1
|
Huang J, Chen J, Liu F, He Q, Wu Y, Sun Q, Long M, Li T, Pan G, Zhou Z. Septin homologs cooperating in the Proliferative Stage of Microsporidia Nosema bombycis. J Invertebr Pathol 2021; 183:107600. [PMID: 33961882 DOI: 10.1016/j.jip.2021.107600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
The single-celled pathogen Nosema bombycis, that can infect silkworm Bombyx mori and other lepidoptera including Spodoptera, is the first identified Microsporidia which has diplokaryotic nuclei throughout the life cycle. Septin proteins can form highly ordered filaments, bundles or ring structures related to the cytokinesis in fungi. Here, three septin proteins (NbSeptin1, NbSeptin2 and NbSeptin3) from Nosema bombycis CQ I are described. These proteins, appear to be conserved within the phylum Microsporidia. NbSeptins transcripts were detected throughout the pathogen developmental cycle and were significantly enhanced from second days of infection, which lead to our hypothesis that NbSeptins play a role in merogony. Immunofluorescence assay (IFA) revealed a broad distribution of NbSeptins in meronts and partly co-localization of NbSeptins. Interestingly, in some of meronts, NbSeptin2 and NbSeptin3 showed localization between the nuclei of the diplokaryon. Yeast two-hybrid and co-immunoprecipitation analysis verified that NbSeptins can interact with each other. Our findings suggest that NbSeptins can cooperate in the proliferation stage of Nosema bombycis and contribute towards the understanding of the rols of septins in microsporidia development.
Collapse
Affiliation(s)
- Jun Huang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Microsporidia Infection and Prevention, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agricultural, Southwest University, Chongqing 400716, China
| | - Jie Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Microsporidia Infection and Prevention, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agricultural, Southwest University, Chongqing 400716, China.
| | - Fangyan Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Microsporidia Infection and Prevention, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agricultural, Southwest University, Chongqing 400716, China
| | - Qiang He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Microsporidia Infection and Prevention, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agricultural, Southwest University, Chongqing 400716, China
| | - Yujiao Wu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Microsporidia Infection and Prevention, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agricultural, Southwest University, Chongqing 400716, China
| | - Quan Sun
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Microsporidia Infection and Prevention, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agricultural, Southwest University, Chongqing 400716, China
| | - Mengxian Long
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Microsporidia Infection and Prevention, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agricultural, Southwest University, Chongqing 400716, China
| | - Tian Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Microsporidia Infection and Prevention, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agricultural, Southwest University, Chongqing 400716, China
| | - Guoqing Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Microsporidia Infection and Prevention, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agricultural, Southwest University, Chongqing 400716, China
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Microsporidia Infection and Prevention, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agricultural, Southwest University, Chongqing 400716, China; College of Life Science, Chongqing Normal University, Chongqing 400047, China.
| |
Collapse
|
2
|
Zhu LB, Wang Y, Zhang ZB, Yang HL, Yan RM, Zhu D. Influence of environmental and nutritional conditions on yeast–mycelial dimorphic transition in Trichosporon cutaneum. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1292149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Li Bin Zhu
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, China
| | - Ya Wang
- Key Lab of Bioprocess Engineering of Jiangxi Province, College of life sciences, Jiangxi Science and Technology Normal University, Nanchang, China
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi Bin Zhang
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, China
| | - Hui Lin Yang
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, China
| | - Ri Ming Yan
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, China
| | - Du Zhu
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, China
- Key Lab of Bioprocess Engineering of Jiangxi Province, College of life sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| |
Collapse
|
4
|
Marty AJ, Broman AT, Zarnowski R, Dwyer TG, Bond LM, Lounes-Hadj Sahraoui A, Fontaine J, Ntambi JM, Keleş S, Kendziorski C, Gauthier GM. Fungal Morphology, Iron Homeostasis, and Lipid Metabolism Regulated by a GATA Transcription Factor in Blastomyces dermatitidis. PLoS Pathog 2015; 11:e1004959. [PMID: 26114571 PMCID: PMC4482641 DOI: 10.1371/journal.ppat.1004959] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 05/16/2015] [Indexed: 11/19/2022] Open
Abstract
In response to temperature, Blastomyces dermatitidis converts between yeast and mold forms. Knowledge of the mechanism(s) underlying this response to temperature remains limited. In B. dermatitidis, we identified a GATA transcription factor, SREB, important for the transition to mold. Null mutants (SREBΔ) fail to fully complete the conversion to mold and cannot properly regulate siderophore biosynthesis. To capture the transcriptional response regulated by SREB early in the phase transition (0–48 hours), gene expression microarrays were used to compare SREB∆ to an isogenic wild type isolate. Analysis of the time course microarray data demonstrated SREB functioned as a transcriptional regulator at 37°C and 22°C. Bioinformatic and biochemical analyses indicated SREB was involved in diverse biological processes including iron homeostasis, biosynthesis of triacylglycerol and ergosterol, and lipid droplet formation. Integration of microarray data, bioinformatics, and chromatin immunoprecipitation identified a subset of genes directly bound and regulated by SREB in vivo in yeast (37°C) and during the phase transition to mold (22°C). This included genes involved with siderophore biosynthesis and uptake, iron homeostasis, and genes unrelated to iron assimilation. Functional analysis suggested that lipid droplets were actively metabolized during the phase transition and lipid metabolism may contribute to filamentous growth at 22°C. Chromatin immunoprecipitation, RNA interference, and overexpression analyses suggested that SREB was in a negative regulatory circuit with the bZIP transcription factor encoded by HAPX. Both SREB and HAPX affected morphogenesis at 22°C; however, large changes in transcript abundance by gene deletion for SREB or strong overexpression for HAPX were required to alter the phase transition. Blastomyces dermatitidis belongs to a group of human pathogenic fungi that convert between two forms, mold and yeast, in response to temperature. Growth as yeast (37°C) in tissue facilitates immune evasion, whereas growth as mold (22°C) promotes environmental survival, sexual reproduction, and generation of transmissible spores. Despite the importance of dimorphism, how fungi regulate temperature adaptation is poorly understood. We identified SREB, a transcription factor that regulates disparate processes including dimorphism. SREB null mutants, which lack SREB, fail to fully complete the conversion to mold at 22°C. The goal of our research was to characterize how SREB regulates transcription during the switch to mold. Gene expression microarray along with chromatin binding and biochemical analyses indicated that SREB affected several processes including iron homeostasis, lipid biosynthesis, and lipid droplet formation. In vivo, SREB directly bound and regulated genes involved with iron uptake, lipid biosynthesis, and transcription. Functional analysis suggested that lipid metabolism may influence filamentous growth at 22°C. In addition, SREB interacted with another transcription factor, HAPX.
Collapse
Affiliation(s)
- Amber J. Marty
- Department of Medicine, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Aimee T. Broman
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Robert Zarnowski
- Department of Medicine, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Teigan G. Dwyer
- Department of Medicine, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Laura M. Bond
- Department of Biochemistry, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Anissa Lounes-Hadj Sahraoui
- Université du Littoral Côte d’Opale, Unité de Chimie Environnementale et Interactions sur le Vivant, Calais, France
| | - Joël Fontaine
- Université du Littoral Côte d’Opale, Unité de Chimie Environnementale et Interactions sur le Vivant, Calais, France
| | - James M. Ntambi
- Department of Biochemistry, Department of Nutritional Sciences, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Sündüz Keleş
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
- Department of Statistics, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Christina Kendziorski
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Gregory M. Gauthier
- Department of Medicine, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
5
|
Bridges AA, Gladfelter AS. Fungal pathogens are platforms for discovering novel and conserved septin properties. Curr Opin Microbiol 2014; 20:42-8. [PMID: 24879478 DOI: 10.1016/j.mib.2014.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 04/25/2014] [Accepted: 04/29/2014] [Indexed: 01/19/2023]
Abstract
Septins are filament-forming GTP-binding proteins that act as scaffolds in diverse cell functions including division, polarity and membrane remodeling. In a variety of fungal pathogens, it has been observed that septins are required for virulence because cells are unable to survive or are misshapen when septins are mutated. Cell morphology is interconnected with pathogenesis and thus septin mutants displaying aberrant cell morphologies are commonly deficient in host tissue invasion. The degree to which septins orchestrate versus maintain changes in fungal cell morphology during pathogenesis remains to be determined. Aside from the importance of septins in the process of pathogenesis, animal and plant fungal pathogens display complexity in septin form, dynamics, and function not seen in Saccharomyces cerevisiae making these organisms important models for uncovering diversity in septin behavior. Additionally, host septins have recently been implicated in the process of Candida albicans invasion, motivating the need to examine host septins in fungal pathogenesis. Understanding the role of septins in the host-pathogen interaction not only illuminates pathogenesis mechanisms but importantly also expands our understanding of septin biology in general.
Collapse
Affiliation(s)
- Andrew A Bridges
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH 03755, United States
| | - Amy S Gladfelter
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH 03755, United States.
| |
Collapse
|