1
|
Wang Q, Wang S, Cui L, Zhang Y, Waterhouse GIN, Sun-Waterhouse D, Ma C, Kang W. Flammulina velutipes polysaccharide exerts immunomodulatory function involving RSAD2 to regulate the NF-κB/MAPK signaling pathway in RAW264.7 macrophage cells and in mouse spleen cells. Int J Biol Macromol 2025; 309:142985. [PMID: 40210026 DOI: 10.1016/j.ijbiomac.2025.142985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/06/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
There are ongoing efforts to explore the potential of natural bioactive substances including polysaccharides in immunological regulation and understand the mechanisms under their immune-regulating function. In this study, a polysaccharide from Flammulina velutipes (FVP-1) exhibited immunomodulatory in RAW264.7 macrophage cells and mouse spleen cells. FVP-1 increased the secretion of cytokines (like TNF-α, IL-6 and IL-1β) and their mRNA expression, upregulated the transcription and translation expression of COX-2 and iNOS, and enhanced the release of reactive oxygen species the phagocytic activity in macrophages, thereby promoting the maturation and transformation of certain lymphocytes. All these functions of FVP-1 depended to some extent on its concentration. The RSAD2 effector was involved in the immunomodulatory function of FVP-1 towards macrophages and mouse splenocytes, through mediating FVP-1's activation and regulation of the NF-κB/MAPK signaling pathway. These findings indicate the potential of FVP-1 as a natural immunomodulator and approach for improving immune function.
Collapse
Affiliation(s)
- Qiuyi Wang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
| | - Senye Wang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
| | - Lili Cui
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Kaifeng 475004, China
| | - Yu Zhang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
| | - Geoffrey I N Waterhouse
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Kaifeng 475004, China; School of Chemical Sciences, the University of Auckland, Auckland 1142, New Zealand
| | - Dongxiao Sun-Waterhouse
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Kaifeng 475004, China; School of Chemical Sciences, the University of Auckland, Auckland 1142, New Zealand.
| | - Changyang Ma
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Kaifeng 475004, China; Functional Food Engineering Technology Research Center, Kaifeng 475004, China; College of Agriculture, Henan University, Kaifeng 475004, China.
| | - Wenyi Kang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Kaifeng 475004, China; Functional Food Engineering Technology Research Center, Kaifeng 475004, China; College of Agriculture, Henan University, Kaifeng 475004, China.
| |
Collapse
|
2
|
Li X, Chen Y, Peng X, Zhu Y, Duan W, Ji R, Xiao H, Li X, Liu G, Yu Y, Cao Y. Anti-inflammation mechanisms of a homogeneous polysaccharide from Phyllanthus emblica L. on DSS induced colitis mice via the gut microbiota and metabolites alteration. Food Chem 2024; 459:140346. [PMID: 38981378 DOI: 10.1016/j.foodchem.2024.140346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
Phyllanthus emblica L. offers promising therapeutic potential for inflammatory diseases. This study revealed the molecular structure of a homogeneous polysaccharide purified from Phyllanthus emblica L. (PEP-1) and evaluated its anti-inflammatory effects on ulcerative colitis (UC) in mice. In the in vivo experiment, administered in varying dosages to dextran sulfate sodium (DSS)-induced UC models, PEP-1 significantly alleviated colonic symptoms, histological damages and reshaped the gut microbiota. Notably, it adjusted the Firmicutes/Bacteroidetes ratio and reduced pro-inflammatory species, closely aligning with shifts in the fecal metabolites and metabolic pathways such as the metabolism of pyrimidine, beta-alanine, and purine. These findings underscore the potential of PEP-1 as a therapeutic agent for UC, providing insights into the mechanisms through gut microbiota and metabolic modulation.
Collapse
Affiliation(s)
- Xiaoqing Li
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China; College of Food Science and Engineering, South China University of Technology, Guangzhou 510006, China,; Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Yihan Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Xinan Peng
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yi Zhu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Wen Duan
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Ruya Ji
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Xueli Li
- Eastroc Beverage Group Co., Ltd., Shenzhen, 518057, China
| | - Guo Liu
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China.
| | - Yigang Yu
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510006, China,.
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Li XJ, Xiao SJ, Xie YH, Chen J, Xu HR, Yin Y, Zhang R, Yang T, Zhou TY, Zhang SY, Hu P, Gao LM, Peng HP. Structural characterization and immune activity evaluation of a polysaccharide from Lyophyllum Decastes. Int J Biol Macromol 2024; 278:134628. [PMID: 39128736 DOI: 10.1016/j.ijbiomac.2024.134628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/27/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
An innovative acidic hydrolysate fingerprinting workflow was proposed for the characterization of Lyophyllum Decastes polysaccharide (LDP) by ultra performance liquid chromatography-mass spectrometry (UPLC-MS). The crude polysaccharides were firstly separated and purified by using DE-52 column and the BRT GPC purification system, respectively. The molecular weight and monosaccharide content of homogeneous polysaccharides were ascertained by utilizing HPGPC and ion chromatography separately. Secondly, the linkage of LDP was identified by methylation analysis and 1D/2D NMR spectra. The UPLC-MS/MS was used to scan and identify the acidic hydrolysate products of LDP using the PGC column. The oligosaccharides were collected by chromatography and identified by mass spectrometry. Thirdly, the expression of IL-1β, IL-6, iNOS, TNF-α and IFNAR-I was measured in order to assess the immunological activity of LDP. Besides, the targeted receptors identification of polysaccharides was performed by screening the expression of TLRs family protein. The results showed that oligosaccharide fragments with different molecular weights can be obtained by partial hydrolysis, which further verified that the structures of LDP polysaccharides was a 1-6-linked β-glucan. Moreover, the LDP polysaccharide can up-regulate the content of IL-1β, IL-6, iNOS, TNF-α and IFNAR-I and plays an important immunoregulation role through TLRs family.
Collapse
Affiliation(s)
- Xiao-Jun Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China; Jiangsu Key Laboratory of integrated traditional Chinese and Western Medicine for prevention and treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, PR China.
| | - Shi-Jun Xiao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China
| | - Yi Heng Xie
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China; Jiangsu Key Laboratory of integrated traditional Chinese and Western Medicine for prevention and treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, PR China
| | - Jiang Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China
| | - Hai-Rong Xu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China; Jiangsu Key Laboratory of integrated traditional Chinese and Western Medicine for prevention and treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, PR China
| | - Yuan Yin
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China
| | - Rui Zhang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China; Jiangsu Key Laboratory of integrated traditional Chinese and Western Medicine for prevention and treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, PR China
| | - Tong Yang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China; Jiangsu Key Laboratory of integrated traditional Chinese and Western Medicine for prevention and treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, PR China
| | - Tong-Yu Zhou
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China; Jiangsu Key Laboratory of integrated traditional Chinese and Western Medicine for prevention and treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, PR China
| | - Si-Yan Zhang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China; Jiangsu Key Laboratory of integrated traditional Chinese and Western Medicine for prevention and treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, PR China
| | - Pei Hu
- Jiangzhong Pharmaceutical Co., Ltd., No.1899 Meiling Road, Nanchang 330103, PR China
| | - Li-Ming Gao
- Kunshan Hospital of Traditional Chinese Medicine, Affiliated Hospital of Yangzhou University Department of Gastroenterology, PR China
| | - Hui-Ping Peng
- Kunshan Hospital of Traditional Chinese Medicine, Affiliated Hospital of Yangzhou University Department of Gastroenterology, PR China.
| |
Collapse
|
4
|
Lim JW, Seo JK, Jung SJ, Lee KY, Kang SY. An antiviral optimized extract from Sanguisorba officinalis L. roots using response surface methodology, and its efficacy in controlling viral hemorrhagic septicemia of olive flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2023; 141:109066. [PMID: 37689225 DOI: 10.1016/j.fsi.2023.109066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/19/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Viral hemorrhagic septicemia causes considerable economic losses for Korea's olive flounder (Paralichthys olivaceus) aquaculture farms; therefore, effective antiviral agents for controlling viral hemorrhagic septicemia virus (VHSV) infection are imperative. The present study implemented a Box-Behnken design and cytopathic reduction assay to derive an optimized extract of Sanguisorba officinalis L. roots (OE-SOR) with maximum antiviral activity against VHSV. OE-SOR prepared under optimized extraction conditions (55% ethanol concentration at 50 °C for 5 h) exhibited potent antiviral activity against VHSV, with a 50% effective 0.21 μg/mL concentration and a 340 selective index. OE-SOR also showed direct virucidal activity in the plaque reduction assay. Administering OE-SOR to olive flounder exhibited substantial efficacies against VHSV infection. Fish receiving 100 mg/kg body weight/day of OE-SOR as a preventive (40.0%; p < 0.05) or therapeutic (44.4%; p < 0.05) exhibited a higher relative survival than the untreated VHSV-infected control group (mortalities of 100% and 90%, respectively). In addition, fish fed with OE-SOR (100 mg/kg body weight/day) for two weeks conveyed a significantly higher inflammatory cytokine expression (nuclear factor kappa-light-chain-enhancer of activated B cells [NF-κB], interleukin-1 beta [IL-1β], and tumor necrosis factor-alpha [TNF-α]) than the control group one to two days post-administration. Moreover, no hematological or histological changes were observed in olive flounder treated with OE-SOR over four weeks. Liquid chromatography-quadrupole-time of flight tandem mass spectrometry and -triple quadrupole tandem mass spectrometry analyses identified ziyuglycoside I as a prominent OE-SOR constituent and marker compound (content: 14.5%). This study verifies that OE-SOR is an effective alternative for controlling viral hemorrhagic septicemia in olive flounder farms as it exhibits efficient in vivo anti-VHSV activity and increases innate immune responses.
Collapse
Affiliation(s)
- Jae-Woong Lim
- Department of Aqualife Medicine, Chonnam National University, Yeosu, 59626, Republic of Korea
| | - Joong-Kyeong Seo
- Department of Aqualife Medicine, Chonnam National University, Yeosu, 59626, Republic of Korea
| | - Sung-Ju Jung
- Department of Aqualife Medicine, Chonnam National University, Yeosu, 59626, Republic of Korea
| | - Ki Yong Lee
- College of Pharmacy, Korea University, Sejong, 30019, Republic of Korea
| | - So Young Kang
- Department of Aqualife Medicine, Chonnam National University, Yeosu, 59626, Republic of Korea.
| |
Collapse
|
5
|
Zhang W, Ou L, Peng C, Sang S, Feng Z, Zou Y, Yuan Y, Li H, Zhang G, Yao M. Sanguisorba officinalis L. enhances the 5-fluorouracil sensitivity and overcomes chemoresistance in 5-fluorouracil-resistant colorectal cancer cells via Ras/MEK/ERK and PI3K/Akt pathways. Heliyon 2023; 9:e16798. [PMID: 37484409 PMCID: PMC10360953 DOI: 10.1016/j.heliyon.2023.e16798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/17/2023] [Accepted: 05/29/2023] [Indexed: 07/25/2023] Open
Abstract
Sanguisorba officinalis L., a traditional Chinese medicine (TCM) called DiYu (DY) in China, has a strong tradition of utilization as a scorching, blood-cooling, and hemostatic medication, and was used for cancer prevention and treatment due to its potential immune-enhancing and hematological toxicity-reducing effects. Previous studies have reported significant effects of DY on cancers including colorectal cancer (CRC), which is one of the most common malignancies worldwide. The first-line cure 5-fluorouracil (5-FU) plays decisive commerce in the sedative of CRC as a clinically available chemotherapeutic agent. One of the primary causes of cancer treatment failure is the acquisition of chemotherapy drug resistance. In order to successfully combat the emergence of chemoresistance, it is essential to identify herbs or traditional Chinese medicine that have adjuvant therapeutic effects on CRC. Therefore, this study aimed to determine whether DY could improve the sensitivity, conquer the chemoresistance of 5-FU-resistant CRC cells, and investigate its intrinsic mechanism. Materials and methods MTT, Hoechst 33258 staining, and flow cytometry assays were used to determine the anticancer activity of DY alone or in combination with 5-FU against 5-FU-resistant CRC cells (RKO-R and HCT15-R) and wound healing assays were conducted to detect cell migration. Transcriptomic techniques were carried out to explore the effect and mechanism of DY on drug-resistant CRC cells. Western Blot and RT q-PCR assays were performed to validate the mechanism by which DY overcomes drug-resistant CRC cells. Results These results indicated that DY alone or in combination with 5-FU significantly inhibited the proliferation and the migration of resistant CRC cells, and potentiated the susceptibility of 5-FU to drug-resistant CRC cells. GO and KEGG enrichment analysis showed that the mechanisms of drug resistance in CRC cells and DY against drug-resistant CRC cells highly overlapped, involved in the modulation of biological processes such as cell migration, positive regulation of protein binding and cytoskeleton, and MAPK (Ras-ERK-MEK), PI3K/Akt, and other signaling pathways. Moreover, DY can mediate the expression of p-R-Ras, p-ERK1/2, p-MEK1/2, p-PI3K, p-AKT, HIF-1A and VEGFA proteins. In addition, DY significantly suppressed the expression of AKT3, NEDD9, BMI-1, and CXCL1 genes in resistant CRC cells. Conclusion In conclusion, DY could inhibit the proliferation and migration of 5-FU-resistant cells and strengthen the sensitivity of 5-FU to CRC-resistant cells. Furthermore, DY may prevail over chemoresistance through the Ras/MEK/ERK and PI3K/Akt pathways. These findings imply that DY may be a potential drug for clinical treatment or adjuvant treatment of drug-resistant CRC.
Collapse
Affiliation(s)
- Weijia Zhang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Ling Ou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Chang Peng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Shuyi Sang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Zhong Feng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
- International Pharmaceutical Engineering Lab, Shandong, 273400, China
| | - Yuanjing Zou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Yuemei Yuan
- School of Earth Sciences and Engineering, Sun Yat-sen University, Zhuhai, 519080, China
| | - Hao Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Guimin Zhang
- Lunan Pharmaceutical Group Co., Ltd, Linyi, 276000, Shandong, China
| | - Meicun Yao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|
6
|
Zhang S, Tu Q, Qian X, Wang J, Ma C, Yang L, Liu Y, Wu R, Liu M. Deficiency of Kif15 gene inhibits tumor growth due to host CD8 +T lymphocytes increase. Biochem Biophys Res Commun 2023; 655:110-117. [PMID: 36934586 DOI: 10.1016/j.bbrc.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023]
Abstract
Kif15, also name kinesin-12, is a microtubule (MT) associate protein, which functions as a regulator of MT-dependent transport or spindle organization. Previous studies reported Kif15 increases in many tumors, however the effect of host Kif15 gene lack on tumor growth is not investigated. In this study, CRISPR/Cas9 mediated Kif15 gene knockout (Kif15-/-) mice were established and HE (Hematoxylin-Eosin) assay revealed no significant differences of morphology in most adult tissues (heart, liver, lung, kidney, and brain) except a retarded development of spleen in adult Kif15-/- mice. RNA sequence analysis of adult spleen tissues of Kif15-/- and Kif15+/+ mice was performed, and the results revealed that a total of 438 mRNAs were significantly differentially expressed in Kif15 knockout spleen, showing the top biological process was immune system process. FCM (Flow Cytometry) assay showed the percentage of CD8+ T lymphocytes notably increased in spleens of 9 w and 12 w old Kif15-/- mice. The CD8+ T lymphocytes are cytotoxic effector cells fighting against tumor. We thus detected the tumor growth in Kif15-/- mice using the melanoma cells inoculated subcutaneously. The tumor size significantly reduced in Kif15-/- mice. We finally detected whether Kif15 dysfunction affects the phagocytic function of macrophages on tumor cells, and the result showed Kif15 inhibitor treated macrophages significantly promoted the phagocytosis in vitro. In summary, this study revealed that the tumor-bearing mice of Kif15 gene deficiency notably inhibited tumor growth due to innate immune activation, which was the first report of the relation of Kif15 on the immunoreactivity.
Collapse
Affiliation(s)
- Siming Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, China; Cancer Research Center Nantong, Nantong Tumor Hospital & Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Qifeng Tu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, China
| | - Xiaowei Qian
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, China
| | - Junpei Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, China
| | - Chao Ma
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, China
| | - Liu Yang
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Yan Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, China
| | - Ronghua Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, China.
| | - Mei Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, China.
| |
Collapse
|
7
|
An Alkali-extracted Polysaccharide from Poria cocos Activates RAW264.7 Macrophages via NF-κB Signaling Pathway. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
8
|
Wang H, Ma C, Sun-Waterhouse D, Wang J, Neil Waterhouse GI, Kang W. Immunoregulatory polysaccharides from Apocynum venetum L. flowers stimulate phagocytosis and cytokine expression via activating the NF-κB/MAPK signaling pathways in RAW264.7 cells. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Zhang Y, Wang Y, Ding J, Liu P. Efferocytosis in multisystem diseases (Review). Mol Med Rep 2022; 25:13. [PMID: 34779503 PMCID: PMC8600411 DOI: 10.3892/mmr.2021.12529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/15/2021] [Indexed: 01/22/2023] Open
Abstract
Efferocytosis, the phagocytosis of apoptotic cells performed by both specialized phagocytes (such as macrophages) and non‑specialized phagocytes (such as epithelial cells), is involved in tissue repair and homeostasis. Effective efferocytosis prevents secondary necrosis, terminates inflammatory responses, promotes self‑tolerance and activates pro‑resolving pathways to maintain homeostasis. When efferocytosis is impaired, apoptotic cells that could not be cleared in time aggregate, resulting in the necrosis of apoptotic cells and release of pro‑inflammatory factors. In addition, defective efferocytosis inhibits the intracellular cholesterol reverse transportation pathways, which may lead to atherosclerosis, lung damage, non‑alcoholic fatty liver disease and neurodegenerative diseases. The uncleared apoptotic cells can also release autoantigens, which can cause autoimmune diseases. Cancer cells escape from phagocytosis via efferocytosis. Therefore, new treatment strategies for diseases related to defective efferocytosis are proposed. This review illustrated the mechanisms of efferocytosis in multisystem diseases and organismal homeostasis and the pathophysiological consequences of defective efferocytosis. Several drugs and treatments available to enhance efferocytosis are also mentioned in the review, serving as new evidence for clinical application.
Collapse
Affiliation(s)
- Yifan Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Yiru Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Jie Ding
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Ping Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| |
Collapse
|
10
|
Wang YJ, Wan DL, Li QM, Zha XQ, Luo JP. Structural characteristics and immunostimulatory activities of a new polysaccharide from Dendrobium fimbriatum Hook. Food Funct 2021; 12:3057-3068. [PMID: 33710189 DOI: 10.1039/d0fo03336g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A new polysaccharide (cDFP-W1) with high immunostimulatory activities was isolated from the stems of Dendrobium fimbriatum Hook. The analysis of the physicochemical properties showed that cDFP-W1 consisted of mannose and glucose in a molar ratio of 1 : 3.84, and its relative molecular weight was 4.0 × 104 Da. Structural analysis implied that the linear backbone of cDFP-W1 was composed of α-1,4-d-Glcp, β-1,4-d-Manp, 3-O-acetyl-α-1,4-d-Glcp and α-1,4,6-d-Glcp, and its branches were the terminal β-d-Manp that was attached to the C-6 position of α-1,4,6-d-Glcp. An in vivo immunostimulatory assay exhibited that cDFP-W1 at 200 mg kg-1 could significantly increase the proportions of CD4+ T-cell subpopulations, B cells, natural killer cells and dendritic cells, decrease the proportion of CD8+ T-cell subpopulations, and upregulate the percentage of activated macrophages (p < 0.01) in the spleen of mice. An in vitro immunostimulatory assay revealed that cDFP-W1 could effectively promote the proliferation of spleen lymphocytes, enhance the proliferation and phagocytosis of macrophage RAW264.7 cells, and stimulate the mRNA expression and extracellular release of NO, TNF-α and IL-1β of RAW264.7 cells. The western blot experiment suggested that the immunostimulatory activities of cDFP-W1 were closely related to the activation of MAPKs, NF-κB and PI3K/Akt signaling pathways.
Collapse
Affiliation(s)
- Yu-Jing Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | | | | | | | | |
Collapse
|
11
|
Meng J, Liu J, Chen D, Kang J, Huang Y, Li D, Duan Y, Wang J. Integration of lncRNA and mRNA profiles to reveal the protective effects of Codonopsis pilosula extract on the gastrointestinal tract of mice subjected to D‑galactose‑induced aging. Int J Mol Med 2021; 47:1. [PMID: 33448313 PMCID: PMC7834956 DOI: 10.3892/ijmm.2020.4834] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
Codonopsis pilosula is a type of traditional Chinese medicine that exerts an anti‑aging effect and can regulate the gastrointestinal (GI) system. The aim of the present study was to investigate the underlying molecular mechanisms responsible for the anti‑aging effects of Codonopsis pilosula in the GI tract of mice with D‑galactose‑induced aging. First, a successful mouse model of aging was established, and Codonopsis pilosula water extract was then used for treatment. The anti‑aging effects of Codonopsis pilosula on the GI tract were then detected from the perspectives of tissue structure, physiological function and cell ultrastructure. Finally, in order to explore the underlying molecular mechanisms, the expression profiles of lncRNAs and mRNAs in the stomach and intestine were examined using microarray technology. A total of 117 (41 lncRNAs and 76 mRNAs) and 168 (85 lncRNA sand 83 mRNAs) differentially expressed genes associated with the anti‑aging effects of Codonopsis pilosula were identified in the stomach and intestine, respectively. Through integrated analysis of the stomach and intestine, 4 hub RNAs, including 1 lncRNA (LOC105243318) and 3 mRNAs (Fam132a, Rorc and 1200016E24Rik) were identified, which may be associated with the anti‑aging effects of Codonopsis pilosula in the GI tract of aging mice. The Kyoto Encyclopedia of Genes and Genomes analysis revealed that the metabolic pathway was an important pathway underlying the anti‑aging effects of Codonopsis pilosula in the GI tract. On the whole, in the present study, 4 hub RNAs associated with these effects and their regulatory networks were found in the GI tract of aging mice. In addition, the metabolic pathway was found to play an important role in these anti‑aging effects in the GI tract.
Collapse
Affiliation(s)
- Jie Meng
- College of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, P.R. China
| | - Jiajia Liu
- College of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, P.R. China
| | - Dongmei Chen
- College of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, P.R. China
| | - Jiachao Kang
- College of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, P.R. China
| | - Yong Huang
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, P.R. China
| | - Dandan Li
- College of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, P.R. China
| | - Yongqiang Duan
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, P.R. China
| | - Jing Wang
- College of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
12
|
Ligacheva AA, Sherstoboev EY, Danilets MG, Trofimova ES, Krivoshchekov SV, Gur'ev AM, Bulgakov TV, Kudashkina NV, Miroshnichenko AG, Belousov MV. Study of Immunotropic Properties of Water-Soluble Polysaccharides Isolated from Conium maculatum Grass. Bull Exp Biol Med 2020; 170:203-206. [PMID: 33263855 DOI: 10.1007/s10517-020-05033-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Indexed: 11/28/2022]
Abstract
Addition of water-soluble polysaccharides isolated from Conium maculatum L. to the mouse peritoneal macrophage culture induces classical activation of antigen-presenting cells due to an increase in NO synthase activity and a decrease in arginase expression.
Collapse
Affiliation(s)
- A A Ligacheva
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - E Yu Sherstoboev
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia.
| | - M G Danilets
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - E S Trofimova
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - S V Krivoshchekov
- Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia
| | - A M Gur'ev
- Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia
| | - T V Bulgakov
- Bashkir State Medical University, Ministry of Health of the Russian Federation, Ufa, Russia
| | - N V Kudashkina
- Bashkir State Medical University, Ministry of Health of the Russian Federation, Ufa, Russia
| | - A G Miroshnichenko
- Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia
| | - M V Belousov
- Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia
| |
Collapse
|
13
|
Exopolysaccharides from yoghurt fermented by Lactobacillus paracasei: Production, purification and its binding to sodium caseinate. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105635] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Su S, Ding X, Fu L, Hou Y. Structural characterization and immune regulation of a novel polysaccharide from Maerkang Lactarius deliciosus Gray. Int J Mol Med 2019; 44:713-724. [PMID: 31173162 DOI: 10.3892/ijmm.2019.4219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 05/07/2019] [Indexed: 11/05/2022] Open
Abstract
The present study investigated the structural characterization and immune regulation of a novel polysaccharide from Maerkang Lactarius deliciosus Gray. Chemical methods, high performance gel permeation chromatography, fourier transform infrared spectroscopy, nuclear magnetic resonance spectrum and gas chromatography‑mass spectrometry were used to characterize the polysaccharide structure. The immunomodulatory abilities of the Maerkang L. deliciosus Gray polysaccharide (LDG‑M) were also investigated. LDG‑M was primarily composed of β‑D‑glucose and α‑D‑lyxose with the ratio of 2:1. The possible structure of LDG‑M had a backbone of 1,6‑linked‑β‑D‑glucose and 1,4,6‑linked‑β‑D‑glucose, with branches primarily composed of one (1→4)‑linked‑α‑D‑lyxose residue. The immunoregulatory activity results demonstrated that LDG‑M promoted the proliferation and phagocytosis of macrophages, and induced cytokine release. LDG‑M also promoted the proliferation of B cells by affecting the G0/G1, S and G2/M phases. The present study introduced LDG‑M as a valuable source with unique immunoregulatory properties.
Collapse
Affiliation(s)
- Siyuan Su
- Key Laboratory of Southwest China Wildlife Resources Conservation, College of Life Sciences, China West Normal University, Nanchong, Sichuan 637009, P.R. China
| | - Xiang Ding
- College of Environmental Science and Engineering, China West Normal University, Nanchong, Sichuan 637009, P.R. China
| | - Lei Fu
- Key Laboratory of Southwest China Wildlife Resources Conservation, College of Life Sciences, China West Normal University, Nanchong, Sichuan 637009, P.R. China
| | - Yiling Hou
- Key Laboratory of Southwest China Wildlife Resources Conservation, College of Life Sciences, China West Normal University, Nanchong, Sichuan 637009, P.R. China
| |
Collapse
|
15
|
Yin M, Zhang Y, Li H. Advances in Research on Immunoregulation of Macrophages by Plant Polysaccharides. Front Immunol 2019; 10:145. [PMID: 30804942 PMCID: PMC6370632 DOI: 10.3389/fimmu.2019.00145] [Citation(s) in RCA: 294] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/17/2019] [Indexed: 01/02/2023] Open
Abstract
Polysaccharides are among the most important members of the biopolymer family. They are natural macromolecules composed of monosaccharides. To date, more than 300 kinds of natural polysaccharide compounds have been identified. They are present in plants, animals, and microorganisms, and they engage in a variety of physiological functions. In the 1950s, due to the discovery of their immunoregulatory and anti-tumor activities, polysaccharides became a popular topic of research in pharmacology, especially in immunopharmacology. Plants are an important source of natural polysaccharides. Pharmacological and clinical studies have shown that plant polysaccharides have many functions, such as immune regulation, anti-tumor activity, anti-inflammatory activity, anti-viral functions, anti-radiation functions, and a hypoglycaemic effect. The immunomodulatory effects of plant polysaccharides have received much attention. Polysaccharides with these effects are also referred to as biological response modifiers (BRMs), and research on them is one of the most active areas of polysaccharide research. Thus, we summarize immunomodulatory effects of botanical polysaccharides isolated from different species of plants on the macrophage. The primary effect of botanical polysaccharides is to enhance and/or activate macrophage immune responses, including increasing reactive oxygen species (ROS) production, and enhancing secretion of cytokines and chemokines. Therefore, it is believed that botanical polysaccharides have significant therapeutic potential, and represent a new method for discovery and development of novel immunomodulatory medicine.
Collapse
Affiliation(s)
| | | | - Hua Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
16
|
Chang B, Kim T, Kim S. Polysaccharides from pectinase digests of green tea enhances host immune defence through toll-like receptor 4. FOOD AGR IMMUNOL 2018. [DOI: 10.1080/09540105.2018.1494139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Affiliation(s)
- BoYoon Chang
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, Republic of Korea
| | | | - SungYeon Kim
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, Republic of Korea
| |
Collapse
|
17
|
Immunomodulatory effects of an acetylated Cyclocarya paliurus polysaccharide on murine macrophages RAW264.7. Int J Biol Macromol 2017; 98:576-581. [DOI: 10.1016/j.ijbiomac.2017.02.028] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 01/30/2017] [Accepted: 02/07/2017] [Indexed: 12/18/2022]
|
18
|
Li QM, Wang JF, Zha XQ, Pan LH, Zhang HL, Luo JP. Structural characterization and immunomodulatory activity of a new polysaccharide from jellyfish. Carbohydr Polym 2017; 159:188-194. [DOI: 10.1016/j.carbpol.2016.12.031] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/06/2016] [Accepted: 12/15/2016] [Indexed: 12/11/2022]
|
19
|
Huang S, Liu HF, Quan X, Jin Y, Xuan G, An RB, Dikye T, Li B. Rhamnella gilgitica Attenuates Inflammatory Responses in LPS-Induced Murine Macrophages and Complete Freund’s Adjuvant-Induced Arthritis Rats. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:1379-1392. [DOI: 10.1142/s0192415x16500774] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Rhamnella gilgitica Mansf. et Melch, which belongs to the rhamnus family (Rhamnaceae), is traditionally used to treat rheumatism, swelling and pain in China. However, little is known about the pharmacological activities of this plant. The anti-inflammatory activities of the 70% ethanol extract of R. gilgitica (RG) in RAW264.7 macrophages and complete Freund’s adjuvant (CFA)-induced arthritic rats are investigated in this study for the first time. The effects of RG on cell viability were determined by a MTT assay, and the effects of RG on pro-inflammatory mediators were analyzed by ELISA and Western blot. The effects of RG on paw thickness, thymus and spleen index were also examined in CFA-induced arthritic rats. RG suppressed the induction of proinflammatory mediators, including iNOS (inducible nitric oxide synthase), NO (nitric oxide), COX-2 (cyclooxygenase-2) and PG (prostaglandin) E2 in LPS stimulated RAW264.7 macrophages. RG also inhibited the phosphorylation and degradation of I[Formula: see text]B-[Formula: see text], as well as the nuclear translocation of nuclear factor kappa B (NF-[Formula: see text]B) p65. In addition, RG treatment significantly reduced the paw thickness in CFA-induced arthritic rats. Oral administration of RG led to a significant decrease of both the thymus and spleen index at a concentration of 100[Formula: see text]mg/mL. Taken together, these findings suggest that RG might be an agent for further development in the treatment of a variety of inflammatory diseases.
Collapse
Affiliation(s)
- Shan Huang
- Department of Pharmacy, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Hai Feng Liu
- Department of Pharmacy, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Xianghua Quan
- Department of Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, P.R. China
| | - Yan Jin
- Department of Pharmacy, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Guangshan Xuan
- Department of Pharmacy, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Ren-Bo An
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules (Yanbian University), Ministry of Education, Yanji 133002, P.R. China
| | - Tsering Dikye
- Tibetan Traditional Medical College, Lhasa 850000, P.R. China
| | - Bin Li
- Department of Pharmacy, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| |
Collapse
|