1
|
Thompson W, Papoutsakis ET. Similar but distinct: The impact of biomechanical forces and culture age on the production, cargo loading, and biological efficacy of human megakaryocytic extracellular vesicles for applications in cell and gene therapies. Bioeng Transl Med 2023; 8:e10563. [PMID: 37693047 PMCID: PMC10486331 DOI: 10.1002/btm2.10563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/18/2023] [Accepted: 06/01/2023] [Indexed: 09/12/2023] Open
Abstract
Megakaryocytic extracellular vesicles (MkEVs) promote the growth and megakaryopoiesis of hematopoietic stem and progenitor cells (HSPCs) largely through endogenous miR-486-5p and miR-22-3p cargo. Here, we examine the impact of biomechanical force and culture age/differentiation on the formation, properties, and biological efficacy of MkEVs. We applied biomechanical force to Mks using two methods: shake flask cultures and a syringe pump system. Force increased MkEV production in a magnitude-dependent manner, with similar trends emerging regardless of whether flow cytometry or nanoparticle tracking analysis was used for MkEV counting. Both methods produced MkEVs that were relatively depleted of miR-486-5p and miR-22-3p cargo. However, while the shake flask-derived MkEVs were correspondingly less effective in promoting megakaryocytic differentiation of HSPCs, the syringe pump-derived MkEVs were more effective in doing so, suggesting the presence of unique, unidentified miRNA cargo components. Higher numbers of MkEVs were also produced by "older" Mk cultures, though miRNA cargo levels and MkEV bioactivity were unaffected by culture age. A reduction in MkEV production by Mks derived from late-differentiating HSPCs was also noted. Taken together, our results demonstrate that biomechanical force has an underappreciated and deeply influential role in MkEV biology, though that role may vary significantly depending on the nature of the force. Given the ubiquity of biomechanical force in vivo and in biomanufacturing, this phenomenon must be grappled with before MkEVs can attain clinical relevance.
Collapse
Affiliation(s)
- Will Thompson
- Department of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDelawareUSA
| | | |
Collapse
|
2
|
Kizilyer A, Singh MV, Singh VB, Suwunnakorn S, Palis J, Maggirwar SB. Inhibition of Tropomyosin Receptor Kinase A Signaling Negatively Regulates Megakaryopoiesis and induces Thrombopoiesis. Sci Rep 2019; 9:2781. [PMID: 30808933 PMCID: PMC6391490 DOI: 10.1038/s41598-019-39385-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/05/2018] [Indexed: 02/07/2023] Open
Abstract
Neurotrophin signaling modulates the differentiation and function of mature blood cells. The expression of neurotrophin receptors and ligands by hematopoietic and stromal cells of the bone marrow indicates that neurotrophins have the potential to regulate hematopoietic cell fate decisions. This study investigates the role of neurotrophins and Tropomyosin receptor kinases (Trk) in the development of megakaryocytes (MKs) and their progeny cells, platelets. Results indicate that primary human MKs and MK cells lines, DAMI, Meg-01 and MO7e express TrkA, the primary receptor for Nerve Growth Factor (NGF) signaling. Activation of TrkA by NGF enhances the expansion of human MK progenitors (MKPs) and, to some extent, MKs. Whereas, inhibition of TrkA receptor by K252a leads to a 50% reduction in the number of both MKPs and MKs and is associated with a 3-fold increase in the production of platelets. In order to further confirm the role of TrkA signaling in platelet production, TrkA deficient DAMI cells were generated using CRISPR-Cas9 technology. Comparative analysis of wild-type and TrkA-deficient Dami cells revealed that loss of TrkA signaling induced apoptosis of MKs and increased platelet production. Overall, these findings support a novel role for TrkA signaling in platelet production and highlight its potential as therapeutic target for Thrombocytopenia.
Collapse
Affiliation(s)
- Ayse Kizilyer
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States of America
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Meera V Singh
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Vir B Singh
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Sumanun Suwunnakorn
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States of America
| | - James Palis
- Department of Pediatrics, Hematology and Oncology, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Sanjay B Maggirwar
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States of America.
| |
Collapse
|
3
|
Vijey P, Posorske B, Machlus KR. In vitro culture of murine megakaryocytes from fetal liver-derived hematopoietic stem cells. Platelets 2018; 29:583-588. [PMID: 30047825 DOI: 10.1080/09537104.2018.1492107] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Megakaryocytes (MKs) are specialized precursor cells committed to producing and proliferating platelets. In a cytoskeletal-driven process, mature MKs generate platelets by releasing thin cytoplasmic extensions, named proplatelets, into the sinusoids. Due to knowledge gaps in this process and mounting clinical demand for non-donor-based platelet sources, investigators are successfully developing artificial culture systems to recreate the environment of platelet biogenesis. Nevertheless, drawbacks in current methods entail elaborate procedures for stem cell enrichment, extensive growth periods, low MK yield, and poor proplatelet production. We propose a simple, robust method of primary MK culture that utilizes fetal livers from pregnant mice. Our technique reduces expansion time to 4 days, and generates ~15,000-20,000 MKs per liver. Approximately, 20-50% of these MKs produce structurally dense, high-quality proplatelets. In this review, we outline our method of MK culture and isolation.
Collapse
Affiliation(s)
- Prakrith Vijey
- a Division of Hematology , Brigham and Women's Hospital , Boston , MA , USA
| | - Benjamin Posorske
- a Division of Hematology , Brigham and Women's Hospital , Boston , MA , USA
| | - Kellie R Machlus
- a Division of Hematology , Brigham and Women's Hospital , Boston , MA , USA.,b Department of Medicine , Harvard Medical School , Boston , MA , USA
| |
Collapse
|
4
|
Abstract
Platelet transfusions total >2.17 million apheresis-equivalent units per year in the United States and are derived entirely from human donors, despite clinically significant immunogenicity, associated risk of sepsis, and inventory shortages due to high demand and 5-day shelf life. To take advantage of known physiological drivers of thrombopoiesis, we have developed a microfluidic human platelet bioreactor that recapitulates bone marrow stiffness, extracellular matrix composition,micro-channel size, hemodynamic vascular shear stress, and endothelial cell contacts, and it supports high-resolution live-cell microscopy and quantification of platelet production. Physiological shear stresses triggered proplatelet initiation, reproduced ex vivo bone marrow proplatelet production, and generated functional platelets. Modeling human bone marrow composition and hemodynamics in vitro obviates risks associated with platelet procurement and storage to help meet growing transfusion needs.
Collapse
|
5
|
Lee EJ, Godara P, Haylock D. Biomanufacture of human platelets for transfusion: Rationale and approaches. Exp Hematol 2014; 42:332-46. [DOI: 10.1016/j.exphem.2014.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/07/2014] [Accepted: 02/10/2014] [Indexed: 12/21/2022]
|
6
|
Machlus KR, Italiano JE. The incredible journey: From megakaryocyte development to platelet formation. ACTA ACUST UNITED AC 2013; 201:785-96. [PMID: 23751492 PMCID: PMC3678154 DOI: 10.1083/jcb.201304054] [Citation(s) in RCA: 544] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Circulating blood platelets are specialized cells that prevent bleeding and minimize blood vessel injury. Large progenitor cells in the bone marrow called megakaryocytes (MKs) are the source of platelets. MKs release platelets through a series of fascinating cell biological events. During maturation, they become polyploid and accumulate massive amounts of protein and membrane. Then, in a cytoskeletal-driven process, they extend long branching processes, designated proplatelets, into sinusoidal blood vessels where they undergo fission to release platelets. Given the need for platelets in many pathological situations, understanding how this process occurs is an active area of research with important clinical applications.
Collapse
Affiliation(s)
- Kellie R Machlus
- Hematology Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | |
Collapse
|
7
|
Abstract
Platelet transfusions are often a life-saving intervention, and the use of platelet transfusions has been increasing. Donor-derived platelet availability can be challenging. Compounding this concern are additional limitations of donor-derived platelets, including variability in product unit quality and quantity, limited shelf life and the risks of product bacterial contamination, other transfusion-transmitted infections, and immunologic reactions. Because of these issues, there has been an effort to develop strategies to generate platelets from exogenously generated precursor cells. If successful, such platelets have the potential to be a safer, more consistent platelet product, while reducing the necessity for human donations. Moreover, ex vivo-generated autologous platelets or precursors may be beneficial for patients who are refractory to allogeneic platelets. For patients with inherited platelet disorders, ex vivo-generated platelets offer the promise of a treatment via the generation of autologous gene-corrected platelets. Theoretically, ex vivo-generated platelets also offer targeted delivery of ectopic proteins to sites of vascular injury. This review summarizes the current, state-of-the-art methodologies in delivering a clinically relevant ex vivo-derived platelet product, and it discusses significant challenges that must be overcome for this approach to become a clinical reality.
Collapse
|
8
|
Panuganti S, Schlinker AC, Lindholm PF, Papoutsakis ET, Miller WM. Three-stage ex vivo expansion of high-ploidy megakaryocytic cells: toward large-scale platelet production. Tissue Eng Part A 2013. [PMID: 23190353 DOI: 10.1089/ten.tea.2011.0111] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) have been cultured using a wide variety of cytokines to promote differentiation into megakaryocytic cells (Mks), the precursors to platelets. Greater Mk DNA content, or ploidy, has been correlated with increased platelet release. Gradients of pH, pO2, and signaling factors regulate megakaryopoiesis in the bone marrow niche. In this study, we demonstrate that a 3-phase culture process with increasing pH and pO2 and different cytokine cocktails greatly increases megakaryocyte production. CD34(+) HSPCs were first cultured at 5% O2 and pH 7.2 with a cytokine cocktail previously shown to promote Mk progenitor production. At day 5, cells were shifted to 20% O2 and pH 7.4 and maintained in 1 of 17 cytokine cocktails identified using a 2(4) factorial design of experiments method to evaluate the effects of interleukin (IL)-3, IL-6, IL-9, and high- or low-dose stem cell factor (SCF), in conjunction with thrombopoietin (Tpo) and IL-11, on expansion of mature Mks from progenitors. The combination of Tpo, high-dose SCF, IL-3, IL-9, and IL-11 best promoted Mk expansion. IL-3 greatly increased total cell fold expansion, but this was partially offset by lower Mk purity. IL-9 promoted CD41 and CD42b expression. High-dose (100 ng/mL) SCF increased Mk production and ploidy. Different commercial media and IL-3 sources substantially impacted differentiation, and X-VIVO 10 serum-free media best supported mature Mk expansion. Shifting from pH 7.4 to pH 7.6 at day 7 increased Mk production by 30%. Treatment with nicotinamide at day 7 or day 8 more than doubled the fraction of high-ploidy (>4N) Mks. Ultimately, the 3-phase culture system gave rise to 44.5±8.1 Mks and 8.5±3.1 high-ploidy Mks per input HSPC. Further optimization was required to improve platelet production. Using Iscove's modified Dulbecco's medium (IMDM)+20% BSA, insulin and transferin (BIT) 9500 Serum Substitute greatly improved the frequency and quality of Mk proplatelet extensions without affecting Mk expansion, commitment, or polyploidization in the 3-phase process. Mks cultured in IMDM+20% BIT 9500 gave rise to platelets with functional activity similar to that of fresh platelets from normal donors, as evidenced by basal tubulin distribution and the expression of surface markers and spreading in response to platelet agonists.
Collapse
Affiliation(s)
- Swapna Panuganti
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | | | | | | | | |
Collapse
|
9
|
Lambert MP, Sullivan S, Poncz M. Making Platelets Ex Vivo. Platelets 2013. [DOI: 10.1016/b978-0-12-387837-3.00063-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Emmrich S, Henke K, Hegermann J, Ochs M, Reinhardt D, Klusmann JH. miRNAs can increase the efficiency of ex vivo platelet generation. Ann Hematol 2012; 91:1673-84. [PMID: 22763947 DOI: 10.1007/s00277-012-1517-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 06/12/2012] [Indexed: 01/01/2023]
Abstract
The process of megakaryopoiesis culminates in the release of platelets, the pivotal cellular component for hemostasis and wound healing. The regulatory architecture including the modulatory role of microRNAs, which underlies megakaryocytic maturation and platelet formation, is incompletely understood, precluding the ex vivo generation of sufficient platelet numbers for transfusion medicine. We derived a highly efficient differentiation protocol to produce mature polyploid megakaryocytes and functional platelets from CD34⁺-hematopoietic stem and progenitor cells by comparing previously published approaches. Our megakaryocytic culture conditions using the cytokines SCF, TPO, IL-9, and IL-6 include nicotinamide and Rho-associated kinase (ROCK) inhibitor Y27632 as contextual additives. The potency of our novel megakaryocytic differentiation protocol was validated using cord blood and peripheral blood human hematopoietic stem and progenitor cells. Using this novel megakaryocytic differentiation protocol, we characterized the modulatory capacity of several miRNAs highly expressed in normal megakaryocytic cells or malignant blasts from patients with megakaryoblastic leukemia. Overexpression of candidate microRNAs was achieved by lentiviral transduction of CD34⁺-hematopoietic stem and progenitor cells prior to differentiation. We revealed miR-125b and miR-660 as enhancers of polyploidization, as well as platelet output of megakaryocytes. The oncogene miR-125b markedly expanded the number of megakaryocytes during in vitro culture. Conversely, the miR-23a/27a/24-2 cluster, which is highly expressed in normal megakaryocytes, blocked maturation and platelet formation. Our study on the utilization of microRNAs in conjunction with a highly efficient differentiation protocol constitutes another step towards ex vivo platelet manufacturing on a clinically relevant scale.
Collapse
Affiliation(s)
- Stephan Emmrich
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | |
Collapse
|
11
|
Ivanovic Z, Vlaski M. Ex Vivo Expansion of Stem and Progenitor Cells Using Thrombopoietin. STEM CELLS AND CANCER STEM CELLS, VOLUME 8 2012. [DOI: 10.1007/978-94-007-4798-2_33] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|