1
|
Li H, McLaurin KA, Mactutus CF, Booze RM. Microglia proliferation underlies synaptic dysfunction in the prefrontal cortex: implications for the pathogenesis of HIV-1-associated neurocognitive and affective alterations. J Neurovirol 2023; 29:460-471. [PMID: 37222970 PMCID: PMC10629500 DOI: 10.1007/s13365-023-01147-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/25/2023]
Abstract
Microglia, which are productively infected by HIV-1, are critical for brain development and maturation, as well as synaptic plasticity. The pathophysiology of HIV-infected microglia and their role in the pathogenesis of HIV-1-associated neurocognitive and affective alterations, however, remains understudied. Three complementary aims were undertaken to critically address this knowledge gap. First, the expression of HIV-1 mRNA in the dorsolateral prefrontal cortex of postmortem HIV-1 seropositive individuals with HAND was investigated. Utilization of immunostaining and/or RNAscope multiplex fluorescent assays revealed prominent HIV-1 mRNA in microglia of postmortem HIV-1 seropositive individuals with HAND. Second, measures of microglia proliferation and neuronal damage were evaluated in chimeric HIV (EcoHIV) rats. Eight weeks after EcoHIV inoculation, enhanced microglial proliferation was observed in the medial prefrontal cortex (mPFC) of EcoHIV rats, evidenced by an increased number of cells co-localized with both Iba1 + and Ki67 + relative to control animals. Neuronal damage in EcoHIV infected rats was evidenced by pronounced decreases in both synaptophysin and postsynaptic density protein 95 (PSD-95), markers of presynaptic and postsynaptic damage, respectively. Third, regression analyses were conducted to evaluate whether microglia proliferation mechanistically underlies neuronal damage in EcoHIV and control animals. Indeed, microglia proliferation accounted for 42-68.6% of the variance in synaptic dysfunction. Collectively, microglia proliferation induced by chronic HIV-1 viral protein exposure may underlie the profound synaptodendritic alterations in HIV-1. Understanding how microglia are involved in the pathogenesis of HAND and HIV-1-associated affective disorders affords a key target for the development of novel therapeutics.
Collapse
Affiliation(s)
- Hailong Li
- Cognitive and Neural Science Program, Department of Psychology, University of South Carolina, Barnwell College, 1512 Pendleton Street, Columbia, SC, 29208, USA
| | - Kristen A McLaurin
- Cognitive and Neural Science Program, Department of Psychology, University of South Carolina, Barnwell College, 1512 Pendleton Street, Columbia, SC, 29208, USA
| | - Charles F Mactutus
- Cognitive and Neural Science Program, Department of Psychology, University of South Carolina, Barnwell College, 1512 Pendleton Street, Columbia, SC, 29208, USA
| | - Rosemarie M Booze
- Cognitive and Neural Science Program, Department of Psychology, University of South Carolina, Barnwell College, 1512 Pendleton Street, Columbia, SC, 29208, USA.
| |
Collapse
|
2
|
Li H, McLaurin KA, Mactutus CF, Booze RM. Microglia Proliferation Underlies Synaptic Dysfunction in the Prefrontal Cortex: Implications for the Pathogenesis of HIV-1-Associated Neurocognitive and Affective Alterations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524942. [PMID: 36711456 PMCID: PMC9882316 DOI: 10.1101/2023.01.20.524942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Microglia, which are productively infected by HIV-1, are critical for brain development and maturation, as well as synaptic plasticity. The pathophysiology of HIV-infected microglia and their role in the pathogenesis of HIV-1-associated neurocognitive and affective alterations, however, remains understudied. Three complementary aims were undertaken to critically address this knowledge gap. First, the predominant cell type expressing HIV-1 mRNA in the dorsolateral prefrontal cortex of postmortem HIV-1 seropositive individuals with HAND was investigated. Utilization of a combined RNAscope multiplex fluorescent and immunostaining assay revealed prominent HIV-1 mRNA in microglia of postmortem HIV-1 seropositive individuals with HAND. Second, measures of microglia proliferation and neuronal damage were evaluated in chimeric HIV (EcoHIV) rats. Eight weeks after EcoHIV innoculation, enhanced microglial proliferation was observed in the medial prefrontal cortex (mPFC) of EcoHIV rats, evidenced by an increased number of cells co-localized with both Iba1+ and Ki67+ relative to control animals. Neuronal damage in EcoHIV infected rats was evidenced by pronounced decreases in both synaptophysin and post synaptic density protein 95 (PSD-95), markers of pre-synaptic and post-synaptic damage, respectively. Third, regression analyses were conducted to evaluate whether microglia proliferation mechanistically underlies neuronal damage in EcoHIV and control animals. Indeed, microglia proliferation accounts for 42-68.6% of the variance in synaptic dysfunction. Collectively, microglia proliferation induced by chronic HIV-1 viral protein exposure may underlie the profound synaptodendritic alterations in HIV-1. Understanding how microglia are involved in the pathogenesis of HAND and HIV-1-associated affective disorders affords a key target for the development of novel therapeutics.
Collapse
|
3
|
|
4
|
Peripheral immune dysregulation in the ART era of HIV-associated neurocognitive impairments: A systematic review. Psychoneuroendocrinology 2020; 118:104689. [PMID: 32479968 DOI: 10.1016/j.psyneuen.2020.104689] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/08/2020] [Accepted: 04/13/2020] [Indexed: 01/03/2023]
Abstract
Human immunodeficiency virus-associated neurocognitive impairment (HANI) remains problematic despite the effective use of antiretroviral therapy (ART) and viral suppression. A dysregulated immune response contributes to the development of HANI but findings on the association between peripheral blood immune markers and HANI have been inconsistent. We therefore conducted a systematic review of studies of the association of peripheral blood immune markers with neurocognitive performance in ART experienced HIV-positive participants. Thirty-seven studies were eligible, including 12 longitudinal studies and 25 cross-sectional studies. Findings consistently show that HIV-positive participants have altered immune marker levels, including elevated markers of monocyte activation (neopterin, sCD14, sCD163) and inflammation (CCL2, IL-8, IL-18, IP-10, IFN-α, sTNFR-II and TNF-α). These elevated levels persist in HIV-positive participants despite ART. The majority of studies found associations of HANI with immune markers, including those linked to monocyte activation (sCD14 and sCD163) and inflammation (IL-18 and IP-10). Despite the heterogeneity of studies reviewed, due to the presence of raised peripheral markers, our narrative review provides evidence of chronic inflammation despite ART. The raised levels of these markers may suggest certain mechanisms are active, potentially those involved in the neuropathophysiology of HANI.
Collapse
|
5
|
Irons DL, Meinhardt T, Allers C, Kuroda MJ, Kim WK. Overexpression and activation of colony-stimulating factor 1 receptor in the SIV/macaque model of HIV infection and neuroHIV. Brain Pathol 2019; 29:826-836. [PMID: 31033097 DOI: 10.1111/bpa.12731] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/19/2019] [Indexed: 01/09/2023] Open
Abstract
In the present study, we investigated whether colony-stimulating factor 1 receptor (CSF1R) is expressed on brain macrophages and microglia in the human and macaque brain and whether it is upregulated and activated after lentivirus infection in vivo and contributes to development of encephalitic lesions. We examined, using multi-label and semi-quantitative immunofluorescence microscopy, the protein expression level and cellular localization of CSF1R in brain tissues from uninfected controls and SIV-infected adult macaques with or without encephalitis and also from uninfected controls, HIV-infected encephalitic subjects and virally suppressed subjects. In the normal uninfected brain, CSF1R protein was detected only on microglia and brain macrophages but not on neurons, astrocytes or oligodendrocytes. Microglia constitutively expressed CSF1R at low levels, and its expression was largely unchanged in non-encephalitic and encephalitic animals. Brain macrophages, including perivascular macrophages (PVMs), expressed higher levels of CSF1R compared to microglia. Interestingly, we found significantly increased expression of CSF1R on the infected PVMs and lesional macrophages in the brains of encephalitic macaques. Moreover, the per cell expression of CSF1R determined by its mean pixel intensity (MPI) correlated positively with the MPI of SIV Gag p28 in SIV-infected PVMs. Using phosphorylated CSF1R at tyrosine residue 723 and phosphorylated signal transducer and activator of transcription 5 at tyrosine reside 694 as markers for CSF1R activation, we found selective activation of CSF1R signaling in infected brain macrophages in encephalitis. We also found colocalization of CSF1R and its ligand CSF1 in PVMs and lesional macrophages in the brains of encephalitic macaques and humans. Notably, elevated brain CSF1R expression was found in virally suppressed subjects. These findings point to opportunities for developing a specific approach targeting infected brain macrophages, with several brain-penetrant CSF1R inhibitors that are available now, in order to eliminate central nervous system macrophage reservoirs, while not affecting resting uninfected microglia and PVMs that show no CSF1R activation.
Collapse
Affiliation(s)
- Derek L Irons
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA
| | - Timothy Meinhardt
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA
| | - Carolina Allers
- The Division of Immunology, Tulane National Primate Research Center, Covington, LA
| | - Marcelo J Kuroda
- The Division of Immunology, Tulane National Primate Research Center, Covington, LA
| | - Woong-Ki Kim
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA
| |
Collapse
|
6
|
PET imaging of microglia by targeting macrophage colony-stimulating factor 1 receptor (CSF1R). Proc Natl Acad Sci U S A 2019; 116:1686-1691. [PMID: 30635412 DOI: 10.1073/pnas.1812155116] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
While neuroinflammation is an evolving concept and the cells involved and their functions are being defined, microglia are understood to be a key cellular mediator of brain injury and repair. The ability to measure microglial activity specifically and noninvasively would be a boon to the study of neuroinflammation, which is involved in a wide variety of neuropsychiatric disorders including traumatic brain injury, demyelinating disease, Alzheimer's disease (AD), and Parkinson's disease, among others. We have developed [11C]CPPC [5-cyano-N-(4-(4-[11C]methylpiperazin-1-yl)-2-(piperidin-1-yl)phenyl)furan-2-carboxamide], a positron-emitting, high-affinity ligand that is specific for the macrophage colony-stimulating factor 1 receptor (CSF1R), the expression of which is essentially restricted to microglia within brain. [11C]CPPC demonstrates high and specific brain uptake in a murine and nonhuman primate lipopolysaccharide model of neuroinflammation. It also shows specific and elevated uptake in a murine model of AD, experimental allergic encephalomyelitis murine model of demyelination and in postmortem brain tissue of patients with AD. Radiation dosimetry in mice indicated [11C]CPPC to be safe for future human studies. [11C]CPPC can be synthesized in sufficient radiochemical yield, purity, and specific radioactivity and possesses binding specificity in relevant models that indicate potential for human PET imaging of CSF1R and the microglial component of neuroinflammation.
Collapse
|
7
|
Mohamed M, Barker PB, Skolasky RL, Sacktor N. 7T Brain MRS in HIV Infection: Correlation with Cognitive Impairment and Performance on Neuropsychological Tests. AJNR Am J Neuroradiol 2018; 39:704-712. [PMID: 29449278 DOI: 10.3174/ajnr.a5547] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 12/01/2017] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND PURPOSE Validated neuroimaging markers of HIV-associated neurocognitive disorder in patients on antiretroviral therapy are urgently needed for clinical trials. The purpose of this study was to explore the relationship between cognitive impairment and brain metabolism in older subjects with HIV infection. It was hypothesized that MR spectroscopy measurements related to neuronal health and function (particularly N-acetylaspartate and glutamate) would be lower in HIV-positive subjects with worse cognitive performance. MATERIALS AND METHODS Forty-five HIV-positive patients (mean age, 58.9 ± 5.3 years; 33 men) underwent detailed neuropsychological testing and brain MR spectroscopy at 7T. Twenty-four subjects were classified as having asymptomatic cognitive impairment, and 21 were classified as having symptomatic cognitive impairment. Single-voxel proton MR spectra were acquired from 5 brain regions and quantified using LCModel software. Brain metabolites and neuropsychological test results were compared using nonparametric statistics and Pearson correlation coefficients. RESULTS Differences in brain metabolites were found between symptomatic and asymptomatic subjects, with the main findings being lower measures of N-acetylaspartate in the frontal white matter, posterior cingulate cortex, and precuneus. In the precuneus, glutamate was also lower in the symptomatic group. In the frontal white matter, precuneus, and posterior cingulate cortex, NAA and glutamate measurements showed significant positive correlation with better performance on neuropsychological tests. CONCLUSIONS Compared with asymptomatic subjects, symptomatic HIV-positive subjects had lower levels of NAA and glutamate, most notably in the frontal white matter, which also correlated with performance on neuropsychological tests. High-field MR spectroscopy offers insight into the pathophysiology associated with cognitive impairment in HIV and may be useful as a quantitative outcome measure in future treatment trials.
Collapse
Affiliation(s)
- M Mohamed
- From the Russell H. Morgan Department of Radiology and Radiological Science (M.M., P.B.B.)
| | - P B Barker
- From the Russell H. Morgan Department of Radiology and Radiological Science (M.M., P.B.B.).,Psychiatry and Behavioral Sciences (P.B.B.), Johns Hopkins University School of Medicine, Baltimore, Maryland.,F.M. Kirby Center for Functional Brain Imaging (P.B.B.), Kennedy Krieger Institute, Baltimore, Maryland
| | - R L Skolasky
- Departments of Neurology (R.L.S., N.S.).,Orthopedic Surgery (R.L.S.)
| | - N Sacktor
- Departments of Neurology (R.L.S., N.S.)
| |
Collapse
|
8
|
Interaction between astrocytic colony stimulating factor and its receptor on microglia mediates central sensitization and behavioral hypersensitivity in chronic post ischemic pain model. Brain Behav Immun 2018; 68:248-260. [PMID: 29080683 DOI: 10.1016/j.bbi.2017.10.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 02/05/2023] Open
Abstract
Accumulation of microglia occurs in the dorsal horn in the rodent model of chronic post ischemic pain (CPIP), while the mechanism how microglia affects the development of persistent pain largely remains unknown. Here, using a rodent model of CPIP induced by ischemia-reperfusion (IR) injury in the hindpaw, we observed that microglial accumulation occurred in the ipsilateral dorsal horn after ischemia 3h, and in ipsilateral and contralateral dorsal horn in the rats with ischemia 6h. The accumulated microglia released BDNF, increased neuronal excitability in dorsal horn, and produced pain behaviors in the modeled rodents. We also found significantly increased signaling mediated by astrocytic colony-stimulating factor-1 (CSF1) and microglial CSF1 receptor (CSF1R) in dorsal horn in the ischemia 6h modeled rats. While exogenous M-CSF induced microglial activation and proliferation, BDNF production, neuronal hyperactivity in dorsal horn and behavioral hypersensitivity in the naïve rats, inhibition of astrocytic CSF1/microglial CSF1R signaling by fluorocitric or PLX3397 significantly suppressed microglial activation and proliferation, BDNF upregulation, and neuronal activity in dorsal horn, as well as the mechanical allodynia and thermal hyperalgesia, in the rats with ischemia 6h. Collectively, these results demonstrated that glial CSF1/CSF1R pathway mediated the microglial activation and proliferation, which facilitated the nociceptive output and contributed to the chronic pain induced by IR injury.
Collapse
|
9
|
Gerngross L, Fischer T. Evidence for cFMS signaling in HIV production by brain macrophages and microglia. J Neurovirol 2014; 21:249-56. [PMID: 25060299 DOI: 10.1007/s13365-014-0270-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/13/2014] [Accepted: 06/23/2014] [Indexed: 12/26/2022]
Abstract
Combination antiretroviral therapy (cART) has improved the longevity and quality of life for people living with HIV; however, it does not target virus that persists in long-lived cells, such as macrophages (MΦs). This allows for the development of viral reservoirs in various anatomical compartments where these cells reside, including the central nervous system (CNS), where perivascular MΦs and resident microglia constitute the principle cellular reservoir of HIV. How HIV persists in MΦs/microglia is not completely understood; however, prosurvival signaling that protects infected MΦs/microglia from apoptosis is likely important to viral persistence. Macrophage colony-stimulating factor (M-CSF) is an important factor in MΦ survival and has been implicated in HIV neuropathogenesis through its ability to enhance the susceptibility of MΦs to infection and promote virus production. While M-CSF has been detected in cerebrospinal fluid of HIV-infected patients, the cellular source of M-CSF in the CNS is unknown. Here, we demonstrate, for the first time, that MΦs comprising perivascular cuffs and nodular lesions in SIV encephalitis (SIVE) brain are the principle source of M-CSF. These cells also serve as the primary reservoir of productive SIV infection in the brain. We further demonstrate that M-CSF and IL-34, which signal through the same receptor, cFMS, enhance HIV-1 production by microglia in vitro. This is attenuated by the addition of a receptor tyrosine kinase inhibitor with high specificity for cFMS, GW2580. Together, these data suggest that cFMS signaling may be an attractive target for eliminating long-lived MΦ reservoirs of HIV in the brain and other tissues.
Collapse
Affiliation(s)
- Lindsey Gerngross
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, PA, USA
| | | |
Collapse
|
10
|
Smith AM, Gibbons HM, Oldfield RL, Bergin PM, Mee EW, Curtis MA, Faull RLM, Dragunow M. M-CSF increases proliferation and phagocytosis while modulating receptor and transcription factor expression in adult human microglia. J Neuroinflammation 2013; 10:85. [PMID: 23866312 PMCID: PMC3729740 DOI: 10.1186/1742-2094-10-85] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/09/2013] [Indexed: 11/18/2022] Open
Abstract
Background Microglia are the primary immune cells of the brain whose phenotype largely depends on their surrounding micro-environment. Microglia respond to a multitude of soluble molecules produced by a variety of brain cells. Macrophage colony-stimulating factor (M-CSF) is a cytokine found in the brain whose receptor is expressed by microglia. Previous studies suggest a critical role for M-CSF in brain development and normal functioning as well as in several disease processes involving neuroinflammation. Methods Using biopsy tissue from patients with intractable temporal epilepsy and autopsy tissue, we cultured primary adult human microglia to investigate their response to M-CSF. Mixed glial cultures were treated with 25 ng/ml M-CSF for 96 hours. Proliferation and phagocytosis assays, and high through-put immunocytochemistry, microscopy and image analysis were performed to investigate microglial phenotype and function. Results We found that the phenotype of primary adult human microglia was markedly changed following exposure to M-CSF. A greater number of microglia were present in the M-CSF- treated cultures as the percentage of proliferating (BrdU and Ki67-positive) microglia was greatly increased. A number of changes in protein expression occurred following M-CSF treatment, including increased transcription factors PU.1 and C/EBPβ, increased DAP12 adaptor protein, increased M-CSF receptor (CSF-1R) and IGF-1 receptor, and reduced HLA-DP, DQ, DR antigen presentation protein. Furthermore, a distinct morphological change was observed with elongation of microglial processes. These changes in phenotype were accompanied by a functional increase in phagocytosis of Aβ1-42 peptide. Conclusions We show here that the cytokine M-CSF dramatically influences the phenotype of adult human microglia. These results pave the way for future investigation of M-CSF-related targets for human therapeutic benefit.
Collapse
Affiliation(s)
- Amy M Smith
- Department of Pharmacology and Clinical Pharmacology, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
11
|
A peripheral monocyte interferon phenotype in HIV infection correlates with a decrease in magnetic resonance spectroscopy metabolite concentrations. AIDS 2011; 25:1721-6. [PMID: 21750421 DOI: 10.1097/qad.0b013e328349f022] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE In spite of effective antiretroviral therapy (ART), cognition is impaired in upwards of 35% of the HIV-infected population. We investigated a possible link between peripheral immune activation and brain metabolite concentrations. DESIGN AND METHODS Thirty-five HIV-seropositive (HIV+) and eight HIV-seronegative adults were recruited to this cross-sectional study. All HIV-positive patients were on ART or a treatment interruption. Participants were evaluated for monocyte gene expression, cognitive status, and brain metabolite concentrations using 4-Tesla short echo-time proton magnetic resonance spectroscopy. Absolute concentrations of brain metabolites in the frontal white matter (FWM), anterior cingulate cortex (ACC), and basal ganglia were derived and related to monocyte gene expression and global deficit scores. RESULTS Analysis of monocyte gene arrays revealed an interferon (IFN)-α-induced activation phenotype. Fourteen genes having the greatest fold increase in response to HIV were IFN genes. Monocyte activation as measured by gene expression profiles strongly correlated with lower N-acetylaspartate (NAA) in FWM. The IFN response gene Interferon-gamma inducible protein-10 (IP-10) was activated in monocytes from HIV individuals and strongly correlated with plasma protein levels. Plasma IP-10 correlated significantly and inversely with ACC NAA, which was lower in HIV-positive patients with mild compared to no cognitive impairment. CONCLUSION Chronic peripheral immune activation driven by a type 1 IFN correlates with neuronal injury in FWM and ACC and cognitive dysfunction. Easily measured IFN-induced blood markers may be clinically significant in following early neural cell damage.
Collapse
|