1
|
Su HH, Lin ES, Huang YH, Lien Y, Huang CY. Inhibition of SARS-CoV-2 Nsp9 ssDNA-Binding Activity and Cytotoxic Effects on H838, H1975, and A549 Human Non-Small Cell Lung Cancer Cells: Exploring the Potential of Nepenthes miranda Leaf Extract for Pulmonary Disease Treatment. Int J Mol Sci 2024; 25:6120. [PMID: 38892307 PMCID: PMC11173125 DOI: 10.3390/ijms25116120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Carnivorous pitcher plants from the genus Nepenthes are renowned for their ethnobotanical uses. This research explores the therapeutic potential of Nepenthes miranda leaf extract against nonstructural protein 9 (Nsp9) of SARS-CoV-2 and in treating human non-small cell lung carcinoma (NSCLC) cell lines. Nsp9, essential for SARS-CoV-2 RNA replication, was expressed and purified, and its interaction with ssDNA was assessed. Initial tests with myricetin and oridonin, known for targeting ssDNA-binding proteins and Nsp9, respectively, did not inhibit the ssDNA-binding activity of Nsp9. Subsequent screenings of various N. miranda extracts identified those using acetone, methanol, and ethanol as particularly effective in disrupting Nsp9's ssDNA-binding activity, as evidenced by electrophoretic mobility shift assays. Molecular docking studies highlighted stigmast-5-en-3-ol and lupenone, major components in the leaf extract of N. miranda, as potential inhibitors. The cytotoxic properties of N. miranda leaf extract were examined across NSCLC lines H1975, A549, and H838, focusing on cell survival, apoptosis, and migration. Results showed a dose-dependent cytotoxic effect in the following order: H1975 > A549 > H838 cells, indicating specificity. Enhanced anticancer effects were observed when the extract was combined with afatinib, suggesting synergistic interactions. Flow cytometry indicated that N. miranda leaf extract could induce G2 cell cycle arrest in H1975 cells, potentially inhibiting cancer cell proliferation. Gas chromatography-mass spectrometry (GC-MS) enabled the tentative identification of the 19 most abundant compounds in the leaf extract of N. miranda. These outcomes underscore the dual utility of N. miranda leaf extract in potentially managing SARS-CoV-2 infection through Nsp9 inhibition and offering anticancer benefits against lung carcinoma. These results significantly broaden the potential medical applications of N. miranda leaf extract, suggesting its use not only in traditional remedies but also as a prospective treatment for pulmonary diseases. Overall, our findings position the leaf extract of N. miranda as a promising source of natural compounds for anticancer therapeutics and antiviral therapies, warranting further investigation into its molecular mechanisms and potential clinical applications.
Collapse
Affiliation(s)
- Hsin-Hui Su
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City 717, Taiwan
| | - En-Shyh Lin
- Department of Beauty Science, National Taichung University of Science and Technology, Taichung City 403, Taiwan
| | - Yen-Hua Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
| | - Yi Lien
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Cheng-Yang Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City 402, Taiwan
| |
Collapse
|
2
|
Wójciak M, Feldo M, Stolarczyk P, Płachno BJ. Biological Potential of Carnivorous Plants from Nepenthales. Molecules 2023; 28:molecules28083639. [PMID: 37110873 PMCID: PMC10146735 DOI: 10.3390/molecules28083639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Since Charles Darwin and his book carnivorous plants have aroused interest and heated debate. In addition, there is growing interest in this group of plants as a source of secondary metabolites and in the application of their biological activity. The aim of this study was to trace the recent literature in search of the application of extracts obtained from families Droseraceae, Nepenthaceae, and Drosophyllaceae to show their biological potential. The data collected in the review clearly indicate that the studied Nepenthales species have great biological potential in terms of antibacterial, antifungal, antioxidant, anti-inflammatory, and anticancer use. We proposed that further investigations should include: (i) bioactivity-guided investigations of crude plant extract to connect a particular type of action with a specific compound or a group of metabolites; (ii) a search for new bioactive properties of carnivorous plants; (iii) establishment of molecular mechanisms associated with specific activity. Furthermore, further research should be extended to include less explored species, i.e., Drosophyllum lusitanicum and especially Aldrovanda vesiculosa.
Collapse
Affiliation(s)
- Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland
| | - Marcin Feldo
- Chair and Department of Vascular Surgery and Angiology, Medical University of Lublin, 11 Staszica St., 20-081 Lublin, Poland
| | - Piotr Stolarczyk
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada 54 Ave., 31-425 Cracow, Poland
| | - Bartosz J Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 9 Gronostajowa St., 30-387 Cracow, Poland
| |
Collapse
|
3
|
DNA Barcoding, Phylogenetic Analysis and Secondary Structure Predictions of Nepenthes ampullaria, Nepenthes gracilis and Nepenthes rafflesiana. Genes (Basel) 2023; 14:genes14030697. [PMID: 36980969 PMCID: PMC10048361 DOI: 10.3390/genes14030697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Nepentheceae, the most prominent carnivorous family in the Caryophyllales order, comprises the Nepenthes genus, which has modified leaf trap characteristics. Although most Nepenthes species have unique morphologies, their vegetative stages are identical, making identification based on morphology difficult. DNA barcoding is seen as a potential tool for plant identification, with small DNA segments amplified for species identification. In this study, three barcode loci; ribulose-bisphosphate carboxylase (rbcL), intergenic spacer 1 (ITS1) and intergenic spacer 2 (ITS2) and the usefulness of the ITS1 and ITS2 secondary structure for the molecular identification of Nepenthes species were investigated. An analysis of barcodes was conducted using BLASTn, pairwise genetic distance and diversity, followed by secondary structure prediction. The findings reveal that PCR and sequencing were both 100% successful. The present study showed the successful amplification of all targeted DNA barcodes at different sizes. Among the three barcodes, rbcL was the least efficient as a DNA barcode compared to ITS1 and ITS2. The ITS1 nucleotide analysis revealed that the ITS1 barcode had more variations compared to ITS2. The mean genetic distance (K2P) between them was higher for interspecies compared to intraspecies. The results showed that the DNA barcoding gap existed among Nepenthes species, and differences in the secondary structure distinguish the Nepenthes. The secondary structure generated in this study was found to successfully discriminate between the Nepenthes species, leading to enhanced resolutions.
Collapse
|
4
|
Carnivorous Plants from Nepenthaceae and Droseraceae as a Source of Secondary Metabolites. Molecules 2023; 28:molecules28052155. [PMID: 36903400 PMCID: PMC10004607 DOI: 10.3390/molecules28052155] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 03/03/2023] Open
Abstract
Carnivorous plants are able to attract small animals or protozoa and retain them in their specialized traps. Later, the captured organisms are killed and digested. The nutrients contained in the prey bodies are absorbed by the plants to use for growth and reproduction. These plants produce many secondary metabolites involved in the carnivorous syndrome. The main purpose of this review was to provide an overview of the secondary metabolites in the family Nepenthaceae and Droseraceae, which were studied using modern identification techniques, i.e., high-performance liquid chromatography or ultra-high-performance liquid chromatography with mass spectrometry and nuclear magnetic resonance spectroscopy. After literature screening, there is no doubt that tissues of species from the genera Nepenthes, Drosera, and Dionaea are rich sources of secondary metabolites that can be used in pharmacy and for medical purposes. The main types of the identified compounds include phenolic acids and their derivatives (gallic, protocatechuic, chlorogenic, ferulic, p-coumaric acids, gallic, hydroxybenzoic, vanillic, syringic caffeic acids, and vanillin), flavonoids (myricetin, quercetin, and kaempferol derivatives), including anthocyanins (delphinidin-3-O-glucoside, cyanidin-3-O-glucoside, and cyanidin), naphthoquinones (e.g., plumbagin, droserone, and 5-O-methyl droserone), and volatile organic compounds. Due to the biological activity of most of these substances, the importance of the carnivorous plant as a pharmaceutical crop will increase.
Collapse
|
5
|
Liu W, Lin LC, Wang PJ, Chen YN, Wang SC, Chuang YT, Tsai IH, Yu SY, Chang FR, Cheng YB, Huang LC, Huang MY, Chang HW. Nepenthes Ethyl Acetate Extract Provides Oxidative Stress-Dependent Anti-Leukemia Effects. Antioxidants (Basel) 2021; 10:antiox10091410. [PMID: 34573042 PMCID: PMC8464713 DOI: 10.3390/antiox10091410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/13/2022] Open
Abstract
Several kinds of solvents have been applied to Nepenthes extractions exhibiting antioxidant and anticancer effects. However, they were rarely investigated for Nepenthes ethyl acetate extract (EANT), especially leukemia cells. The purpose of the present study was to evaluate the antioxidant properties and explore the antiproliferation impact and mechanism of EANT in leukemia cells. Five standard assays demonstrated that EANT exhibits antioxidant capability. In the cell line model, EANT dose-responsively inhibited cell viabilities of three leukemia cell lines (HL-60, K-562, and MOLT-4) based on 24 h MTS assays, which were reverted by pretreating oxidative stress and apoptosis inhibitors (N-acetylcysteine and Z-VAD-FMK). Due to similar sensitivities among the three cell lines, leukemia HL-60 cells were chosen for exploring antiproliferation mechanisms. EANT caused subG1 and G1 cumulations, triggered annexin V-detected apoptosis, activated apoptotic caspase 3/7 activity, and induced poly ADP-ribose polymerase expression. Moreover, reactive oxygen species, mitochondrial superoxide, and mitochondrial membrane depolarization were generated by EANT, which was reverted by N-acetylcysteine. The antioxidant response to oxidative stress showed that EANT upregulated mRNA expressions for nuclear factor erythroid 2-like 2 (NFE2L2), catalase (CAT), thioredoxin (TXN), heme oxygenase 1 (HMOX1), and NAD(P)H quinone dehydrogenase 1 (NQO1) genes. Moreover, these oxidative stresses led to DNA damage (γH2AX and 8-hydroxy-2-deoxyguanosine) and were alleviated by N-acetylcysteine. Taken together, EANT demonstrated oxidative stress-dependent anti-leukemia ability to HL-60 cells associated with apoptosis and DNA damage.
Collapse
Affiliation(s)
- Wangta Liu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Li-Ching Lin
- Department of Radiation Oncology, Chi-Mei Foundation Medical Center, Tainan 71004, Taiwan;
- School of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Chung Hwa University Medical Technology, Tainan 71703, Taiwan
| | - Pei-Ju Wang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (P.-J.W.); (Y.-N.C.); (S.-C.W.); (Y.-T.C.); (I.-H.T.); (L.-C.H.)
| | - Yan-Ning Chen
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (P.-J.W.); (Y.-N.C.); (S.-C.W.); (Y.-T.C.); (I.-H.T.); (L.-C.H.)
| | - Sheng-Chieh Wang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (P.-J.W.); (Y.-N.C.); (S.-C.W.); (Y.-T.C.); (I.-H.T.); (L.-C.H.)
| | - Ya-Ting Chuang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (P.-J.W.); (Y.-N.C.); (S.-C.W.); (Y.-T.C.); (I.-H.T.); (L.-C.H.)
| | - I-Hsuan Tsai
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (P.-J.W.); (Y.-N.C.); (S.-C.W.); (Y.-T.C.); (I.-H.T.); (L.-C.H.)
| | - Szu-Yin Yu
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-Y.Y.); (F.-R.C.)
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-Y.Y.); (F.-R.C.)
| | - Yuan-Bin Cheng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Li-Chen Huang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (P.-J.W.); (Y.-N.C.); (S.-C.W.); (Y.-T.C.); (I.-H.T.); (L.-C.H.)
| | - Ming-Yii Huang
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (M.-Y.H.); (H.-W.C.); Tel.: +886-7-312-1101 (ext. 7158) (M.-Y.H.); +886-7-312-1101 (ext. 2691) (H.-W.C.)
| | - Hsueh-Wei Chang
- Chung Hwa University Medical Technology, Tainan 71703, Taiwan
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (P.-J.W.); (Y.-N.C.); (S.-C.W.); (Y.-T.C.); (I.-H.T.); (L.-C.H.)
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (M.-Y.H.); (H.-W.C.); Tel.: +886-7-312-1101 (ext. 7158) (M.-Y.H.); +886-7-312-1101 (ext. 2691) (H.-W.C.)
| |
Collapse
|
6
|
Elshamy AI, Mohamed TA, Ibrahim MAA, Atia MAM, Yoneyama T, Umeyama A, Hegazy MEF. Two novel oxetane containing lignans and a new megastigmane from Paronychia arabica and in silico analysis of them as prospective SARS-CoV-2 inhibitors. RSC Adv 2021; 11:20151-20163. [PMID: 35479905 PMCID: PMC9033657 DOI: 10.1039/d1ra02486h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/15/2021] [Indexed: 12/22/2022] Open
Abstract
The chemical characterization of the extract of the aerial parts of Paronychia arabica afforded two oxetane containing lignans, paronychiarabicine A (1) and B (2), and one new megastigmane, paronychiarabicastigmane A (3), alongside a known lignan (4), eight known phenolic compounds (5–12), one known elemene sesquiterpene (13) and one steroid glycoside (14). The chemical structures of the isolated compounds were constructed based upon the HRMS, 1D, and 2D-NMR results. The absolute configurations were established via NOESY experiments as well as experimental and TDDFT-calculated electronic circular dichroism (ECD). Utilizing molecular docking, the binding scores and modes of compounds 1–3 towards the SARS-CoV-2 main protease (Mpro), papain-like protease (PLpro), and RNA-dependent RNA polymerase (RdRp) were revealed. Compound 3 exhibited a promising docking score (−9.8 kcal mol−1) against SARS-CoV-2 Mpro by forming seven hydrogen bonds inside the active site with the key amino acids. The reactome pathway enrichment analysis revealed a correlation between the inhibition of GSK3 and GSK3B genes (identified as the main targets of megastigmane treatment) and significant inhibition of SARS-CoV-1 viral replication in infected Vero E6 cells. Our results manifest a novel understanding of genes, proteins and corresponding pathways against SARS-CoV-2 infection and could facilitate the identification and characterization of novel therapeutic targets as treatments of SARS-CoV-2 infection. The hydromethanolic extract of Paronychia arabica aerial parts afforded two oxetane containing lignans, paronychiarabicine A (1) and B (2), and one new megastigmane, paronychiarabicastigmane A (3), alongside a known secondary metabolites (4–14).![]()
Collapse
Affiliation(s)
- Abdelsamed I Elshamy
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University Yamashiro-cho Tokushima 770-8514 Japan.,Chemistry of Natural Compounds Department, National Research Centre Dokki Giza 12622 Egypt
| | - Tarik A Mohamed
- Chemistry of Medicinal Plants Department, National Research Centre 33 El-Bohouth St., Dokki Giza 12622 Egypt +20-233370931 +20-233371635
| | - Mahmoud A A Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University Minia 61519 Egypt
| | - Mohamed A M Atia
- Molecular Genetics and Genome Mapping Laboratory, Genome Mapping Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC) Giza 12619 Egypt
| | - Tatsuro Yoneyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University Yamashiro-cho Tokushima 770-8514 Japan
| | - Akemi Umeyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University Yamashiro-cho Tokushima 770-8514 Japan
| | - Mohamed-Elamir F Hegazy
- Chemistry of Medicinal Plants Department, National Research Centre 33 El-Bohouth St., Dokki Giza 12622 Egypt +20-233370931 +20-233371635.,Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Staudinger Weg 5 55128 Mainz Germany
| |
Collapse
|
7
|
Rosli MAF, Mediani A, Azizan KA, Baharum SN, Goh HH. UPLC-TOF-MS/MS-Based Metabolomics Analysis Reveals Species-Specific Metabolite Compositions in Pitchers of Nepenthes ampullaria, Nepenthes rafflesiana, and Their Hybrid Nepenthes × hookeriana. FRONTIERS IN PLANT SCIENCE 2021; 12:655004. [PMID: 33968110 PMCID: PMC8096924 DOI: 10.3389/fpls.2021.655004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/15/2021] [Indexed: 05/14/2023]
Abstract
Hybridization is key to the evolution and diversity of plants in nature. Nepenthaceae comprises a family of diverse tropical carnivorous pitcher plant species with extensive hybridization. However, there is no study to date on the metabolite expression of hybrids in this family. We performed a non-targeted metabolomics analysis of the pitchers of two Nepenthes species with different dietary habits, namely, the semi-detritivorous N. ampullaria and carnivorous N. rafflesiana with their hybrid (N. × hookeriana) for a comparative study. The whole-pitcher samples were extracted in methanol:chloroform:water (3:1:1) via sonication-assisted extraction and analyzed using ultra-performance liquid chromatography time-of-flight mass spectrometry (UPLC-TOF-MS) followed by data analysis to profile chemical compositions. A total of 1,441 metabolite features were profiled from the three species in which 43.3% of features in the hybrid samples were not found in either of its parents. The partial least squares discriminant analysis (PLS-DA) found 324 metabolite features with variable in projection (VIP) values greater than one in which 55 features were statistically significant. This showed that the hybrid is closer to N. rafflesiana, which is consistent to the previous study on gene and protein expressions. A total of 105 metabolites were putatively identified with manual searches using public metabolite databases. Phenols were detected to be the most abundant secondary metabolites due to a high flavonoid content, especially in N. rafflesiana. The most abundant feature 476.3s:449.102 was found to be the most significant VIP for distinguishing between the three species as a chemical marker. This is the first study comparing metabolites in the carnivory organs of different Nepenthes species with comprehensive profiling and putative identification. The differential metabolite compositions in the pitchers of different species might have ecological implications with the hybrid showing intermediate phenotype between the parents as well as manifesting unique metabolites. However, there is no clear evidence of metabolites related to the differences in dietary habits between the hybrid and the two parent species.
Collapse
Affiliation(s)
| | | | | | | | - Hoe-Han Goh
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| |
Collapse
|
8
|
Wang Y, Meng D, Sun X, Tao J. [A Prospective Study of Da Vinci Surgical Robotic System with Chest Wall External Nursing Interventions]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2021; 23:487-491. [PMID: 32517453 PMCID: PMC7309541 DOI: 10.3779/j.issn.1009-3419.2020.101.07] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
背景与目的 微创与快速康复是肺癌外科治疗的趋势,而达芬奇机器人在肺癌的治疗及快速康复中起到重要作用。本研究探索在其基础上结合胸壁外敷的护理干预措施,对减少术后胸腔引流量、促进患者快速康复的作用。 方法 对我院2017年11月1日-2018年4月2日行达芬奇机器人肺癌根治术的患者进行随机分组,对照组常规行达芬奇机器人肺癌根治术,术后胸部缠绕腹带。实验组行达芬奇机器人肺癌根治术,术后辅助胸壁局部外敷芒硝进行护理干预。统计相关数据并分析。 结果 实验组的术后总引流量、日均引流量均少于对照组,术后拔管时间短于对照组,住院时间较对照组缩短,但无明显统计学差异。术后第2天疼痛评分上,实验组略高于对照组,无明显统计学差异。对于胸壁厚度≤4 cm的患者,胸壁外敷的护理干预可显著减少术后日均及总引流量,但在拔管时间、住院时间上无明显差异。 结论 胸壁外敷护理干预有利于达芬奇机器人肺癌手术患者的术后恢复,尤其对于胸壁厚度较小的患者,能够减少术后引流量,缩短留管时间,加快出院。进一步改良后有望达到更好的临床效果。
Collapse
Affiliation(s)
- Ying Wang
- The First Affiliated Hospital of Zhejiang University, Hangzhou 310003, China
| | - Di Meng
- The First Affiliated Hospital of Zhejiang University, Hangzhou 310003, China
| | - Xinxing Sun
- The First Affiliated Hospital of Zhejiang University, Hangzhou 310003, China
| | - Jiaqi Tao
- The First Affiliated Hospital of Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
9
|
In vitro plant regeneration and Agrobacterium-mediated genetic transformation of a carnivorous plant, Nepenthes mirabilis. Sci Rep 2020; 10:17482. [PMID: 33060701 PMCID: PMC7566609 DOI: 10.1038/s41598-020-74108-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 08/25/2020] [Indexed: 12/28/2022] Open
Abstract
In nutrient-poor habitats, carnivorous plants have developed novel feeding strategies based on the capture and digestion of prey and the assimilation of prey-derived nutrients by specialized traps. The Nepenthes genus, comprising nearly 160 species, presents a remarkable pitcher-shaped trap, leading to great interest among biologists, but the species of this genus are listed as threatened. In this work, we developed a protocol for reproducing Nepenthes mirabilis through shoot regeneration from calli. The cultivation of stem segments of N. mirabilis on MS medium containing thidiazuron induced organogenic calli after 10 weeks. Subcultured calli exposed to 6-benzylaminopurine showed shoot regeneration in 3 weeks with considerable yields (143 shoots/g of calli). Excised shoots transferred to medium with indole-3-butyric acid allowed rooting in 4 weeks, and rooted plantlets had a 100% survival rate. Based on this method, we also developed an Agrobacterium-mediated genetic transformation protocol using calli as explants and ipt as a positive method of selection. Twelve weeks post infection, regenerated shoots were observed at the surface of calli. Their transgenic status was confirmed by PCR and RT-PCR. In conclusion, this study provides an efficient method for regenerating Nepenthes and the first protocol for its stable genetic transformation, a new tool for studying carnivory.
Collapse
|
10
|
Peng SY, Lin LC, Yang ZW, Chang FR, Cheng YB, Tang JY, Chang HW. Combined Treatment with Low Cytotoxic Ethyl Acetate Nepenthes Extract and Ultraviolet-C Improves Antiproliferation to Oral Cancer Cells via Oxidative Stress. Antioxidants (Basel) 2020; 9:antiox9090876. [PMID: 32948007 PMCID: PMC7555961 DOI: 10.3390/antiox9090876] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 12/22/2022] Open
Abstract
Ultraviolet-C (UVC) irradiation provides an alternative radiotherapy to X-ray. UVC sensitizer from natural products may improve radiotherapy at low cytotoxic side effects. The aim of this study is to assess the regulation for oral cancer cell proliferation by a combined treatment of UVC and our previously reported anti-oral cancer natural product (ethyl acetate extract of Nepenthes adrianii × clipeata; EANA). The detailed possible UVC sensitizing mechanisms of EANA such as effects on cell proliferation, cell cycle, apoptosis, and DNA damage are investigated individually and in combination using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTS) assay, flow cytometry, and western blotting at low dose conditions. In a 24 h MTS assay, the low dose EANA (5 μg/mL) and low dose UVC (12 J/m2) individually show 80% and combinedly 57% cell proliferation in oral cancer Ca9-22 cells; but no cytotoxicity to normal oral HGF-1 cells. Mechanistically, low dose EANA and low dose UVC individually induce apoptosis (subG1 accumulation, pancaspase activation, and caspases 3, 8, 9), oxidative stress (reactive oxygen species, mitochondrial superoxide, and mitochondrial membrane potential depletion), and DNA damage (γH2AX and 8-hydroxy-2′-deoxyguanosine). Moreover, the combined treatment (UVC/EANA) synergistically induces these changes. Combined low dose treatment-induced antiproliferation, apoptosis, oxidative stress, and DNA damage were suppressed by the ROS scavenger N-acetylcysteine. In conclusion, UVC/EANA shows synergistic antiproliferation, oxidative stress, apoptosis, and DNA damage to oral cancer cells in an oxidative stress-dependent manner. With the selective killing properties of low dose EANA and low dose UVC, EANA provides a novel UVC sensitizing agent to improve the anti-oral cancer therapy.
Collapse
Affiliation(s)
- Sheng-Yao Peng
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-Y.P.); (Z.-W.Y.)
| | - Li-Ching Lin
- Department of Radiation Oncology, Chi-Mei Foundation Medical Center, Tainan 71004, Taiwan;
- School of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Chung Hwa University of Medical Technology, Tainan 71703, Taiwan
| | - Zhe-Wei Yang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-Y.P.); (Z.-W.Y.)
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (F.-R.C.); (Y.-B.C.)
| | - Yuan-Bin Cheng
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (F.-R.C.); (Y.-B.C.)
| | - Jen-Yang Tang
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Correspondence: (J.-Y.T.); (H.-W.C.); Tel.: +886-7-312-1101 (ext. 8105) (J.-Y.T.); +886-7-312-1101 (ext. 2691) (H.-W.C.)
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-Y.P.); (Z.-W.Y.)
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (J.-Y.T.); (H.-W.C.); Tel.: +886-7-312-1101 (ext. 8105) (J.-Y.T.); +886-7-312-1101 (ext. 2691) (H.-W.C.)
| |
Collapse
|
11
|
Salazar JR, Loza-Mejía MA, Soto-Cabrera D. Chemistry, Biological Activities and In Silico Bioprospection of Sterols and Triterpenes from Mexican Columnar Cactaceae. Molecules 2020; 25:molecules25071649. [PMID: 32260146 PMCID: PMC7180492 DOI: 10.3390/molecules25071649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 12/21/2022] Open
Abstract
The Cactaceae family is an important source of triterpenes and sterols. The wide uses of those plants include food, gathering, medicinal, and live fences. Several studies have led to the isolation and characterization of many bioactive compounds. This review is focused on the chemistry and biological properties of sterols and triterpenes isolated mainly from some species with columnar and arborescent growth forms of Mexican Cactaceae. Regarding the biological properties of those compounds, apart from a few cases, their molecular mechanisms displayed are not still fully understand. To contribute to the above, computational chemistry tools have given a boost to traditional methods used in natural products research, allowing a more comprehensive exploration of chemistry and biological activities of isolated compounds and extracts. From this information an in silico bioprospection was carried out. The results suggest that sterols and triterpenoids present in Cactaceae have interesting substitution patterns that allow them to interact with some bio targets related to inflammation, metabolic diseases, and neurodegenerative processes. Thus, they should be considered as attractive leads for the development of drugs for the management of chronic degenerative diseases.
Collapse
Affiliation(s)
- Juan Rodrigo Salazar
- Correspondence: (J.R.S.); (M.A.L.-M.); Tel.: +52-55-5278-9500 (J.R.S. & M.A.L.-M.)
| | - Marco A. Loza-Mejía
- Correspondence: (J.R.S.); (M.A.L.-M.); Tel.: +52-55-5278-9500 (J.R.S. & M.A.L.-M.)
| | | |
Collapse
|
12
|
Ethyl Acetate Extract of Nepenthes ventricosa x maxima Exerts Preferential Killing to Oral Cancer Cells. DNA Cell Biol 2019; 38:763-772. [DOI: 10.1089/dna.2018.4436] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
13
|
Tang JY, Peng SY, Cheng YB, Wang CL, Farooqi AA, Yu TJ, Hou MF, Wang SC, Yen CH, Chan LP, Ou-Yang F, Chang HW. Ethyl acetate extract of Nepenthes adrianii x clipeata induces antiproliferation, apoptosis, and DNA damage against oral cancer cells through oxidative stress. ENVIRONMENTAL TOXICOLOGY 2019; 34:891-901. [PMID: 31157515 DOI: 10.1002/tox.22748] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 03/10/2019] [Accepted: 03/14/2019] [Indexed: 05/27/2023]
Abstract
Nepenthes plants are regarded as a kind of Traditional Chinese Medicine for several diseases but its anticancer activity remain unclear. The subject of this study is to evaluate the antiproliferation effects on oral cancer cells by Nepenthes plants using ethyl acetate extract of Nepenthes adrianii x clipeata (EANA). Cell viability was detected using MTS assay. Its detailed mechanisms including cell cycle, apoptosis, oxidative stress, and DNA damage were explored by flow cytometry or western blotting. For 24 hours EANA treatment, five kinds of oral cancer cells (CAL 27, Ca9-22, OECM-1, HSC-3, and SCC9) show IC50 values of cell viability ranging from 8 to 17 μg/mL but the viability of normal oral cells (HGF-1) remains over 80%. Subsequently, CAL 27 and Ca9-22 cells with high sensitivity to EANA were chosen to investigate the detailed mechanism. EANA displays the time course and concentration effects for inducing apoptosis based on flow cytometry (subG1 and annexin V analyses) and western blotting [cleaved poly (ADP-ribose) polymerase (c-PARP)]. Oxidative stress and DNA damage were induced by EANA treatments in oral cancer cells through reactive oxygen species (ROS), mitochondrial membrane potential disruption, mitochondrial superoxide, and γH2AX. All these changes of EANA treatments in oral cancer cells were reverted by the ROS scavenger N-acetylcysteine pretreatment. Therefore, EANA induces preferential killing, apoptosis, and DNA damage against oral cancer cells through oxidative stress.
Collapse
Affiliation(s)
- Jen-Yang Tang
- Faculty of Medicine, Department of Radiation Oncology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Sheng-Yao Peng
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yuan-Bin Cheng
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Lin Wang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan
| | | | - Tzu-Jung Yu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Feng Hou
- Division of Breast Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sheng-Chieh Wang
- College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Leong-Perng Chan
- Department of Otolaryngology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Otorhinolaryngology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Fu Ou-Yang
- Division of Breast Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hsueh-Wei Chang
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
14
|
Tang JY, Yu TJ, Lin LC, Peng SY, Wang CL, Ou-Yang F, Cheng YB, Chang HW. Ethyl acetate extracts of Nepenthes ventricosa x sibuyanensis leaves cause growth inhibition against oral cancer cells via oxidative stress. Onco Targets Ther 2019; 12:5227-5239. [PMID: 31308694 PMCID: PMC6614826 DOI: 10.2147/ott.s190460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 03/11/2019] [Indexed: 11/23/2022] Open
Abstract
Introduction: The genus Nepenthes of the pitcher plants contains several natural and hybrid species that are commonly used in herbal medicine in several countries, but its possible use in cancer applications remains unknown as yet. Methods: In this study, we investigated the antioral cancer properties using ethyl acetate extracts of the Nepenthes hybrid (Nepenthes ventricosa x sibuyanensis), namely EANS. The bioactivity was detected by a MTS-based cell proliferation assay and flow cytometric or Western blot analysis for apoptosis, oxidative stress, and DNA damage. Results: Treatment for 24 hrs of EANS inhibited all three types of oral cancer cells that were tested (Ca9-22, CAL 27, and SCC9), with just a small difference to normal oral cells (HGF-1). This antiproliferation was inhibited by pretreatments with the reactive oxygen species (ROS) scavenger N-acetylcysteine (NAC), and the apoptosis inhibitor (Z-VAD). EANS treatment increased the subG1 population and it also dose- and time-dependently induced annexin V- and pancaspase-detected apoptosis as well as cleaved caspases 3 and 9 overexpressions in the oral cancer cells (Ca9-22). After EANS treatment of Ca9-22 cells, intracellular ROS and mitochondrial superoxide (MitoSOX) were overexpressed and mitochondrial membrane potential (MMP) was disrupted. Moreover, DNA damages such as γH2AX and 8-oxo-2ʹ-deoxyguanosine (8-oxodG) were increased after EANS treatment to Ca9-22 cells. The EANS-induced effects (namely, oxidative stress, apoptosis, and DNA damage) were suppressed by ROS scavenger. Conclusion: Our findings demonstrated that EANS inhibits ROS-mediated proliferation against oral cancer cells.
Collapse
Affiliation(s)
- Jen-Yang Tang
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.,Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Tzu-Jung Yu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Li-Ching Lin
- Department of Radiation Oncology, Chi-Mei Foundation Medical Center, Tainan 71004, Taiwan.,School of Medicine, Taipei Medical University, Taipei 11031, Taiwan.,Department of Optometry, Chung Hwa University of Medical Technology, Tainan 71703, Taiwan
| | - Sheng-Yao Peng
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chun-Lin Wang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu 30062, Taiwan
| | - Fu Ou-Yang
- Division of Breast Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.,Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Yuan-Bin Cheng
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hsueh-Wei Chang
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.,Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
15
|
Ou-Yang F, Tsai IH, Tang JY, Yen CY, Cheng YB, Farooqi AA, Chen SR, Yu SY, Kao JK, Chang HW. Antiproliferation for Breast Cancer Cells by Ethyl Acetate Extract of Nepenthes thorellii x ( ventricosa x maxima). Int J Mol Sci 2019; 20:ijms20133238. [PMID: 31266224 PMCID: PMC6651324 DOI: 10.3390/ijms20133238] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 12/15/2022] Open
Abstract
Extracts from the Nepenthes plant have anti-microorganism and anti-inflammation effects. However, the anticancer effect of the Nepenthes plant is rarely reported, especially for breast cancer cells. Here, we evaluate the antitumor effects of the ethyl acetate extract of Nepenthesthorellii x (ventricosa x maxima) (EANT) against breast cancer cells. Cell viability and flow cytometric analyses were used to analyze apoptosis, oxidative stress, and DNA damage. EANT exhibits a higher antiproliferation ability to two breast cancer cell lines (MCF7 and SKBR3) as compared to normal breast cells (M10). A mechanistic study demonstrates that EANT induces apoptosis in breast cancer cells with evidence of subG1 accumulation and annexin V increment. EANT also induces glutathione (GSH) depletion, resulting in dramatic accumulations of reactive oxygen species (ROS) and mitochondrial superoxide (MitoSOX), as well as the depletion of mitochondrial membrane potential (MMP). These oxidative stresses attack DNA, respectively leading to DNA double strand breaks and oxidative DNA damage in γH2AX and 8-oxo-2′deoxyguanosine (8-oxodG) assays. Overall these findings clearly revealed that EANT induced changes were suppressed by the ROS inhibitor. In conclusion, our results have shown that the ROS-modulating natural product (EANT) has antiproliferation activity against breast cancer cells through apoptosis, oxidative stress, and DNA damage.
Collapse
Affiliation(s)
- Fu Ou-Yang
- Division of Breast Surgery and Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - I-Hsuan Tsai
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jen-Yang Tang
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Ching-Yu Yen
- Department of Oral and Maxillofacial Surgery Chi-Mei Medical Center, Tainan 71004, Taiwan
- School of Dentistry, Taipei Medical University, Taipei 11050, Taiwan
| | - Yuan-Bin Cheng
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 44000, Pakistan
| | - Shu-Rong Chen
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Szu-Yin Yu
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jun-Kai Kao
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
- Pediatric Department, Children's Hospital, Changhua Christian Hospital, Changhua 50006, Taiwan.
- School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Hsueh-Wei Chang
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
| |
Collapse
|
16
|
Cytochrome P450 4A11 inhibition assays based on characterization of lauric acid metabolites. Food Chem Toxicol 2018; 112:205-215. [DOI: 10.1016/j.fct.2017.12.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/19/2017] [Accepted: 12/29/2017] [Indexed: 01/08/2023]
|
17
|
Lu Y, Hao C, He W, Tang C, Shao Z. Experimental research on preventing mechanical phlebitis arising from indwelling needles in intravenous therapy by external application of mirabilite. Exp Ther Med 2017; 15:276-282. [PMID: 29250150 PMCID: PMC5729698 DOI: 10.3892/etm.2017.5347] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/25/2017] [Indexed: 11/21/2022] Open
Abstract
Various types of complications arising from intravenous indwelling needles have become a challenge in clinical care. It is urgent to seek a simple and cost-effective method for prevention and treatment of phlebitis. We investigated the roles of mirabilite in preventing and treating phlebitis caused by intravenous indwelling needles and provide guidance for prevention and treatment of mechanical phlebitis caused by intravenous indwelling needles. A total of 57 healthy congeneric big-eared New Zealand rabbits were randomly divided into 3 groups: blank control, indwelling needle, and group with external application of mirabilite. The ear vein of each rabbit was punctured with an intravenous indwelling needle. The ear vein specimens were taken at 3, 5, and 7 days after indwelling. The hematoxylin and eosin stained pathological tissue sections of the ear veins of the rabbits in each group were observed. The expression levels of IL-1 and IL-6, and tumour necrosis factor-α (TNF-α) in the vascular tissue of the ear veins of the rabbits in each group were detected with the immunofluorescence method. In the blank control group, there was no inflammatory cellular infiltration and no proliferation of fibrous tissue around the vascular wall. With the increase of the indwelling time, proliferation of fibrous tissue in vascular wall, increased inflammatory cellular infiltration and organized thrombus in the vascular tissue occurred in the ear veins of the rabbits in the indwelling needle group and group with external application of mirabilite. Compared with the indwelling needle group, the group with external application of mirabilite had significantly decreased fibrous tissue in the vascular wall and significantly decreased inflammatory cellular infiltration. At the same point in indwelling time, the expression levels of IL-1, IL-6, and TNF-α in the indwelling needle and group with external application of mirabilite were significantly higher than that in the blank control group (P<0.05). The expression levels of IL-1, IL-6, and TNF-α in the group with external application of mirabilite were lower than that in the indwelling needle group (P<0.05). The expression levels of IL-1, IL-6, and TNF-α are positively correlated with the indwelling time within the same group at different points in time. In conclusion, external application of mirabilite can significantly decrease infiltration of venous inflammatory cells of the rabbit ear margin, proliferation of fibrous tissue and thrombosis in the vascular wall, significant decrease the expression levels of IL-1, IL-6, and TNF-α in the mechanical phlebitis caused by intravenous indwelling needles, and decrease the inflammatory responses of the ear veins of rabbits.
Collapse
Affiliation(s)
- Yanyan Lu
- College of Nursing, Jinzhou Medical University, Jinzhou, Liaoning 321001, P.R. China
| | - Chunyan Hao
- College of Nursing, Jinzhou Medical University, Jinzhou, Liaoning 321001, P.R. China
| | - Wubin He
- Biological Treatment of Experimental Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 321001, P.R. China
| | - Can Tang
- Spinal Ward of Bone Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 321001, P.R. China
| | - Zhenya Shao
- Spinal Ward of Bone Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 321001, P.R. China
| |
Collapse
|
18
|
Azab A, Nassar A, Azab AN. Anti-Inflammatory Activity of Natural Products. Molecules 2016; 21:molecules21101321. [PMID: 27706084 PMCID: PMC6274146 DOI: 10.3390/molecules21101321] [Citation(s) in RCA: 239] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/13/2022] Open
Abstract
This article presents highlights of the published literature regarding the anti-inflammatory activities of natural products. Many review articles were published in this regard, however, most of them have presented this important issue from a regional, limited perspective. This paper summarizes the vast range of review and research articles that have reported on the anti-inflammatory effects of extracts and/or pure compounds derived from natural products. Moreover, this review pinpoints some interesting traditionally used medicinal plants that were not investigated yet.
Collapse
Affiliation(s)
- Abdullatif Azab
- Institute of Applied Research, The Galilee Society, P.O. Box 437, 20200 Shefa-Amr, Israel.
| | - Ahmad Nassar
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 84105 Beer-Sheva, Israel.
| | - Abed N Azab
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 84105 Beer-Sheva, Israel.
- Department of Nursing, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 84105 Beer-Sheva, Israel.
| |
Collapse
|