1
|
Liu ZM, Zhang YN, Zhang HF, Chen XJ, Peng H, Zhang XY. Restoration of the Mucosal IgA Response by Improving CD4 + T Pyroptosis Fails to Attenuate Gut Bacterial Translocation and Organ Damage After LPS Attack. Dig Dis Sci 2024; 69:798-810. [PMID: 38334934 DOI: 10.1007/s10620-024-08278-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/03/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND Currently, the mechanisms of impaired gut mucosal immunity in sepsis remain unclear. Gut immunoglobulin A (IgA) is an important defense mechanism against invasive pathogens, and CD4+ T cells regulate the IgA response. AIM We aimed to verify the hypothesis indicating that CD4+ T pyroptosis induced by lipopolysaccharide (LPS) leads to an impaired gut IgA response and subsequent bacterial translocation and organ damage. METHODS Cultured CD4+ T cells and mice were manipulated with LPS, and pyroptosis was improved by A438079 or adoptive CD4+ T cell transfer. The changes demonstrated in pyroptosis-related molecules, cytotoxicity and CD4+ T cells were examined to determine CD4+ T pyroptosis. The changes demonstrated in IgA+ B cells, AID (key enzyme for immunoglobulins) and IgA production and function were examined to evaluate the IgA response. Serum biomarkers, bacterial colonies and survival analysis were detected for bacterial translocation and organ damage. RESULTS LPS attack induced CD4+ T pyroptosis, as evidenced by increased expression of P2X7, Caspase-11 and cleaved GSDMD, which elevated cytotoxicity and decreased CD4+ T cells. Decreased CD4+ T subsets (Foxp3+ T and Tfh cells) influenced the IgA response, as evidenced by lower AID expression, which decreased IgA+ B cells and IgA production and function. A438079 or cell transfer improved the IgA response but failed to reduce the translocation of gut pathogens, damage to the liver and kidney, and mortality of mice. CONCLUSION LPS attack results in CD4+ T pyroptosis. Improvement of pyroptosis restores the mucosal IgA response but fails to ameliorate bacterial translocation and organ damage.
Collapse
Affiliation(s)
- Zi-Meng Liu
- Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yi-Nan Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan 2nd Road, Guangzhou, 510089, China
| | - Hu-Fei Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan 2nd Road, Guangzhou, 510089, China
| | - Xiao-Jun Chen
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan 2nd Road, Guangzhou, 510089, China
| | - Hui Peng
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan 2nd Road, Guangzhou, 510089, China
| | - Xu-Yu Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan 2nd Road, Guangzhou, 510089, China.
| |
Collapse
|
2
|
Schmidt C, Weißmüller S, Heinz CC. Multifaceted Tissue-Protective Functions of Polyvalent Immunoglobulin Preparations in Severe Infections-Interactions with Neutrophils, Complement, and Coagulation Pathways. Biomedicines 2023; 11:3022. [PMID: 38002022 PMCID: PMC10669904 DOI: 10.3390/biomedicines11113022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Severe infections induce immune defense mechanisms and initial tissue damage, which produce an inflammatory neutrophil response. Upon dysregulation of these responses, inflammation, further tissue damage, and systemic spread of the pathogen may occur. Subsequent vascular inflammation and activation of coagulation processes may cause microvascular obstruction at sites distal to the primary site of infection. Low immunoglobulin (Ig) M and IgG levels have been detected in patients with severe infections like sCAP and sepsis, associated with increased severity and mortality. Based on Ig's modes of action, supplementation with polyvalent intravenous Ig preparations (standard IVIg or IgM/IgA-enriched Ig preparations) has long been discussed as a treatment option for severe infections. A prerequisite seems to be the timely administration of Ig preparations before excessive tissue damage has occurred and coagulopathy has developed. This review focuses on nonclinical and clinical studies that evaluated tissue-protective activities resulting from interactions of Igs with neutrophils, complement, and the coagulation system. The data indicate that coagulopathy, organ failure, and even death of patients can possibly be prevented by the timely combined interactions of (natural) IgM, IgA, and IgG with neutrophils and complement.
Collapse
Affiliation(s)
- Carolin Schmidt
- Department of Corporate Clinical Research and Development, Biotest AG, 63303 Dreieich, Germany
| | | | - Corina C Heinz
- Department of Corporate Clinical Research and Development, Biotest AG, 63303 Dreieich, Germany
| |
Collapse
|
3
|
Ling H, Lin Y, Bao W, Xu N, Chen L, Zhao L, Liu C, Shen Y, Zhang D, Gong Y, Gao Q, Wang J, Jin S. Erythropoietin-mediated IL-17 F attenuates sepsis-induced gut microbiota dysbiosis and barrier dysfunction. Biomed Pharmacother 2023; 165:115072. [PMID: 37390712 DOI: 10.1016/j.biopha.2023.115072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/18/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023] Open
Abstract
Septic gut damage is critical in the progression of sepsis and multiple organ failure, characterized by gut microbiota dysbiosis and epithelium deficiency in the gut barrier. Recent studies highlight the protective effects of Erythropoietin (EPO) on multiple organs. The present study found that EPO treatment significantly alleviated the survival rate, suppressed inflammatory responses, and ameliorated intestine damage in mice with sepsis. EPO treatment also reversed sepsis-induced gut microbiota dysbiosis. The protective role of EPO in the gut barrier and microbiota was impaired after EPOR knockout. Notably, we innovatively demonstrated that IL-17 F screened by transcriptome sequencing could ameliorate sepsis and septic gut damage including gut microbiota dysbiosis and barrier dysfunction, which was verified by IL-17 F-treated fecal microbiota transplantation (FMT) as well. Our findings highlight the protection effects of EPO-mediated IL-17 F in sepsis-induced gut damage by alleviating gut barrier dysfunction and restoring gut microbiota dysbiosis. EPO and IL-17 F may be potential therapeutic targets in septic patients.
Collapse
Affiliation(s)
- Hanzhi Ling
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yufan Lin
- The First Affiliated Hospital of Wenzhou Medical University, The First Clinical College of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Weilei Bao
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education,Wenzhou Medical University, Zhejiang 325035, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Zhejiang 325035, China
| | - Nannan Xu
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Liping Chen
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lin Zhao
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chuanlong Liu
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yecheng Shen
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Danlu Zhang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yuqiang Gong
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Qiuqi Gao
- The First Affiliated Hospital of Wenzhou Medical University, The First Clinical College of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Jianguang Wang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Shengwei Jin
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education,Wenzhou Medical University, Zhejiang 325035, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Zhejiang 325035, China.
| |
Collapse
|
4
|
Elmassry MM, Colmer-Hamood JA, Kopel J, San Francisco MJ, Hamood AN. Anti- Pseudomonas aeruginosa Vaccines and Therapies: An Assessment of Clinical Trials. Microorganisms 2023; 11:916. [PMID: 37110338 PMCID: PMC10144840 DOI: 10.3390/microorganisms11040916] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that causes high morbidity and mortality in cystic fibrosis (CF) and immunocompromised patients, including patients with ventilator-associated pneumonia (VAP), severely burned patients, and patients with surgical wounds. Due to the intrinsic and extrinsic antibiotic resistance mechanisms, the ability to produce several cell-associated and extracellular virulence factors, and the capacity to adapt to several environmental conditions, eradicating P. aeruginosa within infected patients is difficult. Pseudomonas aeruginosa is one of the six multi-drug-resistant pathogens (ESKAPE) considered by the World Health Organization (WHO) as an entire group for which the development of novel antibiotics is urgently needed. In the United States (US) and within the last several years, P. aeruginosa caused 27% of deaths and approximately USD 767 million annually in health-care costs. Several P. aeruginosa therapies, including new antimicrobial agents, derivatives of existing antibiotics, novel antimicrobial agents such as bacteriophages and their chelators, potential vaccines targeting specific virulence factors, and immunotherapies have been developed. Within the last 2-3 decades, the efficacy of these different treatments was tested in clinical and preclinical trials. Despite these trials, no P. aeruginosa treatment is currently approved or available. In this review, we examined several of these clinicals, specifically those designed to combat P. aeruginosa infections in CF patients, patients with P. aeruginosa VAP, and P. aeruginosa-infected burn patients.
Collapse
Affiliation(s)
- Moamen M. Elmassry
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Jane A. Colmer-Hamood
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Jonathan Kopel
- Department of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Michael J. San Francisco
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Honors College, Texas Tech University, Lubbock, TX 79409, USA
| | - Abdul N. Hamood
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
5
|
PTX3 Protects Intestinal Mucosal Barrier Damage in Sepsis Through Toll-Like Receptor Signaling Pathway. Inflammation 2022; 45:2339-2351. [PMID: 35687213 DOI: 10.1007/s10753-022-01696-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/18/2022] [Accepted: 05/31/2022] [Indexed: 01/16/2023]
Abstract
This study aims to confirm the protective effect of Pentraxin 3 (PTX3) on intestinal mucosal barrier damage in sepsis in animal and cell models and explore its mechanism. Analysis of the GSE147775 gene set revealed that the level of PTX3 was upregulated in the lipopolysaccharide (LPS)-induced rat sepsis model. The mice sepsis model was established by cecal ligation perforation (CLP), and the cell inflammation model was induced by LPS. Cell apoptosis and the expression of apoptosis-related protein were detected by flow cytometry and Western blotting. The PTX3 level was significantly upregulated in the mice sepsis model. Intestinal mucosal barrier damage was aggravated and inflammatory factor expression was upregulated after PTX3 downregulation in sepsis mice. After upregulation of PTX3, intestinal mucosal barrier damage was alleviated and inflammatory factor expression was decreased in sepsis mice. Further data mining suggested that the anti-inflammatory effect of PTX3 might be realized through inhibition of the toll-like receptor (TLR) signaling pathway. Moreover, compared with the LPS group, downregulation of PTX3 increased cell apoptosis and the levels of BCL2-associated X (Bax), myeloperoxidase (MPO), tumor necrosis factor-alfa (TNF-α), interleukin 1 beta (IL-1β), and interferon-gamma (IFN-γ), and decreased the levels of B-cell lymphoma-2 (Bcl-2), zona occludens (ZO)-1, and occludin. On the contrary, overexpression of PTX3 reduced cell apoptosis and the levels of Bax, MPO, TNF-α, IL-1β, and IFN-γ. Moreover, downregulation of PTX3 reversed the inhibitive effects on cell apoptosis and inflammation and promotive effects on the levels of Zo-1 and occludin induced by CLI-095 (a TLR signaling pathway inhibitor). In the CLP-induced mice sepsis model and LPS-induced cell inflammation model, PTX3 inhibits inflammatory response and reduces intestinal mucosal barrier damage through the TLR signaling pathway.
Collapse
|
6
|
Chancharoenthana W, Udompronpitak K, Manochantr Y, Kantagowit P, Kaewkanha P, Issara-Amphorn J, Leelahavanichkul A. Repurposing of High-Dose Erythropoietin as a Potential Drug Attenuates Sepsis in Preconditioning Renal Injury. Cells 2021; 10:3133. [PMID: 34831360 PMCID: PMC8617638 DOI: 10.3390/cells10113133] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 12/29/2022] Open
Abstract
Due to (i) the uremia-enhanced sepsis severity, (ii) the high prevalence of sepsis with pre-existing renal injury and (iii) the non-erythropoiesis immunomodulation of erythropoietin (EPO), EPO was tested in sepsis with pre-existing renal injury models with the retrospective exploration in patients. Then, EPO was subcutaneously administered in mice with (i) cecal ligation and puncture (CLP) after renal injury including 5/6 nephrectomy (5/6Nx-CLP) and bilateral nephrectomy (BiNx-CLP) or sham surgery (sham-CLP) and (ii) lipopolysaccharide (LPS) injection, along with testing in macrophages. In patients, the data of EPO administration and the disease characteristics in patients with sepsis-induced acute kidney injury (sepsis-AKI) were evaluated. As such, increased endogenous EPO was demonstrated in all sepsis models, including BiNx-CLP despite the reduced liver erythropoietin receptor (EPOR), using Western blot analysis and gene expression, in liver (partly through hepatocyte apoptosis). A high-dose EPO, but not a low-dose, attenuated sepsis in mouse models as determined by mortality and serum inflammatory cytokines. Furthermore, EPO attenuated inflammatory responses in LPS-activated macrophages as determined by supernatant cytokines and the expression of several inflammatory genes (iNOS, IL-1β, STAT3 and NFκB). In parallel, patients with sepsis-AKI who were treated with the high-dose EPO showed favorable outcomes, particularly the 29-day mortality rate. In conclusion, high-dose EPO attenuated sepsis with preconditioning renal injury in mice possibly through the macrophage anti-inflammatory effect, which might be beneficial in some patients.
Collapse
Affiliation(s)
- Wiwat Chancharoenthana
- Tropical Nephrology Research Unit, Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
| | - Kanyarat Udompronpitak
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (K.U.); (Y.M.); (P.K.); (P.K.); (J.I.-A.)
| | - Yolradee Manochantr
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (K.U.); (Y.M.); (P.K.); (P.K.); (J.I.-A.)
| | - Piyawat Kantagowit
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (K.U.); (Y.M.); (P.K.); (P.K.); (J.I.-A.)
| | - Ponthakorn Kaewkanha
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (K.U.); (Y.M.); (P.K.); (P.K.); (J.I.-A.)
| | - Jiraporn Issara-Amphorn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (K.U.); (Y.M.); (P.K.); (P.K.); (J.I.-A.)
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (K.U.); (Y.M.); (P.K.); (P.K.); (J.I.-A.)
- Translational Research in Inflammation and Immunology Research Unit (TRITU), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
7
|
Silva I, Alípio C, Pinto R, Mateus V. Potential anti-inflammatory effect of erythropoietin in non-clinical studies in vivo: A systematic review. Biomed Pharmacother 2021; 139:111558. [PMID: 33894624 DOI: 10.1016/j.biopha.2021.111558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/19/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
Erythropoietin (EPO) is a hypoxia-induced hormone produced in adult kidneys with erythropoietic and non-erythropoietic effects. In vivo studies represent an important role to comprehend the efficacy and safety in the early phase of repurposing drugs. The aim is to evaluate the potential anti-inflammatory effect of EPO observed in animal models of disease. Following PRISMA statements, electronic database Medline via PubMed platform was used to search articles with the research expression ((erythropoietin [MeSH Terms]) AND (inflammation [MeSH Terms]) AND (disease models, animal [MeSH Terms])). The inclusion criteria were original articles, studies where EPO was administered, studies where inflammation was studied and/or evaluated, non-clinical studies in vivo with rodents, and articles published in English. Thirty-six articles met the criteria for qualitative analysis. Exogenous EPO was used in models of sepsis, traumatic brain injury, and autoimmune neuritis, with an average of 3000 IU/Kg for single and multiple doses, using mice and rats. Biomarkers such as immune-related effectors, cytokines, reactive oxygen species, prostaglandins, and other biomarkers were assessed. EPO has been recognized as a multifunctional cytokine with anti-inflammatory properties, showing its significant effect both in acute and chronic models of inflammation. Further non-clinical studies are suggested for the enlightenment of anti-inflammatory mechanisms of EPO in lower doses, allowing us to understand the translational data for humans.
Collapse
Affiliation(s)
- Inês Silva
- H&TRC-Health and Technology Research Center, ESTeSL-Lisbon School of Health Technology, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Carolina Alípio
- H&TRC-Health and Technology Research Center, ESTeSL-Lisbon School of Health Technology, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal
| | - Rui Pinto
- iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal; JCS, Dr. Joaquim Chaves, Laboratório de Análises Clínicas, Miraflores, 1495-069 Algés, Portugal
| | - Vanessa Mateus
- H&TRC-Health and Technology Research Center, ESTeSL-Lisbon School of Health Technology, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
8
|
Matsuda Y, Hiramitsu T, Li XK, Watanabe T. Characteristics of Immunoglobulin M Type Antibodies of Different Origins from the Immunologic and Clinical Viewpoints and Their Application in Controlling Antibody-Mediated Allograft Rejection. Pathogens 2020; 10:pathogens10010004. [PMID: 33374617 PMCID: PMC7822424 DOI: 10.3390/pathogens10010004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/19/2020] [Accepted: 12/20/2020] [Indexed: 12/25/2022] Open
Abstract
Antibody-mediated allograft rejection (AMR) hinders patient prognosis after organ transplantation. Current studies concerning AMR have mainly focused on the diagnostic value of immunoglobulin G (IgG)-type donor-specific antihuman leukocyte antigen antibodies (DSAs), primarily because of their antigen specificity, whereas the clinical significance of immunoglobulin M (IgM)-type DSAs has not been thoroughly investigated in the context of organ transplantation because of their nonspecificity against antigens. Although consensus regarding the clinical significance and role of IgM antibodies is not clear, as discussed in this review, recent findings strongly suggest that they also have a huge potential in novel diagnostic as well as therapeutic application for the prevention of AMR. Most serum IgM antibodies are known to comprise natural antibodies with low affinity toward antigens, and this is derived from B-1 cells (innate B cells). However, some of the serum IgM-type antibodies reportedly also produced by B-2 cells (conventional B cells). The latter are known to have a high affinity for donor-specific antigens. In this review, we initially discuss how IgM-type antibodies of different origins participate in the pathology of various diseases, directly or through cell surface receptors, complement activation, or cytokine production. Then, we discuss the clinical applicability of B-1 and B-2 cell-derived IgM-type antibodies for controlling AMR with reference to the involvement of IgM antibodies in various pathological conditions.
Collapse
Affiliation(s)
- Yoshiko Matsuda
- Division of Transplant Immunology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan;
- Department of Advanced Technology for Transplantation, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- Correspondence:
| | - Takahisa Hiramitsu
- Department of Transplant and Endocrine Surgery, Nagoya Daini Red Cross-Hospital, Aichi 466-8650, Japan;
| | - Xiao-kang Li
- Division of Transplant Immunology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan;
| | - Takeshi Watanabe
- Laboratory of Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan;
| |
Collapse
|
9
|
Domizi R, Adrario E, Damiani E, Scorcella C, Carsetti A, Giaccaglia P, Casarotta E, Gabbanelli V, Pantanetti S, Lamura E, Ciucani S, Donati A. IgM-enriched immunoglobulins (Pentaglobin) may improve the microcirculation in sepsis: a pilot randomized trial. Ann Intensive Care 2019; 9:135. [PMID: 31797105 PMCID: PMC6890901 DOI: 10.1186/s13613-019-0609-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Polyclonal or IgM-enriched immunoglobulins may be beneficial during sepsis as an adjuvant immunomodulatory therapy. We aimed to test whether the infusion of IgM-enriched immunoglobulins improves microvascular perfusion during sepsis. METHODS Single-centre, randomized, double-blind, placebo-controlled phase II trial including adult patients with a diagnosis of sepsis or septic shock for less than 24 h. Patients received an intravenous infusion of 250 mg/kg (5 mL/kg) per day of IgM-enriched immunoglobulins (Pentaglobin, n = 10) for 72 h or placebo (NaCl 0.9%, n = 9). At baseline and after 24 and 72 h of infusion, the sublingual microcirculation was assessed with Incident Dark Field videomicroscopy. Thenar near-infrared spectroscopy (NIRS) was applied with a vascular occlusion test to assess tissue oxygenation and microvascular reactivity. Levels of interleukin (IL) 1-beta, IL-6, IL-8, IL-10 and tumour necrosis factor alpha were measured in the serum. RESULTS The perfused vessel density (PVD) for small vessels (diameter < 20 micron) increased in the Pentaglobin group (from 21.7 ± 4.7 to 25.5 ± 5.1 mm/mm2) and decreased in the placebo group (from 25 ± 5.8 to 20.7 ± 4.1 mm/mm2, p for interaction < 0.001, two-way analysis of variance). The absolute between-group difference at 72 h was 4.77 (standard error 2.34), p = 0.140. The microvascular flow index for small vessels increased at 24 h in the Pentaglobin group (from 2.68 [2.38-2.78] to 2.93 [2.82-3], p < 0.01) and decreased at 72 h in the placebo group (from 2.83 [2.60-2.97] to 2.67 [2.48-2.73], p < 0.05). Changes in general parameters, cytokines and NIRS-derived parameters were similar between the two groups, except for IL-6 and IL-10 that significantly decreased at 72 h only in the Pentaglobin group. CONCLUSIONS A 72-h infusion of IgM-enriched immunoglobulins (Pentaglobin) in patients with sepsis or septic shock may be associated with an increase in sublingual microvascular perfusion. Further studies are needed to confirm our findings. Trial registration NCT02655133, www.ClinicalTrials.gov, date of registration 7th January 2016, https://www.clinicaltrials.gov/ct2/show/NCT02655133.
Collapse
Affiliation(s)
- Roberta Domizi
- Anesthesia and Intensive Care Unit, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, via Tronto 10/a, 60126, Torrette di Ancona, Italy
| | - Erica Adrario
- Anesthesia and Intensive Care Unit, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, via Tronto 10/a, 60126, Torrette di Ancona, Italy
| | - Elisa Damiani
- Anesthesia and Intensive Care Unit, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, via Tronto 10/a, 60126, Torrette di Ancona, Italy
| | - Claudia Scorcella
- Anesthesia and Intensive Care Unit, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, via Tronto 10/a, 60126, Torrette di Ancona, Italy
| | - Andrea Carsetti
- Anesthesia and Intensive Care Unit, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, via Tronto 10/a, 60126, Torrette di Ancona, Italy
| | - Paolo Giaccaglia
- Anesthesia and Intensive Care Unit, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, via Tronto 10/a, 60126, Torrette di Ancona, Italy
| | - Erika Casarotta
- Anesthesia and Intensive Care Unit, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, via Tronto 10/a, 60126, Torrette di Ancona, Italy
| | - Vincenzo Gabbanelli
- Anesthesia and Intensive Care Unit, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, via Tronto 10/a, 60126, Torrette di Ancona, Italy
| | - Simona Pantanetti
- Anesthesia and Intensive Care Unit, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, via Tronto 10/a, 60126, Torrette di Ancona, Italy
| | - Elena Lamura
- Hospital Pharmacy, Azienda Ospedaliera Universitaria "Ospedali Riuniti Umberto I-Lancisi-Salesi" of Ancona, via Conca 71, 60126, Torrette di Ancona, Italy
| | - Silvia Ciucani
- Anesthesia and Intensive Care Unit, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, via Tronto 10/a, 60126, Torrette di Ancona, Italy
| | - Abele Donati
- Anesthesia and Intensive Care Unit, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, via Tronto 10/a, 60126, Torrette di Ancona, Italy.
| |
Collapse
|
10
|
Araújo LA, Melo-Reis PR, Mrue F, Gomes CM, Oliveira MAP, Silva HM, Alves MM, Silva-Júnior NJ. Protein from Hevea brasiliensis “Hev b 13” latex attenuates systemic inflammatory response and lung lesions in rats with sepsis. BRAZ J BIOL 2017; 78:271-280. [DOI: 10.1590/1519-6984.06316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 11/28/2016] [Indexed: 11/22/2022] Open
Abstract
Abstract Sepsis induces a severe systemic inflammatory response that may result in multiple organ dysfunction and death. Studies using a protein derived from natural Hevea brasiliensis (rubber tree) latex, denominated Hev b 13, have demonstrated important anti-inflammatory effects, but no data have been published regarding its effects on sepsis. The aim of this study was to investigate the effects of Hev b 13 on the inflammatory response and lung lesions of septal rats. Male Wistar rats were submitted to cecal ligation and puncture (CLP), randomized into groups and treated with subcutaneously administered doses of 0.5/2.0/3.0 mg/Kg of Hev b 13. Next, animals were subdivided into three different points in time (1, 6 and 24 hours after treatments) for collection of blood samples and euthanasia accompanied by organ removal. Total and differential leukocyte counts, cytokine dosage and histological assessment were analyzed. Treatment with Hev b 13 resulted in a significant decline in total and differential leukocytes as well as suppression of TNF-α and IL-6 production, associated with the increase in IL-10 and IL-4 in plasma and lung tissue. Moreover, it reduced morphological and pathological changes found in the lungs, including neutrophil infiltration, edema and alveolar thickening. The present study concluded that Hev b 13 exerts anti-inflammatory effects and attenuates lung lesions in septal rats, showing potential for clinical application.
Collapse
Affiliation(s)
| | - P. R. Melo-Reis
- Pontifícia Universidade Católica de Goiás, Brazil; Pontifícia Universidade Católica de Goiás, Brazil
| | - F. Mrue
- Pontifícia Universidade Católica de Goiás, Brazil
| | - C. M. Gomes
- Pontifícia Universidade Católica de Goiás, Brazil
| | | | | | - M. M. Alves
- Pontifícia Universidade Católica de Goiás, Brazil
| | - N. J. Silva-Júnior
- Pontifícia Universidade Católica de Goiás, Brazil; Pontifícia Universidade Católica de Goiás, Brazil
| |
Collapse
|
11
|
Antiseptic effect of sea cucumber ( Holothuria atra) against multi-organ failure induced by sepsis: Molecular and histopathological study. Exp Ther Med 2016; 12:222-230. [PMID: 27347042 PMCID: PMC4906945 DOI: 10.3892/etm.2016.3321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/10/2016] [Indexed: 12/11/2022] Open
Abstract
Sepsis is a systemic inflammatory response to infection and severe sepsis patients can develop acute lung and liver injury. The aim of the present study was to evaluate the efficacy of Holothuria atra methanolic body wall extract (HaE), as an antioxidant and anti-inflammatory agent against induced sepsis in a cecal ligation and puncture (CLP) rat model. In total, 30 males albino rats were divided into three groups (n=10 each) as follows: Sham (Sh), which was used as negative control; sepsis (Se), which was used as a positive control and was subjected to CLP surgery; and Ho, which was subjected to CLP and fed with 200 mg/kg (body weight) of HaE, once daily for 7 days. Subsequently, the expression of various genes was detected by polymerase chain reaction, while liver and lung tissues were examined by immunohistochemistry. The expression of Caspase-3 was significantly reduced in liver and lung tissues in the Ho group, while the expression levels of Gsta2, Cat and Sod1 genes were slightly reduced in the Ho group, when compared with the Se group. In addition, expression levels of tumor necrosis factor, interferon-γ, liver interleukin (IL)1b and lung IL1a were reduced in the Ho group compared with the Se group. Furthermore, histopathological changes were observed in liver tissues of the Se group, including congestion of hepatoportal blood vessel and focal hepatic necrosis, while lung tissues showed marked edema, hemorrhage and alveolar septal thickening. The Ho group showed apparent normal hepatic parenchyma and slight interstitial pneumonia. Immunohistochemical staining of caspase-3 in liver and lung tissues showed no expression in the Sh group, strong expression in the Se group and moderate expression in the Ho group. In conclusion, HaE demonstrated beneficial effect against induced sepsis, which may be attributed to its antioxidant and antiapoptotic activities.
Collapse
|