1
|
Wang R, Li R, Yang H, Chen X, Wu L, Zheng X, Jin Y. Flavokawain C inhibits proliferation and migration of liver cancer cells through FAK/PI3K/AKT signaling pathway. J Cancer Res Clin Oncol 2024; 150:117. [PMID: 38460052 PMCID: PMC10924746 DOI: 10.1007/s00432-024-05639-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/01/2024] [Indexed: 03/11/2024]
Abstract
PURPOSE This study investigated the potential applicability and the underlying mechanisms of flavokawain C, a natural compound derived from kava extracts, in liver cancer treatment. METHODS Drug distribution experiment used to demonstrate the preferential tissues enrichment of flavokawain C. Cell proliferation, apoptosis and migration effect of flavokawain C were determined by MTT, colony formation, EdU staining, cell adhesion, transwell, flow cytometry and western blot assay. The mechanism was explored by comet assay, immunofluorescence assay, RNA-seq-based Kyoto encyclopedia of genes and genomes analysis, molecular dynamics, bioinformatics analysis and western blot assay. The anticancer effect of flavokawain C was further confirmed by xenograft tumor model. RESULTS The studies first demonstrated the preferential enrichment of flavokawain C within liver tissues in vivo. The findings demonstrated that flavokawain C significantly inhibited proliferation and migration of liver cancer cells, induced cellular apoptosis, and triggered intense DNA damage along with strong DNA damage response. The findings from RNA-seq-based KEGG analysis, molecular dynamics, bioinformatics analysis, and western blot assay mechanistically indicated that treatment with flavokawain C notably suppressed the FAK/PI3K/AKT signaling pathway in liver cancer cells. This effect was attributed to the induction of gene changes and the binding of flavokawain C to the ATP sites of FAK and PI3K, resulting in the inhibition of their phosphorylation. Additionally, flavokawain C also displayed the strong capacity to inhibit Huh-7-derived xenograft tumor growth in mice with minimal adverse effects. CONCLUSIONS These findings identified that flavokawain C is a promising anticancer agent for liver cancer treatment.
Collapse
Affiliation(s)
- Rong Wang
- National Key Clinical Specialty (General Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Wenzhou Medical University, Wenzhou, 325000, China
| | - Rizhao Li
- Wenzhou Medical University, Wenzhou, 325000, China
| | - Huibing Yang
- Wenzhou Medical University, Wenzhou, 325000, China
| | - Xuejiao Chen
- National Key Clinical Specialty (General Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Wenzhou Medical University, Wenzhou, 325000, China
| | | | | | - Yuepeng Jin
- National Key Clinical Specialty (General Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
2
|
Xiao T, Gao D, Gu X, Zhang Y, Zhu Y, Zhang Z, He Y, Wei L, Li H, Zhou H, Yang C. Flavokawain A ameliorates pulmonary fibrosis by inhibiting the TGF-β signaling pathway and CXCL12/CXCR4 axis. Eur J Pharmacol 2023; 958:175981. [PMID: 37579968 DOI: 10.1016/j.ejphar.2023.175981] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/24/2023] [Accepted: 08/08/2023] [Indexed: 08/16/2023]
Abstract
Idiopathic pulmonary fibrosis is a progressive fibrotic lung disease characterized by myofibroblast proliferation and extracellular matrix deposition that has a high mortality rate and limited therapeutic options. Flavokawain A(FKA) is the major component of chalcone in kava extract. FKA has been reported to inhibit TGF-β1-induced cardiomyocyte fibrosis by suppressing ROS production in A7r5 cells, but the role and mechanism of FKA in pulmonary fibrosis are unknown. In this study, we evaluated the effect of FKA on pulmonary fibrosis using an animal model of bleomycin-induced pulmonary fibrosis and showed that FKA alleviated the development of pulmonary fibrosis in a dose-dependent manner and improved lung function as well as collagen deposition and extracellular matrix accumulation in mice. In vitro studies showed that FKA inhibited myofibroblast activation and lung fibrosis progression by inhibiting TGF-β1/Smad signaling in a dose-dependent manner. In addition, we identified CXCL12 as a potential target of FKA through target prediction. Molecular docking, CETSA(cellular thermal displacement assay) and silver staining assays further demonstrated that FKA could interact with CXCL12 and that FKA could inhibit CXCL12 dimerization in vitro. Further analysis revealed that FKA could inhibit fibroblast activation and reduce extracellular matrix (ECM) production and collagen deposition by blocking CXCL12/CXCR4 signaling, and knocking down CXCR4 expression could weaken the inhibitory effect of FKA on CXCL12/CXCR4 signal transduction. In conclusion, our study showed that FKA inhibited CXCL12/CXCR4 signaling by inhibiting CXCL12 dimerization, blocked the CXCL12/CXCR4 signaling pathway and inhibited the TGF-β1-mediated signaling pathway to ameliorate pulmonary fibrosis, and FKA is a promising therapeutic agent for pulmonary fibrosis.
Collapse
Affiliation(s)
- Ting Xiao
- State Key Laboratory of Medicinal Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China.
| | - Dandi Gao
- State Key Laboratory of Medicinal Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China.
| | - Xiaoting Gu
- State Key Laboratory of Medicinal Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China.
| | - Yanping Zhang
- The Second Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
| | - Yuxin Zhu
- State Key Laboratory of Medicinal Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China
| | - Zihui Zhang
- State Key Laboratory of Medicinal Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Yiming He
- State Key Laboratory of Medicinal Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China
| | - Luqing Wei
- Department of Respiratory and Critical Care Medicine, Tianjin Beichen Hospital, No. 7 Beiyi Road, Beichen District, Tianjin, 300400, China
| | - Hongli Li
- Department of Respiratory and Critical Care Medicine, Tianjin Beichen Hospital, No. 7 Beiyi Road, Beichen District, Tianjin, 300400, China.
| | - Honggang Zhou
- State Key Laboratory of Medicinal Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China.
| | - Cheng Yang
- State Key Laboratory of Medicinal Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China.
| |
Collapse
|
3
|
Liang ST, Chen C, Chen RX, Li R, Chen WL, Jiang GH, Du LL. Michael acceptor molecules in natural products and their mechanism of action. Front Pharmacol 2022; 13:1033003. [PMID: 36408214 PMCID: PMC9666775 DOI: 10.3389/fphar.2022.1033003] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/17/2022] [Indexed: 12/03/2022] Open
Abstract
Purpose: Michael receptor molecules derived from plants are biologically active due to electrophilic groups in their structure. They can target nucleophilic residues on disease-related proteins, with significant therapeutic effects and low toxicity for many diseases. They provide a good option for relevant disease treatment. The aim of this study is to summarize the existing MAMs and their applications, and lay a foundation for the application of Michael receptor molecules in life science in the future. Methods: This review summarizes the published studies on Michael receptor molecules isolated from plants in literature databases such as CNKI, Wanfang Data, PubMed, Web of Science, ScienceDirect, and Wiley. Latin names of plants were verified through https://www.iplant.cn/. All relevant compound structures were verified through PubChem and literature, and illustrated with ChemDraw 20.0. Result: A total of 50 Michael receptor molecules derived from various plants were discussed. It was found that these compounds have similar pharmacological potential, most of them play a role through the Keap1-Nrf2-ARE pathway and the NF-κB pathway, and have biological activities such as antioxidant and anti-inflammatory. They can be used to treat inflammatory diseases and tumors. Conclusion: The Michael receptor molecule has electrophilicity due to its unsaturated aldehyde ketone structure, which can combine with nucleophilic residues on the protein to form complexes and activate or inhibit the protein pathway to play a physiological role. Michael receptor molecules can regulate the Keap1-Nrf2-ARE pathway and the NF-κB pathway. Michael receptor molecules can be used to treat diseases such as inflammation, cancer, oxidative stress, etc.
Collapse
Affiliation(s)
- Song-Ting Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chu Chen
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
| | - Rui-Xin Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wen-Li Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gui-Hua Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lei-Lei Du
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
High DNAJA4 expression correlates with poor survival outcomes in breast cancer. REV ROMANA MED LAB 2022. [DOI: 10.2478/rrlm-2022-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Background: DNAJA4 (PRO1472) is a heat shock protein that has been associated with several types of cancers, including breast cancer. We aimed to reveal the protein expression, clinical outcomes, and regulatory mechanisms of DNAJA4 gene in breast cancer by employing tissue microarrays, transcriptomic datasets, and in-silico tools.
Methods: DNAJA4 protein expression and its clinical implications were evaluated by immunohistochemistry assay (normals = 32; tumors = 121). RNA-seq and DNA microarray datasets were analyzed by using breast cancer gene-expression miner (Bc-GenExMiner v4.8) to estimate the survival probabilities of breast cancer patients. DNAJA4 promoter methylation level was analyzed in clinical samples by UALCAN in-silico tool (normals = 97; tumors = 793).
Results: DNAJA4 protein expression is significantly high in clinical breast cancer samples compared to the normal samples (P = 0.016). High DNAJA4 mRNA expression is correlated with poor overall survival (OS), disease-free survival (DFS), and distant metastasis-free survival (DMFS) in breast cancer patients (P < 0.05). Mutations or copy number variations of DNAJA4 are uncommon in clinical samples. Reduced promoter methylation was observed in clinical breast cancer samples.
Conclusion: We suggest DNAJA4 expression as a new biomarker candidate for breast cancer. Promoter hypomethylation could be an important epigenetic factor in the upregulation of DNAJA4 expression in breast cancer.
Collapse
|
5
|
Hanif N, Iswantini D, Hioki Y, Murni A, Kita M, Tanaka J. Flavokawains, Plant-derived Chalcones, Inhibit Differentiation of Murine Pre-adipocytes. CHEM LETT 2022. [DOI: 10.1246/cl.210615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Novriyandi Hanif
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia
- Tropical Biopharmaca Research Center, IPB University, Bogor 16128, Indonesia
| | - Dyah Iswantini
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia
- Tropical Biopharmaca Research Center, IPB University, Bogor 16128, Indonesia
| | - Yusuke Hioki
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Anggia Murni
- Tropical Biopharmaca Research Center, IPB University, Bogor 16128, Indonesia
| | - Masaki Kita
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Junichi Tanaka
- Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| |
Collapse
|
6
|
Rajendran P, Alzahrani AM, Priya Veeraraghavan V, Ahmed EA. Anti-Apoptotic Effect of Flavokawain A on Ochratoxin-A-Induced Endothelial Cell Injury by Attenuation of Oxidative Stress via PI3K/AKT-Mediated Nrf2 Signaling Cascade. Toxins (Basel) 2021; 13:toxins13110745. [PMID: 34822529 PMCID: PMC8621493 DOI: 10.3390/toxins13110745] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 12/21/2022] Open
Abstract
This study investigates the endothelial protective activity of flavokawain A (FKA) against oxidative stress induced by ochratoxin A (OTA), which acts as a mycotoxin, and its primary mechanisms in in vitro models. Reactive oxygen species, in general, regulate oxidative stress that significantly contributes to the pathophysiology of endothelial dysfunctions. OTA exerts toxicity through inflammation and the accumulation of ROS. This research is aimed at exploring the defensive function of FKA against the endothelial injury triggered by OTA through the Nrf2 pathway regulated by PI3K/AKT. OTA exposure significantly increased the nuclear translocation of NFκB, whereas we found a reduction in inflammation via NFκB inhibition with FKA treatment. FKA increased the PI3K and AKT phosphorylation, which may lead to the stimulation of antioxidative and antiapoptotic signaling in HUVECs. It also upregulated the phosphorylation of Nrf2 and a concomitant expression of antioxidant genes, such as HO-1, NQO-1, and γGCLC, depending on the dose under the oxidative stress triggered by OTA. Knockdown of Nrf2 through small interfering RNA (siRNA) impedes the protective role of FKA against the endothelial toxicity induced by OTA. In addition, FKA enhanced Bcl2 activation while suppressing apoptosis marker proteins. Therefore, FKA is regarded as a potential agent against endothelial oxidative stress caused by the deterioration of the endothelium. The research findings showed that FKA plays a key role in activating the p-PI3K/p-AKT and Nrf2 signaling pathways, while suppressing caspase-dependent apoptosis.
Collapse
Affiliation(s)
- Peramaiyan Rajendran
- Department of Biological Sciences, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia; (A.M.A.); (E.A.A.)
- Correspondence: ; Tel.: +97-135-899-543
| | - Abdullah M. Alzahrani
- Department of Biological Sciences, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia; (A.M.A.); (E.A.A.)
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College, Saveetha University, Chennai 600077, India;
| | - Emad A. Ahmed
- Department of Biological Sciences, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia; (A.M.A.); (E.A.A.)
- Laboratory of Molecular Physiology, Zoology Department, Faculty of Science, Assiut University, Assiut 71515, Egypt
| |
Collapse
|
7
|
Tea Polyphenols Enhanced the Antioxidant Capacity and Induced Hsps to Relieve Heat Stress Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9615429. [PMID: 34413929 PMCID: PMC8369192 DOI: 10.1155/2021/9615429] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 07/09/2021] [Indexed: 12/23/2022]
Abstract
Keap1-Nrf2-ARE and heat shock proteins (Hsps) are important endogenous protection mechanisms initiated by heat stress to play a double protective role for cell adaptation and survival. H9C2 cells and 80 300-day-old specific pathogen-free chickens were randomly divided into the control and tea polyphenol groups and used to establish a heat stress model in vitro and in vivo. This task was conducted to explore the protection and mechanism of tea polyphenols in relieving thermal injury. A supplement with 10 μg/mL tea polyphenols could effectively relieve the heat damage of H9C2 cells at 42°C. Accordingly, weaker granular degeneration, vacuolar degeneration, and nucleus deep staining were shown. A strong antioxidant capacity was manifested in the upregulation of the total antioxidant capacity (T-AOC) (at 5 h, P < 0.05), Hemeoxygenase-1 mRNA (at 2 h, P < 0.01), superoxide dismutase (SOD) (at 2, 3, and 5 h, P < 0.05), and Nrf2 (at 0 and 5 h, P < 0.01). A high expression of Hsps was reflected in CRYAB at 3 h; Hsp27 at 0, 2, and 3 h (P < 0.01); and Hsp70 at 3 and 5 h (P < 0.01). The supplement with 0.2 g/L tea polyphenols in the drinking water also had a good effect in alleviating the heat stress damage of the myocardial cells of hens at 38°C. Accordingly, light pathological lesions and downregulation of the myocardial injury-related indicators (LDH, CK, CK-MB, and TNF-α) were shown. The mechanism was related to the upregulation of T-AOC (at 0 h, P < 0.05), GSH-PX (at 0.5 d, P < 0.01), SOD (at 0.5 d), and Nrf2 (at 0 d with P < 0.01 and 2 d with P < 0.05) and the induced expression of CRYAB (at 0.5 and 2 d), Hsp27 (at 0, 0.5, and 5 d), and Hsp70 (at 0 and 0.5 d). In conclusion, the tea polyphenols enhanced the antioxidant capacity and induced Hsps to relieve heat stress injury.
Collapse
|
8
|
Nutraceutical Screening in a Zebrafish Model of Muscular Dystrophy: Gingerol as a Possible Food Aid. Nutrients 2021; 13:nu13030998. [PMID: 33808773 PMCID: PMC8003371 DOI: 10.3390/nu13030998] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/04/2021] [Accepted: 03/16/2021] [Indexed: 12/18/2022] Open
Abstract
Duchenne muscular dystrophy (DMD), caused by mutations in the dystrophin gene, is an inherited neuromuscular disorder that causes loss of muscle mass and motor skills. In the era of genomic medicine, there is still no known cure for DMD. In clinical practice, there is a growing awareness of the possible importance of nutrition in neuromuscular diseases. This is mostly the result of patients’ or caregivers’ empirical reports of how active substances derived from food have led to improved muscle strength and, thus, better quality of life. In this report, we investigate several nutraceutical principles in the sapje strain of zebrafish, a validated model of DMD, in order to identify possible natural products that, if supplemented in the diet, might improve the quality of life of DMD patients. Gingerol, a constituent of fresh ginger, statistically increased the locomotion of mutant larvae and upregulated the expression of heme oxygenase 1, a target gene for therapy aimed at improving dystrophic symptoms. Although three other compounds showed a partial positive effect on locomotor and muscle structure phenotypes, our nutraceutical screening study lent preliminary support to the efficacy and safety only of gingerol. Gingerol could easily be proposed as a dietary supplement in DMD.
Collapse
|
9
|
Tugcu G, Kırmızıbekmez H, Aydın A. The integrated use of in silico methods for the hepatotoxicity potential of Piper methysticum. Food Chem Toxicol 2020; 145:111663. [PMID: 32827561 DOI: 10.1016/j.fct.2020.111663] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/27/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023]
Abstract
Herbal products as supplements and therapeutic intervention have been used for centuries. However, their toxicities are not completely evaluated and the mechanisms are not clearly understood. Dried rhizome of the plant kava (Piper methysticum) is used for its anxiolytic, and sedative effects. The drug is also known for its hepatotoxicity potential. Major constituents of the plant were identified as kavalactones, alkaloids and chalcones in previous studies. Kava hepatotoxicity mechanism and the constituent that causes the toxicity have been debated for decades. In this paper, we illustrated the use of computational tools for the hepatotoxicity of kava constituents. The proposed mechanisms and major constituents that are most probably responsible for the toxicity have been scrutinized. According to the experimental and prediction results, the kava constituents play a substantial role in hepatotoxicity by some means or other via glutathione depletion, CYP inhibition, reactive metabolite formation, mitochondrial toxicity and cyclooxygenase activity. Some of the constituents, which have not been tested yet, were predicted to involve mitochondrial membrane potential, caspase-3 stimulation, and AhR activity. Since Nrf2 activation could be favorable for prevention of hepatotoxicity, we also suggest that these compounds should undergo testing given that they were predicted not to be activating Nrf2. Among the major constituents, alkaloids appear to be the least studied and the least toxic group in general. The outcomes of the study could help to appreciate the mechanisms and to prioritize the kava constituents for further testing.
Collapse
Affiliation(s)
- Gulcin Tugcu
- Yeditepe University, Faculty of Pharmacy, Department of Toxicology, 34755, Atasehir, Istanbul, Turkey
| | - Hasan Kırmızıbekmez
- Yeditepe University, Faculty of Pharmacy, Department of Pharmacognosy, 34755, Atasehir, Istanbul, Turkey
| | - Ahmet Aydın
- Yeditepe University, Faculty of Pharmacy, Department of Toxicology, 34755, Atasehir, Istanbul, Turkey.
| |
Collapse
|
10
|
Kao YT, Chen YS, Tang KW, Lee JC, Tseng CH, Tzeng CC, Yen CH, Chen YL. Discovery of 4-Anilinoquinolinylchalcone Derivatives as Potential NRF2 Activators. Molecules 2020; 25:molecules25143133. [PMID: 32650607 PMCID: PMC7396997 DOI: 10.3390/molecules25143133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/06/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023] Open
Abstract
Activation of nuclear factor erythroid-2-related factor 2 (NRF2) has been proven to be an effective means to prevent the development of cancer, and natural curcumin stands out as a potent NRF2 activator and cancer chemopreventive agent. In this study, we have synthesized a series of 4-anilinoquinolinylchalcone derivatives, and used a NRF2 promoter-driven firefly luciferase reporter stable cell line, the HaCaT/ARE cells, to screen a panel of these compounds. Among them, (E)-3-{4-[(4-acetylphenyl)amino]quinolin-2-yl}-1-(4-fluorophenyl)prop-2-en-1-one (13b) significantly increased NRF2 activity in the HaCaT cell with a half maximal effective concentration (EC50) value of 1.95 μM. Treatment of compound 13b upregulated HaCaT cell NRF2 expression at the protein level. Moreover, the mRNA level of NRF2 target genes, heme oxygenase-1 (HO-1), glutamate-cysteine ligase catalytic subunit (GCLC), and glucose-6-phosphate dehydrogenase (G6PD) were significantly increased in HaCaT cells upon the compound 13b treatment. The molecular docking results exhibited that the small molecule 13b is well accommodated by the bound region of Kelch-like ECH-associated protein 1 (Keap1)-Kelch and NRF2 through stable hydrogen bonds and hydrophobic interaction, which contributed to the enhancement of affinity and stability between the ligand and receptor. Compound 13b has been identified as the lead compound for further structural optimization.
Collapse
Affiliation(s)
- Yu-Tse Kao
- Department of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-T.K.); (C.-C.T.)
| | - Yi-Siao Chen
- Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Kai-Wei Tang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (K.-W.T.); (C.-H.T.)
| | - Jin-Ching Lee
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chih-Hua Tseng
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (K.-W.T.); (C.-H.T.)
| | - Cherng-Chyi Tzeng
- Department of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-T.K.); (C.-C.T.)
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (C.-H.Y.); (Y.-L.C.); Tel.: +886-7-3121101 (ext. 2684) (C.-H.Y.); Fax: +886-7-3125339 (C.-H.Y.)
| | - Yeh-Long Chen
- Department of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-T.K.); (C.-C.T.)
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (C.-H.Y.); (Y.-L.C.); Tel.: +886-7-3121101 (ext. 2684) (C.-H.Y.); Fax: +886-7-3125339 (C.-H.Y.)
| |
Collapse
|
11
|
High-Throughput Analysis of Flavokawains in Kava (Piper methysticum Forst. f.) Roots, Chips and Powders and Correlations with Their Acetonic Extracts Absorbance. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01781-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Yiannis C, Huang K, Tran AN, Zeng C, Dao E, Baselyous O, Mithwani MA, Paolini R, Cirillo N, Yap T, McCullough M, Celentano A. Protective effect of kava constituents in an in vitro model of oral mucositis. J Cancer Res Clin Oncol 2020; 146:1801-1811. [DOI: 10.1007/s00432-020-03253-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 05/08/2020] [Indexed: 12/19/2022]
|
13
|
Celentano A, Tran A, Testa C, Thayanantha K, Tan-Orders W, Tan S, Syamal M, McCullough MJ, Yap T. The protective effects of Kava (Piper Methysticum) constituents in cancers: A systematic review. J Oral Pathol Med 2019; 48:510-529. [PMID: 31172600 DOI: 10.1111/jop.12900] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Kava is a beverage made from the ground roots of the plant Piper Methysticum and has long-held a significant place within Pacific island communities. Active compounds were extracted from kava, and secondary metabolites include kavalactones, chalcones, cinnamic acid derivatives and flavanones. It is thought that components of kava may exert an antiproliferative effect through cell cycle arrest and promotion of apoptosis. METHODS We conducted a systematic review to summarize available evidence of the anticancer effects of kava components and investigate their potential use for oral squamous cell carcinoma (OSCC) treatment. Eligible studies were identified through a comprehensive search of OVID EMBASE, OVID MEDLINE and Web of Science, as at April 2018. RESULTS Of 39 papers that met the inclusion criteria, 32 included in vitro models and 13 included animal studies. A total of 26 different cancers were assessed with 32 studies solely assessing epithelial cancers, 6 mesenchymal cancers and 1 study including both. There was only one report assessing an OSCC cell line. Antiproliferative properties were demonstrated in 32 out of 39 papers. The most researched constituent of kava was flavokavain B followed by flavokavain A. Both were associated with increased expression of pro-apoptotic proteins and decreased expression of anti-apoptotic proteins. Further, they were associated with a dose-dependent reduction of angiogenesis. CONCLUSION There was heterogeneity of study models and methods of investigation across the studies identified. Components of kava appear to present an area of interest with chemotherapeutic potential in cancer prevention and treatment, particularly for epithelial neoplasms. To date, there is a paucity of literature of the utility of kava components in the prevention and treatment of oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Antonio Celentano
- Melbourne Dental School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew Tran
- Melbourne Dental School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Claire Testa
- Melbourne Dental School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Krishen Thayanantha
- Melbourne Dental School, The University of Melbourne, Melbourne, Victoria, Australia
| | - William Tan-Orders
- Melbourne Dental School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Stephanie Tan
- Melbourne Dental School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Mitali Syamal
- Melbourne Dental School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Michael J McCullough
- Melbourne Dental School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Tami Yap
- Melbourne Dental School, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
14
|
Kavalactones and Flavokavins Profiles Contribute to Quality Assessment of Kava (Piper methysticum G. Forst.), the Traditional Beverage of the Pacific. BEVERAGES 2019. [DOI: 10.3390/beverages5020034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Kava (Piper methysticum) is increasingly traded internationally and there is need for a rapid method to analyze kava raw material before export. The objectives of the present study were: (i) to develop a simple and robust protocol for high throughput simultaneous quantification of kavalactones (KLs) and flavokavins (FKs) in kava and (ii) to assess its potential for quality control. Methysticin; dihydromethysticin; kavain; desmethoxyyangonin; dihydrokavain; yangonin; and flavokavin A, B and C were quantified using HPTLC in acetonic extracts of 174 kava varieties. UHPLC analysis was conducted on a subset of six varieties representing the genetic variation of the species. The genetically distinct groups of nobles, two-day and wichmannii varieties were clearly differentiated and multivariate analyses of UHPLC and HPTLC data were congruent. Noble varieties have significantly low FKs/KLs (0.13) and high kavain/flavokavin B (K/FKB = 7.31). Two-day and wichmannii varieties are characterized by high FKs/KLs (0.36, 0.21) and low K/FKB (1.5, 1.7). A high-throughput HPTLC protocol was developed with a total analytical time of 50 min for 20 samples and only 10 mL of mobile phase. The use of acetone, sonication and two different detection wavelengths improves the accuracy compared to previous HPLC studies and confirms that kava varieties exhibit distinct chemotypes clearly differentiated by their FKs/KLs profiles. These results will strengthen the use of Codex Alimentarius regional standards.
Collapse
|
15
|
Hseu YC, Yang TY, Li ML, Rajendran P, Mathew DC, Tsai CH, Lin RW, Lee CC, Yang HL. Chalcone flavokawain A attenuates TGF-β1-induced fibrotic pathology via inhibition of ROS/Smad3 signaling pathways and induction of Nrf2/ARE-mediated antioxidant genes in vascular smooth muscle cells. J Cell Mol Med 2018; 23:775-788. [PMID: 30549180 PMCID: PMC6349172 DOI: 10.1111/jcmm.13973] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 09/28/2018] [Accepted: 09/28/2018] [Indexed: 12/21/2022] Open
Abstract
TGF‐β1 plays a crucial role in the pathogenesis of vascular fibrotic diseases. Chalcones are reportedly cancer chemo‐preventive food components that are rich in fruits and vegetables. In this study, flavokawain A (FKA, 2‐30 μM), a naturally occurring chalcone in kava extracts, was evaluated for its anti‐fibrotic and antioxidant properties in TGF‐β1‐stimulated vascular smooth muscle (A7r5) cells, as well as its underlying molecular mechanism of action. Immunofluorescence data showed down‐regulated F‐actin expression with FKA treatment in TGF‐β1‐stimulated A7r5 cells. Western blotting demonstrated that FKA treatment suppressed the expression of α‐SMA and fibronectin proteins under TGF‐β1 stimulation. Findings from wound‐healing and invasion experiments showed that FKA inhibits TGF‐β1‐mediated migration and invasion. Western blotting demonstrated that treatment with FKA down‐regulated MMP‐9 and MMP‐2 and up‐regulated TIMP‐1 expression. Further evidence showed that FKA decreased TGF‐β1‐mediated phosphorylation and the transcriptional activity of Smad3. TGF‐β1‐induced excessive ROS production was remarkably reversed by FKA treatment in A7r5 cells, and inhibition by FKA or N‐acetylcysteine (NAC) substantially diminished TGF‐β1‐induced p‐Smad3 activation and wound‐healing migration. Interestingly, FKA‐mediated antioxidant properties were associated with increased nuclear translocation of Nrf2 and elevated antioxidant response element (ARE) luciferase activity. Activation of Nrf2/ARE signaling was accompanied by the induction of HO‐1, NQO‐1 and γ‐GCLC genes in FKA‐treated A7r5 cells. Notably, silencing of Nrf2 (siRNA transfection) significantly diminished the FKA‐mediated antioxidant effects, indicating that FKA may inhibit TGF‐β1‐induced fibrosis through suppressing ROS generation in A7r5 cells. Our results suggested that anti‐fibrotic and antioxidant activities of the chalcone flavokawain A may contribute to the development of food‐based chemo‐preventive drugs for fibrotic diseases.
Collapse
Affiliation(s)
- You-Cheng Hseu
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.,Research Center of Chinese Herbal Medicine, China Medical University, Taichung, Taiwan
| | - Ting-Yu Yang
- Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| | - Mei-Ling Li
- Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| | - Peramaiyan Rajendran
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| | - Dony Chacko Mathew
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| | - Chia-Hsuan Tsai
- Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| | - Ruei-Wan Lin
- Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| | - Chuan-Chen Lee
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Hsin-Ling Yang
- Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
16
|
Iranshahy M, Iranshahi M, Abtahi SR, Karimi G. The role of nuclear factor erythroid 2-related factor 2 in hepatoprotective activity of natural products: A review. Food Chem Toxicol 2018; 120:261-276. [DOI: 10.1016/j.fct.2018.07.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 12/15/2022]
|
17
|
The Keap1/Nrf2-ARE Pathway as a Pharmacological Target for Chalcones. Molecules 2018; 23:molecules23071803. [PMID: 30037040 PMCID: PMC6100069 DOI: 10.3390/molecules23071803] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/18/2018] [Accepted: 07/18/2018] [Indexed: 01/14/2023] Open
Abstract
Chalcones have shown a broad spectrum of biological activities with clinical potential against various diseases. The biological activities are mainly attributed to the presence in the chalcones of the α,β-unsaturated carbonyl system, perceived as a potential Michael acceptor. Chalcones could activate the Kelch-like ECH-associated protein 1 (Keap1)/Nuclear factor erythroid 2-related factor 2 (Nrf2) pathway through a Michael addition reaction with the cysteines of Keap1, which acts as a redox sensor and negative regulator of Nrf2. This modification allows the dissociation of Nrf2 from the cytoplasmic complex with Keap1 and its nuclear translocation. At this level, Nrf2 binds to the antioxidant response element (ARE) and activates the expression of several detoxification, antioxidant and anti-inflammatory genes as well as genes involved in the clearance of damaged proteins. In this regard, the Keap1/Nrf2–ARE pathway is a new potential pharmacological target for the treatment of many chronic diseases. In this review we summarize the current progress in the study of Keap1/Nrf2–ARE pathway activation by natural and synthetic chalcones and their potential pharmacological applications. Among the pharmacological activities highlighted, anti-inflammatory activity was more evident than others, suggesting a multi-target Michael acceptor mechanism for the chalcones involving key regulators of the Nrf2 and nuclear factor- κB (NF-κB) pathways.
Collapse
|
18
|
Takac P, Kello M, Pilatova MB, Kudlickova Z, Vilkova M, Slepcikova P, Petik P, Mojzis J. New chalcone derivative exhibits antiproliferative potential by inducing G2/M cell cycle arrest, mitochondrial-mediated apoptosis and modulation of MAPK signalling pathway. Chem Biol Interact 2018; 292:37-49. [PMID: 29981726 DOI: 10.1016/j.cbi.2018.07.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/04/2018] [Accepted: 07/03/2018] [Indexed: 02/07/2023]
Abstract
In the present study, we investigated antiproliferative activity of seven newly synthesized chalcone derivatives. Among tested compounds, (2 E)-3-(acridin-9-yl)-1-(2,6-dimethoxyphenyl)prop-2-en-1-one (1C) was the most potent with IC50 = 4.1 μmol/L in human colorectal HCT116 cells and was selected for further studies. Inhibition of cell proliferation was associated with cell cycle arrest in G2/M phase and dysregulation of α, α1 and β5 tubulins. Moreover, 1C caused disruption of the mitochondrial membrane potential and increased number of cells with sub G0/G1 DNA content which is considered as marker of apoptosis. Apoptosis was confirmed by annexin V/PI and AO/PI staining. Furthermore, we found increased concentration of cytochrome c, Smac/Diablo and increased caspase-3 and caspase-9 activity, cleavage of PARP as well as activation of DNA repair mechanisms in 1C-treated HCT116 cancer cells. Moreover this chalcone derivative up-regulated proapoptotic Bax expression and down-regulated antiapoptotic Bcl-2 and Bcl-xL expression. Additionally, 1C treatment led to modulation of MAPKs and Akt signalling pathways. In conclusion, our data showed ability of 1C to suppress cancel cell growth and provide the rationale for further in vivo study.
Collapse
Affiliation(s)
- Peter Takac
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Safarik University, 04011, Kosice, Slovak Republic
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Safarik University, 04011, Kosice, Slovak Republic
| | - Martina Bago Pilatova
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Safarik University, 04011, Kosice, Slovak Republic
| | - Zuzana Kudlickova
- Department of Organic Chemistry, Faculty of Science, Pavol Jozef Safarik University, 040 01, Kosice, Slovak Republic; Department of Chemistry, Biochemistry and Biophysics, University of Veterinary Medicine and Pharmacy, 04181, Košice, Slovak Republic
| | - Maria Vilkova
- Department of Organic Chemistry, Faculty of Science, Pavol Jozef Safarik University, 040 01, Kosice, Slovak Republic
| | - Pavlina Slepcikova
- Department of Organic Chemistry, Faculty of Science, Pavol Jozef Safarik University, 040 01, Kosice, Slovak Republic
| | - Peter Petik
- Department of Pathology, Pavol Jozef Safarik University, 040 01, Kosice, Slovak Republic
| | - Jan Mojzis
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Safarik University, 04011, Kosice, Slovak Republic.
| |
Collapse
|
19
|
Liu Z, Ha US, Yu K, Wu C, Yokoyama N, Zi X. Kavalactone yangonin induces autophagy and sensitizes bladder cancer cells to flavokawain A and docetaxel via inhibition of the mTOR pathway. J Biomed Res 2017; 31:408-418. [PMID: 28959001 PMCID: PMC5706433 DOI: 10.7555/jbr.31.20160160] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Consumption of kava (Piper methysticum Forst) has been linked to reduced cancer risk in the South Pacific Islands. Kavalactones are major bioactive components in kava root extracts, which have recently demonstrated anti-cancer activities. However, molecular mechanisms of kavalactones' anti-cancer action remain largely unknown. We have identified two kavalactones, yangonin and 5′ 6'-dehydrokawain, as potent inducers of autophagic cell death in bladder cancer cells. The effect of yangonin inducing autophagy is associated with increased expression of beclin and ATG5. In addition, yangonin increases the expression of LKB1 and decreases the phosphorylation of Akt, PRAS40, rpS6, p70S6K and 4E-BP1, leading to increased binding of 4E-BP1 to m7 GTP. The growth inhibitory effects of yangonin were attenuated inTSC1 or LKB1 knockout mouse embryonic fibroblasts, suggesting that TSC1 and LKB1 expression may contribute to optimal growth inhibition by yangonin. Furthermore, yangonin reduces the viability of bladder cancer cell lines derived from different stages of human bladder cancer, and acts synergistically with apoptosis-inducing agents such as docetaxel and flavokawain A. Our results support a novel anti-bladder cancer mechanism by yangonin and further studies are needed to assess the potential use of yangonin for bladder cancer prevention and treatment
Collapse
Affiliation(s)
- Zhongbo Liu
- Departments of Urology,University of California, Irvine, Orange, CA 92868, USA
| | - U-Syn Ha
- Departments of Urology,University of California, Irvine, Orange, CA 92868, USA
| | - Ke Yu
- Departments of Urology,University of California, Irvine, Orange, CA 92868, USA
| | - Chunli Wu
- Departments of Urology,University of California, Irvine, Orange, CA 92868, USA
| | - Noriko Yokoyama
- Departments of Urology,University of California, Irvine, Orange, CA 92868, USA
| | - Xiaolin Zi
- Departments of Urology,Pharmacology and Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, CA 92868, USA
| |
Collapse
|
20
|
Yeap SK, Abu N, Akthar N, Ho WY, Ky H, Tan SW, Alitheen NB, Kamarul T. Gene Expression Analysis Reveals the Concurrent Activation of Proapoptotic and Antioxidant-Defensive Mechanisms in Flavokawain B-Treated Cervical Cancer HeLa Cells. Integr Cancer Ther 2016; 16:373-384. [PMID: 27458249 PMCID: PMC5759947 DOI: 10.1177/1534735416660383] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Flavokawain B (FKB) is known to possess promising anticancer abilities. This is demonstrated in various cancer cell lines including HeLa cells. Cervical cancer is among the most widely diagnosed cancer among women today. Though FKB has been shown to be effective in treating cancer cells, the exact molecular mechanism is still unknown. This study is aimed at understanding the effects of FKB on HeLa cells using a microarray-based mRNA expression profiling and proteome profiling of stress-related proteins. The results of this study suggest that FKB induced cell death through p21-mediated cell cycle arrest and activation of p38. However, concurrent activation of antioxidant-related pathways and iron sequestration pathway followed by activation of ER-resident stress proteins clearly indicate that FKB failed to induce apoptosis in HeLa cells via oxidative stress. This effect implies that the protection of HeLa cells by FKB from H2O2–induced cell death is via neutralization of reactive oxygen species.
Collapse
Affiliation(s)
| | - Nadiah Abu
- 1 Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,2 Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Nadeem Akthar
- 3 Universiti Malaysia Pahang, LebuhrayaTunRazak, Kuantan, Pahang
| | - Wan Yong Ho
- 4 The University of Nottingham Malaysia Campus, JalanBroga, Semenyih, Selangor, Malaysia
| | - Huynh Ky
- 5 Cantho University, CanTho City, Vietnam
| | - Sheau Wei Tan
- 1 Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | | |
Collapse
|