1
|
Zhu X, Ma D, Yang B, An Q, Zhao J, Gao X, Zhang L. Research progress of engineered mesenchymal stem cells and their derived exosomes and their application in autoimmune/inflammatory diseases. Stem Cell Res Ther 2023; 14:71. [PMID: 37038221 PMCID: PMC10088151 DOI: 10.1186/s13287-023-03295-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 03/22/2023] [Indexed: 04/12/2023] Open
Abstract
Autoimmune/inflammatory diseases affect many people and are an important cause of global incidence and mortality. Mesenchymal stem cells (MSCs) have low immunogenicity, immune regulation, multidifferentiation and other biological characteristics, play an important role in tissue repair and immune regulation and are widely used in the research and treatment of autoimmune/inflammatory diseases. In addition, MSCs can secrete extracellular vesicles with lipid bilayer structures under resting or activated conditions, including exosomes, microparticles and apoptotic bodies. Among them, exosomes, as the most important component of extracellular vesicles, can function as parent MSCs. Although MSCs and their exosomes have the characteristics of immune regulation and homing, engineering these cells or vesicles through various technical means, such as genetic engineering, surface modification and tissue engineering, can further improve their homing and other congenital characteristics, make them specifically target specific tissues or organs, and improve their therapeutic effect. This article reviews the advanced technology of engineering MSCs or MSC-derived exosomes and its application in some autoimmune/inflammatory diseases by searching the literature published in recent years at home and abroad.
Collapse
Affiliation(s)
- Xueqing Zhu
- School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Dan Ma
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Baoqi Yang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Qi An
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Jingwen Zhao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xinnan Gao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Liyun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China.
| |
Collapse
|
2
|
Kouroupis D, Sanjurjo-Rodriguez C, Jones E, Correa D. Mesenchymal Stem Cell Functionalization for Enhanced Therapeutic Applications. TISSUE ENGINEERING PART B-REVIEWS 2018; 25:55-77. [PMID: 30165783 DOI: 10.1089/ten.teb.2018.0118] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
IMPACT STATEMENT Culture expansion of MSCs has detrimental effects on various cell characteristics and attributes (e.g., phenotypic changes and senescence), which, in addition to inherent interdonor variability, negatively impact the standardization and reproducibility of their therapeutic potential. The identification of innate distinct functional MSC subpopulations, as well as the description of ex vivo protocols aimed at maintaining phenotypes and enhancing specific functions have the potential to overcome these limitations. The incorporation of those approaches into cell-based therapy would significantly impact the field, as more reproducible clinical outcomes may be achieved.
Collapse
Affiliation(s)
- Dimitrios Kouroupis
- 1 Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, Florida.,2 Diabetes Research Institute & Cell Transplant Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Clara Sanjurjo-Rodriguez
- 3 Leeds Institute of Rheumatic and Musculoskeletal Disease, Saint James University Hospital, University of Leeds, Leeds, United Kingdom.,4 Department of Biomedical Sciences, Medicine and Physiotherapy, University of A Coruña, CIBER-BBN-Institute of Biomedical Research of A Coruña (INIBIC), A Coruña, Spain
| | - Elena Jones
- 3 Leeds Institute of Rheumatic and Musculoskeletal Disease, Saint James University Hospital, University of Leeds, Leeds, United Kingdom
| | - Diego Correa
- 1 Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, Florida.,2 Diabetes Research Institute & Cell Transplant Center, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
3
|
Ma Z, Zhang YP, Liu W, Yan G, Li Y, Shields LBE, Walker M, Chen K, Huang W, Kong M, Lu Y, Brommer B, Chen X, Xu XM, Shields CB. A controlled spinal cord contusion for the rhesus macaque monkey. Exp Neurol 2016; 279:261-273. [PMID: 26875994 DOI: 10.1016/j.expneurol.2016.02.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 02/07/2016] [Accepted: 02/09/2016] [Indexed: 01/23/2023]
Abstract
Most in vivo spinal cord injury (SCI) experimental models use rodents. Due to the anatomical and functional differences between rodents and humans, reliable large animal models, such as non-human primates, of SCI are critically needed to facilitate translation of laboratory discoveries to clinical applications. Here we report the establishment of a controlled spinal contusion model that produces severity-dependent functional and histological deficits in non-human primates. Six adult male rhesus macaque monkeys underwent mild to moderate contusive SCI using 1.0 and 1.5mm tissue displacement injuries at T9 or sham laminectomy (n=2/group). Multiple assessments including motor-evoked potential (MEP), somatosensory-evoked potential (SSEP), MR imaging, and monkey hindlimb score (MHS) were performed. Monkeys were sacrificed at 6 months post-injury, and the lesion area was examined for cavitation, axons, myelin, and astrocytic responses. The MHS demonstrated that both the 1.0 and 1.5mm displacement injuries created discriminative neurological deficits which were severity-dependent. The MEP response rate was depressed after a 1.0mm injury and was abolished after a 1.5mm injury. The SSEP response rate was slightly decreased following both the 1.0 and 1.5mm SCI. MRI imaging demonstrated an increase in T2 signal at the lesion site at 3 and 6months, and diffusion tensor imaging (DTI) tractography showed interrupted fiber tracts at the lesion site at 4h and at 6 months post-SCI. Histologically, severity-dependent spinal cord atrophy, axonal degeneration, and myelin loss were found after both injury severities. Notably, strong astrocytic gliosis was not observed at the lesion penumbra in the monkey. In summary, we describe the development of a clinically-relevant contusive SCI model that produces severity-dependent anatomical and functional deficits in non-human primates. Such a model may advance the translation of novel SCI repair strategies to the clinic.
Collapse
Affiliation(s)
- Zhengwen Ma
- Department of Laboratory Animal Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Yi Ping Zhang
- Norton Neuroscience Institute, Norton Healthcare, Louisville, KY 40202, USA
| | - Wei Liu
- Department of Laboratory Animal Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Guofeng Yan
- Department of Laboratory Animal Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Yao Li
- Department of Laboratory Animal Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Lisa B E Shields
- Norton Neuroscience Institute, Norton Healthcare, Louisville, KY 40202, USA
| | - Melissa Walker
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kemin Chen
- Department of Radiology, Ruijing Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Wei Huang
- Department of Radiology, Ruijing Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Maiying Kong
- Department of Bioinformatics and Biostatistics, SPHIS, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Yi Lu
- Department of Neurosurgery, Harvard Medical School, Boston, MA 02115, USA
| | - Benedikt Brommer
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Xuejin Chen
- Department of Laboratory Animal Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China.
| | - Xiao-Ming Xu
- Department of Laboratory Animal Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China; Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Christopher B Shields
- Norton Neuroscience Institute, Norton Healthcare, Louisville, KY 40202, USA; Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| |
Collapse
|
4
|
Park JS, Suryaprakash S, Lao YH, Leong KW. Engineering mesenchymal stem cells for regenerative medicine and drug delivery. Methods 2015; 84:3-16. [PMID: 25770356 PMCID: PMC4526354 DOI: 10.1016/j.ymeth.2015.03.002] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/19/2015] [Accepted: 03/02/2015] [Indexed: 12/14/2022] Open
Abstract
Researchers have applied mesenchymal stem cells (MSC) to a variety of therapeutic scenarios by harnessing their multipotent, regenerative, and immunosuppressive properties with tropisms toward inflamed, hypoxic, and cancerous sites. Although MSC-based therapies have been shown to be safe and effective to a certain degree, the efficacy remains low in most cases when MSC are applied alone. To enhance their therapeutic efficacy, researchers have equipped MSC with targeted delivery functions using genetic engineering, therapeutic agent incorporation, and cell surface modification. MSC can be genetically modified virally or non-virally to overexpress therapeutic proteins that complement their innate properties. MSC can also be primed with non-peptidic drugs or magnetic nanoparticles for enhanced efficacy and externally regulated targeting, respectively. Furthermore, MSC can be functionalized with targeting moieties to augment their homing toward therapeutic sites using enzymatic modification, chemical conjugation, or non-covalent interactions. These engineering techniques are still works in progress, requiring optimization to improve the therapeutic efficacy and targeting effectiveness while minimizing any loss of MSC function. In this review, we will highlight the advanced techniques of engineering MSC, describe their promise and the challenges of translation into clinical settings, and suggest future perspectives on realizing their full potential for MSC-based therapy.
Collapse
Affiliation(s)
- Ji Sun Park
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States
| | - Smruthi Suryaprakash
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States
| | - Yeh-Hsing Lao
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States.
| |
Collapse
|