 13 LT-50162, Kaunas, Lithuania
- Institute of Pharmaceutical Technologies, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 4, LT-50161 Kaunas, Lithuania
| | - Gülengül Duman
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Yeditepe University Atasehir, İnönü Mah., Kayışdağı Cad., 34755, Istanbul, Turkey
| | - Gülcan Corapcıoğlu
- Nanotechnology Research and Application Center, Sabanci University, Orta Mahalle, Üniversite Cad. No. 27, Orhanli, 34956, Tuzla, Istanbul, Turkey
| | - Algirdas Baranauskas
- Department of Drugs Technology and Social Pharmacy, Lithuanian University of Health Sciences, Medical Academy, Sukileliu pr. 13 LT-50162, Kaunas, Lithuania
| | - Alpay Taralp
- Altınay Aerospace & Advanced Technologies Inc., Teknopark Istanbul No.1/4A, Pendik, Istanbul, 34906, Turkey
| | - Liudas Ivanauskas
- Department of Analytical and Toxicological Chemistry, Lithuanian University of Health Sciences, Medical Academy, Sukileliu pr. 13 LT-50162, Kaunas, Lithuania
| | - Jurga Bernatoniene
- Institute of Pharmaceutical Technologies, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 4, LT-50161 Kaunas, Lithuania
- Department of Drugs Technology and Social Pharmacy, Lithuanian University of Health Sciences, Medical Academy, Sukileliu pr. 13 LT-50162, Kaunas, Lithuania
| |
Collapse
|
36
|
Anzar N, Mirza MA, Anwer K, Khuroo T, Alshetaili AS, Alshahrani SM, Meena J, Hasan N, Talegaonkar S, Panda AK, Iqbal Z. Preparation, evaluation and pharmacokinetic studies of spray dried PLGA polymeric submicron particles of simvastatin for the effective treatment of breast cancer. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2017.11.081] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Katara R, Sachdeva S, Majumdar DK. Enhancement of ocular efficacy of aceclofenac using biodegradable PLGA nanoparticles: formulation and characterization. Drug Deliv Transl Res 2017; 7:632-641. [DOI: 10.1007/s13346-017-0416-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
38
|
Nakashima A, Izumi T, Ohya K, Kondo K, Niwa T. Design of Highly Dispersible PLGA Microparticles in Aqueous Fluid for the Development of Long-Acting Release Injectables. Chem Pharm Bull (Tokyo) 2017; 65:157-165. [DOI: 10.1248/cpb.c16-00746] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Atsushi Nakashima
- Department of Industrial Pharmacy, Faculty of Pharmacy, Meijo University
| | - Tomohisa Izumi
- Department of Industrial Pharmacy, Faculty of Pharmacy, Meijo University
| | - Kazutomi Ohya
- Department of Industrial Pharmacy, Faculty of Pharmacy, Meijo University
| | - Keita Kondo
- Department of Industrial Pharmacy, Faculty of Pharmacy, Meijo University
| | - Toshiyuki Niwa
- Department of Industrial Pharmacy, Faculty of Pharmacy, Meijo University
| |
Collapse
|
39
|
Baranauskaite J, Ivanauskas L, Masteikova R, Kopustinskiene D, Baranauskas A, Bernatoniene J. Formulation and characterization of Turkish oregano microcapsules prepared by spray-drying technology. Pharm Dev Technol 2016; 22:792-803. [PMID: 27250639 DOI: 10.1080/10837450.2016.1189934] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The aim of this study was optimization of spray-drying process conditions for microencapsulation of Turkish oregano extract. Different concentrations of maltodextrin and gum arabic as encapsulating agents (wall material) as well as influence of selected processing variables were evaluated. The optimal conditions were maintained on the basis of the load of main bioactive compounds - ursolic, rosmarinic acids and carvacrol - in prepared microparticles after comparison of all significant response variables using desirability function. Physicomechanical properties of powders such as flowability, wettability, solubility, moisture content as well as product yield, encapsulation efficiency (EE), density, morphology and size distribution of prepared microparticles have been determined. The results demonstrated that the optimal conditions for spray-drying mixture consisted of two parts of wall material solution and one part of ethanolic oregano extract when the feed flow rate was 40 mL/min and air inlet temperature -170 °C. Optimal concentration of wall materials in solution was 20% while the ratio of maltodextrin and gum arabic was 8.74:1.26.
Collapse
Affiliation(s)
- Juste Baranauskaite
- a Department of Drugs Technology and Social Pharmacy , Lithuanian University of Health Sciences, Medical Academy , Kaunas , Lithuania
| | - Liudas Ivanauskas
- b Department of Analytical and Toxicological Chemistry , Lithuanian University of Health Sciences, Medical Academy , Kaunas , Lithuania
| | - Ruta Masteikova
- c Department of Pharmaceutics, Faculty of Pharmacy , University of Veterinary and Pharmaceutical Sciences , Brno , Czech Republic
| | - Dalia Kopustinskiene
- a Department of Drugs Technology and Social Pharmacy , Lithuanian University of Health Sciences, Medical Academy , Kaunas , Lithuania
| | - Algirdas Baranauskas
- a Department of Drugs Technology and Social Pharmacy , Lithuanian University of Health Sciences, Medical Academy , Kaunas , Lithuania
| | - Jurga Bernatoniene
- a Department of Drugs Technology and Social Pharmacy , Lithuanian University of Health Sciences, Medical Academy , Kaunas , Lithuania
| |
Collapse
|
40
|
Liu M, Xu N, Liu W, Xie Z. Polypyrrole coated PLGA core–shell nanoparticles for drug delivery and photothermal therapy. RSC Adv 2016. [DOI: 10.1039/c6ra18261e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Core–shell PLGA@polypyrrole nanoparticls (PLGA@PPy NPS) were prepared for combination of photothermal therapy and chemotherapy.
Collapse
Affiliation(s)
- Ming Liu
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Na Xu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control
- Institute of Military Veterinary
- AMMS
- Changchun 130122
- P. R. China
| | - Wensen Liu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control
- Institute of Military Veterinary
- AMMS
- Changchun 130122
- P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| |
Collapse
|