1
|
Shorokhova M, Pugovkina N, Zemelko V, Lyublinskaya O, Grinchuk T. Long-Term Cryopreservation May Cause Genomic Instability and the Premature Senescence of Cells. Int J Mol Sci 2024; 25:1467. [PMID: 38338745 PMCID: PMC10855830 DOI: 10.3390/ijms25031467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Cryopreservation is an essential step for utilizing various cell types for biological research and medical purposes. At the same time, there is a lack of data on the effect of cryopreservation, especially when prolonged, on the karyotype of cells. In the present work, we analyzed the genetic stability of cells subjected to a cryopreservation procedure. The objects were immortalized Chinese hamster lung fibroblasts (CHL V-79 RJK line) and human endometrial mesenchymal stem/stromal cells (eMSCs). We showed that short-term cryopreservation in liquid nitrogen for up to 6 months did not affect the karyotype stability of CHL V-79 RJK and eMSCs. On the contrary, karyotyping of G-banded metaphase chromosomes in cells underwent 10-year cryopreservation, which revealed genomic instability in both cell lines associated with the variability of chromosome number in cells, random chromosomal rearrangements, and condensation disorder in homologs. In addition, we found out that long-term cryopreservation of eMSCs does not affect the expression of their typical surface markers and morphology, but results in a significant reduction in proliferative potential and early manifestation of cellular senescence features upon eMSCs culturing. Thus, we concluded that the long-term cryopreservation of cells of different types and biological origin can lead to irreversible changes of their karyotype and acceleration of cellular senescence.
Collapse
Affiliation(s)
- Mariia Shorokhova
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretskii pr. 4, St. Petersburg 194064, Russia; (N.P.); (V.Z.); (O.L.); (T.G.)
| | | | | | | | | |
Collapse
|
2
|
Chetty S, Yarani R, Swaminathan G, Primavera R, Regmi S, Rai S, Zhong J, Ganguly A, Thakor AS. Umbilical cord mesenchymal stromal cells-from bench to bedside. Front Cell Dev Biol 2022; 10:1006295. [PMID: 36313578 PMCID: PMC9597686 DOI: 10.3389/fcell.2022.1006295] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/27/2022] [Indexed: 11/27/2022] Open
Abstract
In recent years, mesenchymal stromal cells (MSCs) have generated a lot of attention due to their paracrine and immuno-modulatory properties. mesenchymal stromal cells derived from the umbilical cord (UC) are becoming increasingly recognized as having increased therapeutic potential when compared to mesenchymal stromal cells from other sources. The purpose of this review is to provide an overview of the various compartments of umbilical cord tissue from which mesenchymal stromal cells can be isolated, the differences and similarities with respect to their regenerative and immuno-modulatory properties, as well as the single cell transcriptomic profiles of in vitro expanded and freshly isolated umbilical cord-mesenchymal stromal cells. In addition, we discuss the therapeutic potential and biodistribution of umbilical cord-mesenchymal stromal cells following systemic administration while providing an overview of pre-clinical and clinical trials involving umbilical cord-mesenchymal stromal cells and their associated secretome and extracellular vesicles (EVs). The clinical applications of umbilical cord-mesenchymal stromal cells are also discussed, especially in relation to obstacles and potential solutions for their effective translation from bench to bedside.
Collapse
Affiliation(s)
- Shashank Chetty
- Interventional Radiology Innovation at Stanford (IRIS), Stanford University, Department of Radiology, Palo Alto, CA, United States
| | - Reza Yarani
- Interventional Radiology Innovation at Stanford (IRIS), Stanford University, Department of Radiology, Palo Alto, CA, United States
- Translational Type 1 Diabetes Research, Department of Clinical, Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Ganesh Swaminathan
- Interventional Radiology Innovation at Stanford (IRIS), Stanford University, Department of Radiology, Palo Alto, CA, United States
| | - Rosita Primavera
- Interventional Radiology Innovation at Stanford (IRIS), Stanford University, Department of Radiology, Palo Alto, CA, United States
| | - Shobha Regmi
- Interventional Radiology Innovation at Stanford (IRIS), Stanford University, Department of Radiology, Palo Alto, CA, United States
| | - Sravanthi Rai
- Interventional Radiology Innovation at Stanford (IRIS), Stanford University, Department of Radiology, Palo Alto, CA, United States
| | - Jim Zhong
- Department of Diagnostic and Interventional Radiology, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Abantika Ganguly
- Interventional Radiology Innovation at Stanford (IRIS), Stanford University, Department of Radiology, Palo Alto, CA, United States
| | - Avnesh S Thakor
- Interventional Radiology Innovation at Stanford (IRIS), Stanford University, Department of Radiology, Palo Alto, CA, United States
| |
Collapse
|
3
|
Nguyen MQ, Bui HTH, Tuyet ANT, Nhung TTH, Hoang DM, Liem NT, Hoang VT. Comparative Bioactivity Analysis for Off-the-Shelf and Culture-Rescued Umbilical Cord-Derived Mesenchymal Stem/Stromal Cells in a Xeno- and Serum-Free Culture System. Cell Transplant 2021; 30:9636897211039441. [PMID: 34538123 PMCID: PMC8718162 DOI: 10.1177/09636897211039441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We recently reported a standardized xeno- and serum-free culture platform to isolate and expand umbilical cord-derived mesenchymal stem/stromal cells (UC-MSCs). Comparing populations from the same passage, cells that were cryopreserved and culture-rescued exhibited characteristics similar to those of their fresh counterparts, continuously cultured cells without interim cryopreservation. The culture rescue after thawing allowed for the cells to be fully recovered. However, since it would be more cost-effective and timesaving if cryopreserved cells can be used as an off-the-shelf product, we set out to compare the bioactivity of freshly thawed UC-MSCs versus culture-rescued UC-MSCs of the same batch that were recultured for an additional passage under our xeno- and serum-free protocol. UC-MSCs showed high viability in both the freshly thawed and the re-cultured group. Both populations displayed a similar proliferation capacity which is indicated by a comparable population doubling time and colony-forming ability. Both freshly thawed and culture-rescued UC-MSCs expressed the characteristic immunophenotype and were capable of differentiating into osteocytes, chondrocytes, and adipocytes. On the other hand, culture-rescued cells appeared to be more potent in immunosuppression than freshly thawed cells. In conclusion, freshly thawed and culture-rescued cell products share comparable bioactivity in cell growth and proliferation, immunophenotype, and differentiation potential. However, the culture-rescued cells that were allowed to grow for an additional passage appear to display a more favorable immunomodulatory potential when compared to their freshly thawed parent cells.
Collapse
Affiliation(s)
- Minh Quang Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology (VRISG), Vinmec Healthcare System, Hanoi, Vietnam.,VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Hue T H Bui
- Vinmec Research Institute of Stem Cell and Gene Technology (VRISG), Vinmec Healthcare System, Hanoi, Vietnam.,Vinmec Institute of Applied Science and Regenerative Medicine (VIASRM), Vinmec Healthcare System, Hanoi, Vietnam
| | - Anh Nguyen Thi Tuyet
- Vinmec Research Institute of Stem Cell and Gene Technology (VRISG), Vinmec Healthcare System, Hanoi, Vietnam.,Vinmec Institute of Applied Science and Regenerative Medicine (VIASRM), Vinmec Healthcare System, Hanoi, Vietnam
| | - Trinh Thi Hong Nhung
- Vinmec Research Institute of Stem Cell and Gene Technology (VRISG), Vinmec Healthcare System, Hanoi, Vietnam.,Vinmec Institute of Applied Science and Regenerative Medicine (VIASRM), Vinmec Healthcare System, Hanoi, Vietnam
| | - Duc M Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology (VRISG), Vinmec Healthcare System, Hanoi, Vietnam
| | - Nguyen Thanh Liem
- Vinmec Research Institute of Stem Cell and Gene Technology (VRISG), Vinmec Healthcare System, Hanoi, Vietnam
| | - Van T Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology (VRISG), Vinmec Healthcare System, Hanoi, Vietnam
| |
Collapse
|
4
|
Rallapalli S, Guhathakurta S, Bishi DK, Subbarayan R, Mathapati S, Korrapati PS. A critical appraisal of humanized alternatives to fetal bovine serum for clinical applications of umbilical cord derived mesenchymal stromal cells. Biotechnol Lett 2021; 43:2067-2083. [PMID: 34499291 DOI: 10.1007/s10529-021-03180-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 08/19/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE The study is aimed to verify the possibility of using humanized alternatives to fetal bovine serum (FBS) such as umbilical cord blood plasma (CBP) and AB+ plasma to support the long-term growth of mesenchymal stromal cells (MSCs) derived from the umbilical cord. We hypothesized that umbilical CBP would be a potential substitute to FBS, especially for small scale autologous clinical transplantations. METHODS The MSCs were cultured for six consecutive passages to evaluate xeno-free media's ability to support long-term growth. Cell proliferation rates, colony-forming-unit (CFU) efficiency and population doublings of expanded MSCs, were investigated. Ex vivo expanded MSCs were further characterized using flow cytometry and quantitative PCR. The impact of cryopreservation and composition of cryomedium on phenotype, viability of MSC was also assessed. RESULTS Our results on cell proliferation, colony-forming unit efficiency suggested that the expansion of the cells was successfully carried out in media supplemented with humanized alternatives. MSCs showed lower CFU counts in FBS (~ 25) than humanized alternatives (~ 35). The gene expression analysis revealed that transcripts showed significant differential expression by two to three folds in the FBS group compared with MSCs grown in medium with humanized alternatives (p < 0.05). In addition, MSCs grown in a medium with FBS had more osteogenic activity, a signature of unwanted differentiation. The majority of ex vivo expanded MSCs at early and late passages expressed CD44+, CD73+, CD105+, CD90+, and CD166+ in all the experimental groups tested (~ 90%). In contrast to the other MSC surface markers, expression levels of STRO-1+ (~ 21-10%) and TNAP+ (~ 29-11%) decreased with the increase in passage number for MSCs cultured in a FBS-supplemented medium (p < 0.05). CONCLUSION Our results established that CBP supported culture of umbilical cord tissue-derived MSCs and is a safer Xeno free replacement to FBS. The use of CBP also enables the storage of umbilical cord tissue derived MSCs in patient-specific conditions to minimize adverse events if cells are delivered directly to the patient.
Collapse
Affiliation(s)
- Suneel Rallapalli
- Biological Material Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, India
| | | | - Dillip Kumar Bishi
- Department of Biotechnology, Rama Devi Women's University, Bhubaneswar, India
| | | | - Santosh Mathapati
- Translational Health Science and Technology Institute, Faridabad, India
| | - Purna Sai Korrapati
- Biological Material Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, India.
| |
Collapse
|
5
|
Arutyunyan IV, Kananykhina EY, Elchaninov AV, Fatkhudinov TK. Influence of Sucrose on the Efficiency of Cryopreservation of Human Umbilical Cord-Derived Multipotent Stromal Cells with the Use of Various Penetrating Cryoprotectants. Bull Exp Biol Med 2021; 171:150-155. [PMID: 34050836 DOI: 10.1007/s10517-021-05187-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Indexed: 02/07/2023]
Abstract
We studied the influence of sucrose applied in combination with different concentrations of penetrating cryoprotectants (DMSO, ethylene glycol, and glycerol) on the efficiency of cryopreservation of umbilical cord-derived multipotent stromal cells (MSC). The results indicate that these cells can be cryopreserved with the use of 5-10% DMSO or ethylene glycol with equal efficiency; addition of 0.2 M sucrose does not affect cell survival after thawing. The efficiency of glycerol as a cryoprotectant increases with increasing its concentration from 5 to 10%, but remains significantly lower than the efficiency of DMSO or ethylene glycol. Addition of sucrose to a final concentration of 0.2 M increases the efficiency of glycerol. The efficiency of combination of 10% glycerol and sucrose was comparable with that of combinations of DMSO and ethylene glycol with sucrose. The mechanism of the observed enhancement is apparently related to the influence of sucrose on the dynamic properties of the lipid membranes and facilitation of glycerol diffusion into the cells.
Collapse
Affiliation(s)
- I V Arutyunyan
- V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
| | | | - A V Elchaninov
- V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
- N. I. Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - T Kh Fatkhudinov
- Research Institute of Human Morphology, Moscow, Russia.
- The Peoples' Friendship University of Russia (RUDN University), Moscow, Russia.
| |
Collapse
|
6
|
Noronha NC, Mizukami A, Orellana MD, Oliveira MC, Covas DT, Swiech K, Malmegrim KC. Hypoxia priming improves in vitro angiogenic properties of umbilical cord derived-mesenchymal stromal cells expanded in stirred-tank bioreactor. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.107949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
7
|
De Santis GC, de Macedo LD, Orellana MD, Innocentini LMAR, Ferrari TC, Ricz HMA, Caruso SR, Fernandes TR, Covas DT. Mesenchymal stromal cells administration for osteonecrosis of the jaw caused by bisphosphonate: report of two cases. Acta Oncol 2020; 59:789-792. [PMID: 32079438 DOI: 10.1080/0284186x.2020.1730004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Gil Cunha De Santis
- Center for Cell-Based Therapy of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Leandro Dorigan de Macedo
- Dentistry and Stomatology Division, Hospital das Clínicas de Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Maristela Delgado Orellana
- Center for Cell-Based Therapy of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Tatiane Cristina Ferrari
- Dentistry and Stomatology Division, Hospital das Clínicas de Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Hilton Marcos Alves Ricz
- Dentistry and Stomatology Division, Hospital das Clínicas de Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Sâmia Rigotto Caruso
- Center for Cell-Based Therapy of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Taísa Risque Fernandes
- Center for Cell-Based Therapy of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Dimas Tadeu Covas
- Center for Cell-Based Therapy of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Internal Medicine, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
8
|
Mizukami A, Pereira Chilima TD, Orellana MD, Neto MA, Covas DT, Farid SS, Swiech K. Technologies for large-scale umbilical cord-derived MSC expansion: Experimental performance and cost of goods analysis. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.02.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
9
|
Wang L, Zhu CY, Ma DX, Gu ZY, Xu CC, Wang FY, Chen JG, Liu CJ, Guan LX, Gao R, Gao Z, Fang S, Zhuo DJ, Liu SF, Gao CJ. Efficacy and safety of mesenchymal stromal cells for the prophylaxis of chronic graft-versus-host disease after allogeneic hematopoietic stem cell transplantation: a meta-analysis of randomized controlled trials. Ann Hematol 2018; 97:1941-1950. [PMID: 29947972 DOI: 10.1007/s00277-018-3384-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/24/2018] [Indexed: 12/15/2022]
Abstract
A meta-analysis of randomized controlled trials (RCTs) was conducted to evaluate the efficacy and safety of mesenchymal stromal cells (MSCs) for the prophylaxis of chronic graft-versus-host disease (cGVHD) in patients with hematological malignancies undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT). Six studies involving 365 patients were included. The pooled results showed that MSCs significantly reduced the incidence of cGVHD (risk ratio [RR] 0.63, 95% confidence interval [CI] 0.46 to 0.86, P = 0.004). Favorable prophylactic effects of MSCs on cGVHD were observed with umbilical cord-derived, high-dose, and late-infusion MSCs, while bone marrow-derived, low-dose, and coinfused MSCs did not confer beneficial prophylactic effects. In addition, MSC infusion did not increase the risk of primary disease relapse and infection (RR 1.02, 95% CI 0.70 to 1.50, P = 0.913; RR 0.89, 95% CI 0.44 to 1.81, P = 0.752; respectively). Moreover, there was an apparent trend toward increased overall survival (OS) in the MSC group compared with that in the control group (RR 1.13, 95% CI 0.98 to 1.29, P = 0.084). In conclusion, this meta-analysis demonstrated that MSC infusion is an effective and safe prophylactic strategy for cGVHD in patients with hematological malignancies undergoing allo-HSCT.
Collapse
Affiliation(s)
- Li Wang
- Department of Hematology, Laoshan Branch of No. 401 Hospital of Chinese People's Liberation Army (PLA), 109 Laoshan Road, Qingdao, 266101, China.,Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Cheng-Ying Zhu
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - De-Xun Ma
- Department of Hematology, Laoshan Branch of No. 401 Hospital of Chinese People's Liberation Army (PLA), 109 Laoshan Road, Qingdao, 266101, China
| | - Zhen-Yang Gu
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Chang-Chun Xu
- Department of Hematology, Laoshan Branch of No. 401 Hospital of Chinese People's Liberation Army (PLA), 109 Laoshan Road, Qingdao, 266101, China
| | - Fei-Yan Wang
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Ji-Gang Chen
- Department of Hematology, Laoshan Branch of No. 401 Hospital of Chinese People's Liberation Army (PLA), 109 Laoshan Road, Qingdao, 266101, China
| | - Cheng-Jun Liu
- Department of Hematology, Laoshan Branch of No. 401 Hospital of Chinese People's Liberation Army (PLA), 109 Laoshan Road, Qingdao, 266101, China
| | - Li-Xun Guan
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Rui Gao
- Department of Hematology, Laoshan Branch of No. 401 Hospital of Chinese People's Liberation Army (PLA), 109 Laoshan Road, Qingdao, 266101, China
| | - Zhe Gao
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Shu Fang
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Du-Jun Zhuo
- Department of Hematology, Laoshan Branch of No. 401 Hospital of Chinese People's Liberation Army (PLA), 109 Laoshan Road, Qingdao, 266101, China
| | - Shu-Feng Liu
- Department of Hematology, Laoshan Branch of No. 401 Hospital of Chinese People's Liberation Army (PLA), 109 Laoshan Road, Qingdao, 266101, China.
| | - Chun-Ji Gao
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
10
|
Yong KW, Choi JR, Dolbashid AS, Wan Safwani WKZ. Biosafety and bioefficacy assessment of human mesenchymal stem cells: what do we know so far? Regen Med 2018; 13:219-232. [PMID: 29509072 DOI: 10.2217/rme-2017-0078] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 12/07/2017] [Indexed: 12/13/2022] Open
Abstract
An outstanding amount of resources has been used in research on manipulation of human stem cells, especially mesenchymal stem cells (MSCs), for various clinical applications. However, human MSCs have not been fully utilized in clinical applications due to restrictions with regard to their certain biosafety and bioefficacy concerns, for example, genetic abnormality, tumor formation, induction of host immune response and failure of homing and engraftment. This review summarizes the biosafety and bioefficacy assessment of human MSCs in terms of genetic stability, tumorigenicity, immunogenicity, homing and engraftment. The strategies used to reduce the biosafety concerns and improve the bioefficacy of human MSCs are highlighted. In addition, the approaches that can be implemented to improve their biosafety and bioefficacy assessment are briefly discussed.
Collapse
Affiliation(s)
- Kar Wey Yong
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
- Department of Chemical & Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Jane Ru Choi
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
- Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada
| | - Asdani Saifullah Dolbashid
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | | |
Collapse
|
11
|
Ginani F, Soares DM, Rocha HADO, Barboza CAG. Low-level laser irradiation promotes proliferation of cryopreserved adipose-derived stem cells. EINSTEIN-SAO PAULO 2017; 15:334-338. [PMID: 29091156 PMCID: PMC5823048 DOI: 10.1590/s1679-45082017ao3991] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/05/2017] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE To evaluate the effect of low-level laser irradiation on proliferation and viability of murine adipose-derived stem cells previously submitted to cryopreservation. METHODS Adipose-derived stem cells were isolated from inguinal fat pads of three mice, submitted to cryopreservation in fetal bovine serum with 10% dimethylsulfoxide for 30 days and then thawed and maintained in normal culture conditions. Culture cells were either irradiated or not (control) with an InGaAIP diode laser at zero and 48 hours, using two different energy densities (0.5 and 1.0J/cm2). Cell proliferation was evaluated by trypan blue exclusion method and MTT assay at intervals of zero, 24, 48, and 72 hours after the first laser application. Cell viability and apoptosis of previously cryopreserved cells submitted to laser therapy were evaluated by flow cytometry. RESULTS The Irradiated Groups (0.5 and 1.0J/cm2) showed an increased cell proliferation (p<0.05) when compared to the Control Group, however no significant difference between the two energy densities was observed. Flow cytometry revealed a percentage of viable cells higher than 99% in all groups. CONCLUSION Low-level laser irradiation has stimulatory effects on the proliferation of adipose-derived stem cells previously submitted to cryopreservation.
Collapse
Affiliation(s)
- Fernanda Ginani
- Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | | | | | | |
Collapse
|
12
|
Yong KW, Safwani WKZW, Xu F, Zhang X, Choi JR, Abas WABW, Omar SZ, Azmi MAN, Chua KH, Pingguan-Murphy B. Assessment of tumourigenic potential in long-term cryopreserved human adipose-derived stem cells. J Tissue Eng Regen Med 2017; 11:2217-2226. [PMID: 26756982 DOI: 10.1002/term.2120] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 09/17/2015] [Accepted: 11/18/2015] [Indexed: 12/16/2022]
Abstract
Cryopreservation represents an efficient way to preserve human mesenchymal stem cells (hMSCs) at early culture/passage, and allows pooling of cells to achieve sufficient cells required for off-the-shelf use in clinical applications, e.g. cell-based therapies and regenerative medicine. To fully apply cryopreserved hMSCs in a clinical setting, it is necessary to evaluate their biosafety, e.g. chromosomal abnormality and tumourigenic potential. To date, many studies have demonstrated that cryopreserved hMSCs display no chromosomal abnormalities. However, the tumourigenic potential of cryopreserved hMSCs has not yet been evaluated. In the present study, we cryopreserved human adipose-derived mesenchymal stem cells (hASCs) for 3 months, using a slow freezing method with various cryoprotective agents (CPAs), followed by assessment of the tumourigenic potential of the cryopreserved hASCs after thawing and subculture. We found that long-term cryopreserved hASCs maintained normal levels of the tumour suppressor markers p53, p21, p16 and pRb, hTERT, telomerase activity and telomere length. Further, we did not observe significant DNA damage or signs of p53 mutation in cryopreserved hASCs. Our findings suggest that long-term cryopreserved hASCs are at low risk of tumourigenesis. These findings aid in establishing the biosafety profile of cryopreserved hASCs, and thus establishing low hazardous risk perception with the use of long-term cryopreserved hASCs for future clinical applications. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Kar Wey Yong
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
- Bioinspired Engineering and Biomechanics Centre (BEBC), Xi'an Jiaotong University, People's Republic of China
| | | | - Feng Xu
- Bioinspired Engineering and Biomechanics Centre (BEBC), Xi'an Jiaotong University, People's Republic of China
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, People's Republic of China
| | - Xiaohui Zhang
- Bioinspired Engineering and Biomechanics Centre (BEBC), Xi'an Jiaotong University, People's Republic of China
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, People's Republic of China
| | - Jane Ru Choi
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
- Bioinspired Engineering and Biomechanics Centre (BEBC), Xi'an Jiaotong University, People's Republic of China
| | - Wan Abu Bakar Wan Abas
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Siti Zawiah Omar
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mat Adenan Noor Azmi
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kien Hui Chua
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Belinda Pingguan-Murphy
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Yuan Z, Lourenco SDS, Sage EK, Kolluri KK, Lowdell MW, Janes SM. Cryopreservation of human mesenchymal stromal cells expressing TRAIL for human anti-cancer therapy. Cytotherapy 2017; 18:860-9. [PMID: 27260207 PMCID: PMC4906234 DOI: 10.1016/j.jcyt.2016.04.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/04/2016] [Accepted: 04/17/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs) are being extensively researched for cell therapy and tissue engineering. We have engineered MSCs to express the pro-apoptotic protein tumor necrosis factor-related apoptosis inducing ligand (TRAIL) and are currently preparing this genetically modified cell therapy for a phase 1/2a clinical trial in patients with metastatic lung cancer. To do this, we need to prepare a cryopreserved allogeneic MSCTRAIL cell bank for further expansion before patient delivery. The effects of cryopreservation on a genetically modified cell therapy product have not been clearly determined. METHODS We tested different concentrations of dimethyl sulfoxide (DMSO) added to the human serum albumin ZENALB 4.5 and measured post-thaw cell viability, proliferation ability and differentiation characteristics. In addition, we examined the homing ability, TRAIL expression and cancer cell-killing capacities of cryopreserved genetically modified MSCs compared with fresh, continually cultured cells. RESULTS We demonstrated that the post-thaw viability of MSCs in 5% DMSO (v/v) with 95% ZENALB 4.5 (v/v) is 85.7 ± 0.4%, which is comparable to that in conventional freezing media. We show that cryopreservation does not affect the long-term expression of TRAIL and that cryopreserved TRAIL-expressing MSCs exhibit similar levels of homing and, importantly, retain their potency in triggering cancer cell death. CONCLUSIONS This study shows that cryopreservation is unlikely to affect the therapeutic properties of MSCTRAIL and supports the generation of a cryopreserved master cell bank.
Collapse
Affiliation(s)
- Zhengqiang Yuan
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Sofia Da Silva Lourenco
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Elizabeth K Sage
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Krishna K Kolluri
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Mark W Lowdell
- Centre for Cell, Gene & Tissue Therapy, Royal Free London National Health Services Foundation Trust & University College London, London, United Kingdom
| | - Sam M Janes
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, United Kingdom.
| |
Collapse
|
14
|
Avercenc-Léger L, Guerci P, Virion JM, Cauchois G, Hupont S, Rahouadj R, Magdalou J, Stoltz JF, Bensoussan D, Huselstein C, Reppel L. Umbilical cord-derived mesenchymal stromal cells: predictive obstetric factors for cell proliferation and chondrogenic differentiation. Stem Cell Res Ther 2017; 8:161. [PMID: 28676126 PMCID: PMC5497358 DOI: 10.1186/s13287-017-0609-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/09/2017] [Accepted: 06/14/2017] [Indexed: 01/20/2023] Open
Abstract
Background The umbilical cord is becoming a notable alternative to bone marrow (BM) as a source of mesenchymal stromal cells (MSC). Although age-dependent variations in BM-MSC are well described, less data are available for MSC isolated from Wharton’s jelly (WJ-MSC). We initiated a study to identify whether obstetric factors influenced MSC properties. We aimed to evaluate the correlation between a large number of obstetric factors collected during pregnancy and until peripartum (related to the mother, the labor and delivery, and the newborn) with WJ-MSC proliferation and chondrogenic differentiation parameters. Methods Correlations were made between 27 obstetric factors and 8 biological indicators including doubling time at passage (P)1 and P2, the percentage of proteoglycans and collagens, and the relative transcriptional expression of Sox-9, aggrecans, and total type 2 collagen (Coll2T). Results Amongst the obstetric factors considered, birth weight, the number of amenorrhea weeks, placental weight, normal pregnancy, and the absence of preeclampsia were identified as relevant factors for cell expansion, using multivariate linear regression analysis. Since all the above parameters are related to term, we concluded that WJ-MSC from healthy, full-term infants exhibit greater proliferation capacity. As for chondrogenesis, we also observed that obstetric factors influencing proliferation seemed beneficial, with no negative impact on MSC differentiation. Conclusions Awareness of obstetric factors influencing the proliferation and/or differentiation of WJ-MSC will make it possible to define criteria for collecting optimal umbilical cords with the aim of decreasing the variability of WJ-MSC batches produced for clinical use in cell and tissue engineering. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0609-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Léonore Avercenc-Léger
- UMR 7365 CNRS-Université de Lorraine, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Biopôle de l'Université de Lorraine, Campus biologie-santé, Faculté de Médecine, Avenue de la Forêt de Haye, BP 184, 54500, Vandoeuvre-Les-nancy, France.,Université de Lorraine, 54000, Nancy, France.,FR3209 CNRS BMCT - Bio-Ingénierie Moléculaire Cellulaire et Thérapeutique, Faculté de Médecine, 54500, Vandœuvre-lès-Nancy, France
| | - Philippe Guerci
- CHRU de Nancy, Maternité Régionale Universitaire, Département d'Anesthésie-Réanimation, 54000, Nancy, France
| | - Jean-Marc Virion
- CHRU de Nancy, Epidémiologie et Evaluation Cliniques, 54500, Vandœuvre-lès-Nancy, France
| | - Ghislaine Cauchois
- UMR 7365 CNRS-Université de Lorraine, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Biopôle de l'Université de Lorraine, Campus biologie-santé, Faculté de Médecine, Avenue de la Forêt de Haye, BP 184, 54500, Vandoeuvre-Les-nancy, France.,Université de Lorraine, 54000, Nancy, France.,FR3209 CNRS BMCT - Bio-Ingénierie Moléculaire Cellulaire et Thérapeutique, Faculté de Médecine, 54500, Vandœuvre-lès-Nancy, France
| | - Sébastien Hupont
- FR3209 CNRS BMCT - Bio-Ingénierie Moléculaire Cellulaire et Thérapeutique, Faculté de Médecine, 54500, Vandœuvre-lès-Nancy, France
| | - Rachid Rahouadj
- Université de Lorraine, 54000, Nancy, France.,UMR 7563 CNRS-Université de Lorraine, LEMTA, 54500, Vandœuvre-lès-Nancy, France
| | - Jacques Magdalou
- UMR 7365 CNRS-Université de Lorraine, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Biopôle de l'Université de Lorraine, Campus biologie-santé, Faculté de Médecine, Avenue de la Forêt de Haye, BP 184, 54500, Vandoeuvre-Les-nancy, France.,Université de Lorraine, 54000, Nancy, France.,FR3209 CNRS BMCT - Bio-Ingénierie Moléculaire Cellulaire et Thérapeutique, Faculté de Médecine, 54500, Vandœuvre-lès-Nancy, France
| | - Jean-François Stoltz
- UMR 7365 CNRS-Université de Lorraine, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Biopôle de l'Université de Lorraine, Campus biologie-santé, Faculté de Médecine, Avenue de la Forêt de Haye, BP 184, 54500, Vandoeuvre-Les-nancy, France.,CHRU de Nancy, Unité de Thérapie Cellulaire¸ Banque de Tissus, 54500, Vandœuvre-lès-Nancy, France.,Université de Lorraine, 54000, Nancy, France.,FR3209 CNRS BMCT - Bio-Ingénierie Moléculaire Cellulaire et Thérapeutique, Faculté de Médecine, 54500, Vandœuvre-lès-Nancy, France
| | - Danièle Bensoussan
- UMR 7365 CNRS-Université de Lorraine, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Biopôle de l'Université de Lorraine, Campus biologie-santé, Faculté de Médecine, Avenue de la Forêt de Haye, BP 184, 54500, Vandoeuvre-Les-nancy, France.,CHRU de Nancy, Unité de Thérapie Cellulaire¸ Banque de Tissus, 54500, Vandœuvre-lès-Nancy, France.,Université de Lorraine, 54000, Nancy, France.,FR3209 CNRS BMCT - Bio-Ingénierie Moléculaire Cellulaire et Thérapeutique, Faculté de Médecine, 54500, Vandœuvre-lès-Nancy, France
| | - Céline Huselstein
- UMR 7365 CNRS-Université de Lorraine, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Biopôle de l'Université de Lorraine, Campus biologie-santé, Faculté de Médecine, Avenue de la Forêt de Haye, BP 184, 54500, Vandoeuvre-Les-nancy, France.,Université de Lorraine, 54000, Nancy, France.,FR3209 CNRS BMCT - Bio-Ingénierie Moléculaire Cellulaire et Thérapeutique, Faculté de Médecine, 54500, Vandœuvre-lès-Nancy, France
| | - Loïc Reppel
- UMR 7365 CNRS-Université de Lorraine, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Biopôle de l'Université de Lorraine, Campus biologie-santé, Faculté de Médecine, Avenue de la Forêt de Haye, BP 184, 54500, Vandoeuvre-Les-nancy, France. .,CHRU de Nancy, Unité de Thérapie Cellulaire¸ Banque de Tissus, 54500, Vandœuvre-lès-Nancy, France. .,Université de Lorraine, 54000, Nancy, France. .,FR3209 CNRS BMCT - Bio-Ingénierie Moléculaire Cellulaire et Thérapeutique, Faculté de Médecine, 54500, Vandœuvre-lès-Nancy, France.
| |
Collapse
|
15
|
Tozetti PA, Caruso SR, Mizukami A, Fernandes TR, da Silva FB, Traina F, Covas DT, Orellana MD, Swiech K. Expansion strategies for human mesenchymal stromal cells culture under xeno-free conditions. Biotechnol Prog 2017; 33:1358-1367. [DOI: 10.1002/btpr.2494] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 04/12/2017] [Indexed: 01/16/2023]
Affiliation(s)
- Patrícia Aparecida Tozetti
- Hemotherapy Center of Ribeirão Preto; Ribeirão Preto Medical School, University of São Paulo; Ribeirão Preto SP Brazil
| | - Samia Rigotto Caruso
- Hemotherapy Center of Ribeirão Preto; Ribeirão Preto Medical School, University of São Paulo; Ribeirão Preto SP Brazil
| | - Amanda Mizukami
- Hemotherapy Center of Ribeirão Preto; Ribeirão Preto Medical School, University of São Paulo; Ribeirão Preto SP Brazil
| | - Taisa Risque Fernandes
- Hemotherapy Center of Ribeirão Preto; Ribeirão Preto Medical School, University of São Paulo; Ribeirão Preto SP Brazil
| | - Fernanda Borges da Silva
- Dept. of Internal Medicine; Ribeirão Preto Medical School, University of São Paulo; Ribeirão Preto SP Brazil
| | - Fabiola Traina
- Dept. of Internal Medicine; Ribeirão Preto Medical School, University of São Paulo; Ribeirão Preto SP Brazil
| | - Dimas Tadeu Covas
- Hemotherapy Center of Ribeirão Preto; Ribeirão Preto Medical School, University of São Paulo; Ribeirão Preto SP Brazil
- Dept. of Internal Medicine; Ribeirão Preto Medical School, University of São Paulo; Ribeirão Preto SP Brazil
| | - Maristela Delgado Orellana
- Hemotherapy Center of Ribeirão Preto; Ribeirão Preto Medical School, University of São Paulo; Ribeirão Preto SP Brazil
| | - Kamilla Swiech
- Dept. of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
- Hemotherapy Center of Ribeirão Preto; Ribeirão Preto Medical School, University of São Paulo; Ribeirão Preto SP Brazil
| |
Collapse
|
16
|
Blázquez-Prunera A, Almeida CR, Barbosa MA. Human Bone Marrow Mesenchymal Stem/Stromal Cells Preserve Their Immunomodulatory and Chemotactic Properties When Expanded in a Human Plasma Derived Xeno-Free Medium. Stem Cells Int 2017; 2017:2185351. [PMID: 28588620 PMCID: PMC5446864 DOI: 10.1155/2017/2185351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/08/2017] [Accepted: 02/26/2017] [Indexed: 01/14/2023] Open
Abstract
Due to their immunomodulatory and chemotactic properties, hMSC are being explored to treat immune-related diseases. For their use in human therapies, it is necessary to culture hMSC in xeno-free conditions. In this study, the impact that a xeno-free medium based on a human plasma derivate has on these properties was analysed. Bone marrow-derived hMSC preserved their immunosuppressive and immunostimulatory properties, as observed with in vitro assays with hMSC cocultured with mixed leukocyte reactions or with mitogen-stimulated leukocytes. Moreover, hMSC expanded in xeno-free medium were recruited by macrophages in both migration and invasion assays, which indicates that the cells maintained their chemotactic properties. These data suggest that xeno-free expanded hMSC preserved their immunomodulatory and chemotactic properties, indicating that the described xeno-free medium composition is a potential candidate to culture and expand hMSC for human cell therapies.
Collapse
Affiliation(s)
- A. Blázquez-Prunera
- Instituto de Investigação e Inovação Em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - C. R. Almeida
- Instituto de Investigação e Inovação Em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Department of Medical Sciences and Institute for Biomedicine (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal
| | - M. A. Barbosa
- Instituto de Investigação e Inovação Em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
17
|
Somal A, Bhat IA, B I, Singh AP, Panda BSK, Desingu PA, Pandey S, Bharti MK, Pal A, Saikumar G, Chandra V, Sharma GT. Impact of Cryopreservation on Caprine Fetal Adnexa Derived Stem Cells and Its Evaluation for Growth Kinetics, Phenotypic Characterization, and Wound Healing Potential in Xenogenic Rat Model. J Cell Physiol 2017; 232:2186-2200. [PMID: 27966782 DOI: 10.1002/jcp.25731] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/13/2016] [Indexed: 12/12/2022]
Abstract
This study was conducted to know the impact of cryopreservation on caprine fetal adnexa derived mesenchymal stem cells (MSCs) on the basic stem cell characteristics. Gravid caprine uteri (2-3 months) were collected from local abattoir to derive (amniotic fluid [cAF], amniotic sac [cAS], Wharton's jelly [cWJ], and cord blood [cCB]) MSCs and expanded in vitro. Cells were cryopreserved at 3rd passage (P3) using 10% DMSO. Post-thaw viability and cellular properties were assessed. Cells were expanded to determine growth kinetics, tri-lineage differentiation, localization, and molecular expression of MSCs and pluripotency markers; thereafter, these cells were transplanted in the full-thickness (2 × 2cm2 ) rat skin wound to determine their wound healing potential. The post-thaw (pt) growth kinetics study suggested that cWJ MSCs expanded more rapidly with faster population doubling time (PDT) than that of other fetal adnexa MSCs. The relative mRNA expression of surface antigens (CD73, CD90, and CD 105) and pluripotency markers (Oct4, KLF, and cMyc) was higher in cWJ MSCs in comparison to cAS, cAF, and cCB MSCs post-thaw. The percent wound contraction on 7th day was more than 50% for all the MSC-treated groups (pre and post-thaw), against 39.55% in the control group. On day 28th, 99% and more wound contraction was observed in cAF, cAF-pt, cAS-pt, cWJ, cWJ-pt, and cCB, MSCs with better scores for epithelization, neovascularization, and collagen characteristics at a non-significant level. It is concluded that these MSCs could be successfully cryopreserved without altering their stemness and wound healing properties. J. Cell. Physiol. 232: 2186-2200, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Anjali Somal
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Irfan A Bhat
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Indu B
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Anuj P Singh
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Bibhudatta S K Panda
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Perumal A Desingu
- Division of Veterinary Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Sriti Pandey
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Mukesh K Bharti
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Amar Pal
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Guttula Saikumar
- Division of Veterinary Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Vikash Chandra
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Guttula Taru Sharma
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| |
Collapse
|
18
|
Dos Santos VTM, Mizukami A, Orellana MD, Caruso SR, da Silva FB, Traina F, de Lima Prata K, Covas DT, Swiech K. Characterization of Human AB Serum for Mesenchymal Stromal Cell Expansion. Transfus Med Hemother 2016; 44:11-21. [PMID: 28275329 DOI: 10.1159/000448196] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 07/04/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND So far, using human blood-derived components appears to be the most efficient and safest approach available for mesenchymal stromal cell (MSC) expansion. In this paper, we report on the characterization of human AB serum (AB HS) produced by using different plasma sources, and its use as an alternative supplement to MSC expansion. METHODS Two plasma sources were used for AB HS production: plasma removed from whole blood after 24 h of collection (PC > 24 h) and plasma, cryoprecipitate reduced (PCryoR). The biochemical profile and quality of the produced AB HS batches were analyzed and their ability to support MSC cell growth after different storage times (0, 3, 6, 9 and 12 months) was evaluated. RESULTS The two plasma sources used showed similar characteristics regarding biochemical constituents and quality parameters and were effective in promoting MSC growth. MSCs cultured in medium supplemented with 10% AB HS presented similar doubling times and cumulative population doublings when compared to the 10% fetal bovine serum(FBS)-supplemented culture while maintaining immunophenotype, functional features, and cytogenetic profile. CONCLUSION Overall, the results indicate that AB HS is an efficient FBS substitute and can be used for at least 12 months after production without impairing cell proliferation and quality.
Collapse
Affiliation(s)
- Vanessa Tieko Marques Dos Santos
- Center for Cell-Based Therapy, Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Amanda Mizukami
- Center for Cell-Based Therapy, Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Maristela Delgado Orellana
- Center for Cell-Based Therapy, Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Samia Rigotto Caruso
- Center for Cell-Based Therapy, Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Fernanda Borges da Silva
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Fabiola Traina
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Karen de Lima Prata
- Center for Cell-Based Therapy, Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Dimas Tadeu Covas
- Center for Cell-Based Therapy, Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Kamilla Swiech
- Center for Cell-Based Therapy, Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
19
|
Improved Cryopreservation of Human Umbilical Vein Endothelial Cells: A Systematic Approach. Sci Rep 2016; 6:34393. [PMID: 27708349 PMCID: PMC5052637 DOI: 10.1038/srep34393] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/07/2016] [Indexed: 12/24/2022] Open
Abstract
Cryopreservation of human umbilical vein endothelial cells (HUVECs) facilitated their commercial availability for use in vascular biology, tissue engineering and drug delivery research; however, the key variables in HUVEC cryopreservation have not been comprehensively studied. HUVECs are typically cryopreserved by cooling at 1 °C/min in the presence of 10% dimethyl sulfoxide (DMSO). We applied interrupted slow cooling (graded freezing) and interrupted rapid cooling with a hold time (two-step freezing) to identify where in the cooling process cryoinjury to HUVECs occurs. We found that linear cooling at 1 °C/min resulted in higher membrane integrities than linear cooling at 0.2 °C/min or nonlinear two-step freezing. DMSO addition procedures and compositions were also investigated. By combining hydroxyethyl starch with DMSO, HUVEC viability after cryopreservation was improved compared to measured viabilities of commercially available cryopreserved HUVECs and viabilities for HUVEC cryopreservation studies reported in the literature. Furthermore, HUVECs cryopreserved using our improved procedure showed high tube forming capability in a post-thaw angiogenesis assay, a standard indicator of endothelial cell function. As well as presenting superior cryopreservation procedures for HUVECs, the methods developed here can serve as a model to optimize the cryopreservation of other cells.
Collapse
|
20
|
Intravenous infusion of allogeneic mesenchymal stromal cells in refractory or relapsed aplastic anemia. Cytotherapy 2016; 17:1696-705. [PMID: 26589752 DOI: 10.1016/j.jcyt.2015.09.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/01/2015] [Accepted: 09/15/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND AIMS For patients with aplastic anemia (AA) who are refractory to anti-thymocyte globulin (ATG) and cyclosporine, a second course of immunosuppression is successful in only one-fourth to one-third of cases. METHODS We conducted a phase 1/2 study to evaluate the addition of two to five weekly intravenous infusions of allogeneic unrelated non-human leukocyte antigen-matched bone marrow-derived mesenchymal stromal cells (MSCs) (median, 2.7 × 10(6) cells/kg/infusion; range, 1.3-4.5) to standard rabbit ATG and cyclosporine in nine patients with refractory or relapsed AA. RESULTS After a median follow-up of 20 months, no infusion-related adverse event was observed, but four deaths occurred as the result of heart failure and bacterial or invasive fungal infections; only two patients achieved partial hematologic responses at 6 months. We failed to demonstrate by fluorescence in situ hybridization or variable number tandem repeat any MSC engraftment in patient marrow 30, 90 or 180 days after infusions. CONCLUSIONS Infusion of allogeneic MSCs in AA is safe but does not improve clinical hematologic response or engraft in recipient bone marrow. This study was registered at clinicaltrials.gov, identifier: NCT01297972.
Collapse
|
21
|
Kuçi Z, Bönig H, Kreyenberg H, Bunos M, Jauch A, Janssen JWG, Škifić M, Michel K, Eising B, Lucchini G, Bakhtiar S, Greil J, Lang P, Basu O, von Luettichau I, Schulz A, Sykora KW, Jarisch A, Soerensen J, Salzmann-Manrique E, Seifried E, Klingebiel T, Bader P, Kuçi S. Mesenchymal stromal cells from pooled mononuclear cells of multiple bone marrow donors as rescue therapy in pediatric severe steroid-refractory graft-versus-host disease: a multicenter survey. Haematologica 2016; 101:985-94. [PMID: 27175026 DOI: 10.3324/haematol.2015.140368] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 05/04/2016] [Indexed: 12/25/2022] Open
Abstract
To circumvent donor-to-donor heterogeneity which may lead to inconsistent results after treatment of acute graft-versus-host disease with mesenchymal stromal cells generated from single donors we developed a novel approach by generating these cells from pooled bone marrow mononuclear cells of 8 healthy "3(rd)-party" donors. Generated cells were frozen in 209 vials and designated as mesenchymal stromal cell bank. These vials served as a source for generation of clinical grade mesenchymal stromal cell end-products, which exhibited typical mesenchymal stromal cell phenotype, trilineage differentiation potential and at later passages expressed replicative senescence-related markers (p21 and p16). Genetic analysis demonstrated their genomic stability (normal karyotype and a diploid pattern). Importantly, clinical end-products exerted a significantly higher allosuppressive potential than the mean allosuppressive potential of mesenchymal stromal cells generated from the same donors individually. Administration of 81 mesenchymal stromal cell end-products to 26 patients with severe steroid-resistant acute graft-versus-host disease in 7 stem cell transplant centers who were refractory to many lines of treatment, induced a 77% overall response at the primary end point (day 28). Remarkably, although the cohort of patients was highly challenging (96% grade III/IV and only 4% grade II graft-versus-host disease), after treatment with mesenchymal stromal cell end-products the overall survival rate at two years follow up was 71±11% for the entire patient cohort, compared to 51.4±9.0% in graft-versus-host disease clinical studies, in which mesenchymal stromal cells were derived from single donors. Mesenchymal stromal cell end-products may, therefore, provide a novel therapeutic tool for the effective treatment of severe acute graft-versus-host disease.
Collapse
Affiliation(s)
- Zyrafete Kuçi
- University Hospital Frankfurt, Department for Children and Adolescents, Division for Stem Cell Transplantation and Immunology, Frankfurt am Main, Germany
| | - Halvard Bönig
- Institute of Transfusion Medicine and German Red Cross Blood Center Frankfurt, Frankfurt am Main, Germany
| | - Hermann Kreyenberg
- University Hospital Frankfurt, Department for Children and Adolescents, Division for Stem Cell Transplantation and Immunology, Frankfurt am Main, Germany
| | - Milica Bunos
- Institute of Transfusion Medicine and German Red Cross Blood Center Frankfurt, Frankfurt am Main, Germany
| | - Anna Jauch
- Institute of Human Genetics, University of Heidelberg, Germany
| | | | - Marijana Škifić
- University Hospital Frankfurt, Department for Children and Adolescents, Division for Stem Cell Transplantation and Immunology, Frankfurt am Main, Germany University Hospital Centre Zagreb, Clinical Department of Transfusion and Transplantation Biology, Division of Cellular Therapy, Zagreb, Croatia
| | - Kristina Michel
- University Hospital Frankfurt, Department for Children and Adolescents, Division for Stem Cell Transplantation and Immunology, Frankfurt am Main, Germany
| | - Ben Eising
- University Hospital Frankfurt, Department for Children and Adolescents, Division for Stem Cell Transplantation and Immunology, Frankfurt am Main, Germany
| | - Giovanna Lucchini
- University Hospital Frankfurt, Department for Children and Adolescents, Division for Stem Cell Transplantation and Immunology, Frankfurt am Main, Germany Great Ormond Street Hospital, Department of Hematology/Oncology, London, United Kingdom
| | - Shahrzad Bakhtiar
- University Hospital Frankfurt, Department for Children and Adolescents, Division for Stem Cell Transplantation and Immunology, Frankfurt am Main, Germany
| | - Johann Greil
- University Children's Hospital Heidelberg, Germany
| | - Peter Lang
- University Children's Hospital Tübingen, Germany
| | - Oliver Basu
- University Children's Hospital Essen, Germany
| | | | | | | | - Andrea Jarisch
- University Hospital Frankfurt, Department for Children and Adolescents, Division for Stem Cell Transplantation and Immunology, Frankfurt am Main, Germany
| | - Jan Soerensen
- University Hospital Frankfurt, Department for Children and Adolescents, Division for Stem Cell Transplantation and Immunology, Frankfurt am Main, Germany
| | - Emilia Salzmann-Manrique
- University Hospital Frankfurt, Department for Children and Adolescents, Division for Stem Cell Transplantation and Immunology, Frankfurt am Main, Germany
| | - Erhard Seifried
- Institute of Transfusion Medicine and German Red Cross Blood Center Frankfurt, Frankfurt am Main, Germany
| | - Thomas Klingebiel
- University Hospital Frankfurt, Department for Children and Adolescents, Division for Stem Cell Transplantation and Immunology, Frankfurt am Main, Germany
| | - Peter Bader
- University Hospital Frankfurt, Department for Children and Adolescents, Division for Stem Cell Transplantation and Immunology, Frankfurt am Main, Germany
| | - Selim Kuçi
- University Hospital Frankfurt, Department for Children and Adolescents, Division for Stem Cell Transplantation and Immunology, Frankfurt am Main, Germany
| |
Collapse
|
22
|
Mesenchymal Stem/Stromal Cells in Liver Fibrosis: Recent Findings, Old/New Caveats and Future Perspectives. Stem Cell Rev Rep 2016; 11:586-97. [PMID: 25820543 DOI: 10.1007/s12015-015-9585-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem/stromal cells (MSCs) are progenitors which share plastic-adherence capacity and cell surface markers but have different properties according to their cell and tissue sources and to culture conditions applied. Many recent publications suggest that MSCs can differentiate into hepatic-like cells, which can be a consequence of either a positive selection of rare in vivo pluripotent cells or of the original plasticity of some cells contributing to MSC cultures. A possible role of MSCs in hereditary transmission of obesity and/or diabetes as well as properties of MSCs regarding immunomodulation, cell fusion and exosome release capacities are discussed according to recent literature. Limitations in methods used to track MSCs in vivo especially in the context of liver cirrhosis are addressed as well as strategies explored to enhance their migratory, survival and proliferation properties, which are known to be relevant for their future clinical use. Current knowledge regarding mechanisms involved in liver cirrhosis amelioration mediated by naïve and genetically modified MSCs as well as the effects of applying preconditioning and combined strategies to improve their therapeutic effects are evaluated. Finally, first reports of GMP guidelines and biosafety issues in MSCs applications are discussed.
Collapse
|
23
|
Luetzkendorf J, Nerger K, Hering J, Moegel A, Hoffmann K, Hoefers C, Mueller-Tidow C, Mueller LP. Cryopreservation does not alter main characteristics of Good Manufacturing Process-grade human multipotent mesenchymal stromal cells including immunomodulating potential and lack of malignant transformation. Cytotherapy 2016; 17:186-98. [PMID: 25593077 DOI: 10.1016/j.jcyt.2014.10.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 10/07/2014] [Accepted: 10/21/2014] [Indexed: 01/16/2023]
Abstract
BACKGROUND AIMS The immunomodulating capacity of multipotent mesenchymal stromal cells (MSCs) qualifies them as a therapeutic tool in several diseases. However, repeated transplantation with products of reproducible characteristics may be required. This could be achieved with cryopreserved aliquots of Good Manufacturing Practice (GMP)-grade MSCs. However, the impact of cryopreservation on the characteristics of GMP-MSCs is ill defined. METHODS We produced fresh and cryopreserved MSCs from human donors with a xenogen-free GMP protocol. Immunogenicity and immunomodulating capacity were tested in co-culture with putative recipient-specific peripheral blood mononuclear cells (PBMCs). Risk of malignant transformation was assessed in vitro and in vivo. RESULTS Cryopreservation had no impact on viability and consensus criteria of MSCs. In co-culture with PBMCs, MSCs showed low immunogenicity and suppressed mitogen-stimulated proliferation of PBMC irrespective of cryopreservation. Cytogenetic aberrations were not observed consistently in fresh and cryopreserved products, and no signs of malignant transformation occurred in functional assays. MSC products from an elderly pretreated donor showed reduced functional quality, but imminent failure of functional criteria could be detected by an increased population doubling time in early passages. DISCUSSION This study is the first systematic analysis on cryopreservation of xenogen-free human bone marrow-derived GMP-MSCs. The data support that cryopreservation does not alter the characteristics of the cells and thus may allow the generation of products for serial transplantation. In addition, the protocol allowed early detection of MSC products with low functional capacity.
Collapse
Affiliation(s)
- Jana Luetzkendorf
- Universitätsklinik und Poliklinik für Innere Medizin IV, Halle (Saale), Germany
| | - Katrin Nerger
- Universitätsklinik und Poliklinik für Innere Medizin IV, Halle (Saale), Germany
| | - Julian Hering
- Einrichtung für Transfusionsmedizin, Halle (Saale), Germany
| | | | - Katrin Hoffmann
- Institut für Humangenetik, Universitätsklinikum Halle, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Christiane Hoefers
- Institut für Humangenetik, Universitätsklinikum Halle, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | | | - Lutz P Mueller
- Universitätsklinik und Poliklinik für Innere Medizin IV, Halle (Saale), Germany.
| |
Collapse
|
24
|
Yong KW, Choi JR, Wan Safwani WKZ. Biobanking of Human Mesenchymal Stem Cells: Future Strategy to Facilitate Clinical Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 951:99-110. [PMID: 27837557 DOI: 10.1007/978-3-319-45457-3_8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Human mesenchymal stem cells (hMSCs), a type of adult stem cells that hold great potential in clinical applications (e.g., regenerative medicine and cell-based therapy) due to their ability to differentiate into multiple types of specialized cells and secrete soluble factors which can initiate tissue repair and regulate immune response. hMSCs need to be expanded in vitro or cryopreserved to obtain sufficient cell numbers required for clinical applications. However, long-term in vitro culture-expanded hMSCs may raise some biosafety concerns (e.g., chromosomal abnormality and malignant transformation) and compromised functional properties, limiting their use in clinical applications. To avoid those adverse effects, it is essential to cryopreserve hMSCs at early passage and pool them for off-the-shelf use in clinical applications. However, the existing cryopreservation methods for hMSCs have some notable limitations. To address these limitations, several approaches have to be taken in order to produce healthy and efficacious cryopreserved hMSCs for clinical trials, which remains challenging to date. Therefore, a noteworthy amount of resources has been utilized in research in optimization of the cryopreservation methods, development of freezing devices, and formulation of cryopreservation media to ensure that hMSCs maintain their therapeutic characteristics without raising biosafety concerns following cryopreservation. Biobanking of hMSCs would be a crucial strategy to facilitate clinical applications in the future.
Collapse
Affiliation(s)
- Kar Wey Yong
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia
| | - Jane Ru Choi
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia
| | - Wan Kamarul Zaman Wan Safwani
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
25
|
Mitchell A, Rivas KA, Smith R, Watts AE. Cryopreservation of equine mesenchymal stem cells in 95% autologous serum and 5% DMSO does not alter post-thaw growth or morphology in vitro compared to fetal bovine serum or allogeneic serum at 20 or 95% and DMSO at 10 or 5. Stem Cell Res Ther 2015; 6:231. [PMID: 26611913 PMCID: PMC4661990 DOI: 10.1186/s13287-015-0230-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 09/18/2015] [Accepted: 11/09/2015] [Indexed: 12/17/2022] Open
Abstract
Introduction Equine superficial digital flexor tendon injury is a well-accepted model of human tendon injury and is routinely treated with local injections of autologous mesenchymal stem cells (MSCs). Identification of a clinically safe medium for short-term cryopreservation of MSCs prior to cell implantation would streamline laboratory and clinical procedures for autologous regenerative therapies. Veterinary experience with short-term (MSCs prepared after the injury has occurred) cryopreserved MSCs in naturally occurring injury in the horse will be of value to human practitioners. Methods Equine bone marrow derived MSCs were cryopreserved in 6 different solutions consisting of 20 % serum, 10 % DMSO and 70 % media or 95 % serum and 5 % DMSO. Serum was autologous serum, commercially available pooled equine serum or fetal bovine serum (FBS). Cell survival, morphology and growth kinetics were assessed by total cell number, measurement of growth kinetics, colony-forming-unit-assay and morphology of MSCs after monolayer culture post-thaw. Results There were no significant differences in post-thaw viability, total cell number, morphology scores or growth kinetics among the 6 solutions. Post thaw viabilities from each group ranged from 80-90 %. In all solutions, there were significantly fewer MSCs and the majority (99 %) of MSCs remained in the original generation 24 hours post-thaw. Seventy two hours post-thaw, the majority of MSCs (50 %) were proliferating in the fourth generation. Mean colony count in the CFU-F assay ranged from 72 to 115 colonies. Conclusions Each of the serum sources could be used for short-term cryopreservation of equine bone marrow derived MSCs. Prior to clinical use, clinicians may prefer autologous serum and a lower concentration of DMSO. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0230-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexis Mitchell
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, 77843, USA.
| | - Kristen A Rivas
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, 77843, USA.
| | - Roger Smith
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, 77843, USA.
| | - Ashlee E Watts
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
26
|
Dulugiac M, Moldovan L, Zarnescu O. Comparative studies of mesenchymal stem cells derived from different cord tissue compartments - The influence of cryopreservation and growth media. Placenta 2015; 36:1192-203. [PMID: 26343950 DOI: 10.1016/j.placenta.2015.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/24/2015] [Accepted: 08/25/2015] [Indexed: 10/23/2022]
Abstract
INTRODUCTION We have identified some critical aspects concerning umbilical cord tissue mesenchymal stem cells: the lack of standards for cell isolation, expansion and cryopreservation, the lack of unanimous opinions upon their multilineage differentiation potential and the existence of very few results related to the functional characterization of the cells isolated from cryopreserved umbilical cord tissue. Umbilical cord tissue cryopreservation appears to be the optimal solution for umbilical cord tissue mesenchymal stem cells storage for future clinical use. Umbilical cord tissue cryopreservation allows mesenchymal stem cells isolation before expected use, according with the specific clinical applications, by different customized isolation and expansion protocols agreed by cell therapy institutions. METHODS Using an optimized protocol for umbilical cord tissue cryopreservation in autologous cord blood plasma, isolation explant method and growth media supplemented with FBS or human serum, we performed comparative studies with respect to the characteristics of mesenchymal stem cells (MSC) isolated from different compartments of the same umbilical cord tissue such as Wharton's jelly, vein, arteries, before cryopreservation (pre freeze) and after cryopreservation (post thaw). RESULTS Expression of histochemical and immunohistochemical markers as well as electron microscopy observations revealed similar adipogenic, chondrogenic and osteogenic differentiation capacity for cells isolated from pre freeze and corresponding post thaw tissue fragments of Wharton's jelly, vein or arteries of the same umbilical cord tissue, regardless growth media used for cells isolation and expansion. DISCUSSION Our efficient umbilical cord tissue cryopreservation protocol is reliable for clinical applicability of mesenchymal stem cells that could next be isolated and expanded in compliance with future accepted standards.
Collapse
Affiliation(s)
- Magda Dulugiac
- Regina Maria-Central Stem Cells Bank, 5B Ion Ionescu de la Brad, 13811, Bucharest, Romania; Laboratory of Histology and Developmental Biology, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, Bucharest, R-050095, Romania
| | - Lucia Moldovan
- Department of Cellular and Molecular Biology, National Institute of Research and Development for Biological Sciences, Splaiul Independentei 296, R-060031, Bucharest, Romania
| | - Otilia Zarnescu
- Laboratory of Histology and Developmental Biology, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, Bucharest, R-050095, Romania.
| |
Collapse
|
27
|
Yong KW, Wan Safwani WKZ, Xu F, Wan Abas WAB, Choi JR, Pingguan-Murphy B. Cryopreservation of Human Mesenchymal Stem Cells for Clinical Applications: Current Methods and Challenges. Biopreserv Biobank 2015; 13:231-239. [PMID: 26280501 DOI: 10.1089/bio.2014.0104] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Mesenchymal stem cells (MSCs) hold many advantages over embryonic stem cells (ESCs) and other somatic cells in clinical applications. MSCs are multipotent cells with strong immunosuppressive properties. They can be harvested from various locations in the human body (e.g., bone marrow and adipose tissues). Cryopreservation represents an efficient method for the preservation and pooling of MSCs, to obtain the cell counts required for clinical applications, such as cell-based therapies and regenerative medicine. Upon cryopreservation, it is important to preserve MSCs functional properties including immunomodulatory properties and multilineage differentiation ability. Further, a biosafety evaluation of cryopreserved MSCs is essential prior to their clinical applications. However, the existing cryopreservation methods for MSCs are associated with notable limitations, leading to a need for new or improved methods to be established for a more efficient application of cryopreserved MSCs in stem cell-based therapies. We review the important parameters for cryopreservation of MSCs and the existing cryopreservation methods for MSCs. Further, we also discuss the challenges to be addressed in order to preserve MSCs effectively for clinical applications.
Collapse
Affiliation(s)
- Kar Wey Yong
- 1 Department of Biomedical Engineering, Faculty of Engineering, University of Malaya , Kuala Lumpur, Malaysia
- 2 Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University , Xi'an, P.R. China
| | | | - Feng Xu
- 2 Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University , Xi'an, P.R. China
- 3 The Key Library of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University , Xi'an, P.R. China
| | - Wan Abu Bakar Wan Abas
- 1 Department of Biomedical Engineering, Faculty of Engineering, University of Malaya , Kuala Lumpur, Malaysia
| | - Jane Ru Choi
- 1 Department of Biomedical Engineering, Faculty of Engineering, University of Malaya , Kuala Lumpur, Malaysia
- 2 Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University , Xi'an, P.R. China
| | - Belinda Pingguan-Murphy
- 1 Department of Biomedical Engineering, Faculty of Engineering, University of Malaya , Kuala Lumpur, Malaysia
| |
Collapse
|
28
|
Li T, Xia M, Gao Y, Chen Y, Xu Y. Human umbilical cord mesenchymal stem cells: an overview of their potential in cell-based therapy. Expert Opin Biol Ther 2015; 15:1293-306. [PMID: 26067213 DOI: 10.1517/14712598.2015.1051528] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Human umbilical cord mesenchymal stem cells (HUC-MSCs) are one of the typical adult stem cells; they have superiorities including low immunogenicity, non-invasive harvest procedure, easy expansion in vitro, and ethical access compared with stem cells from other sources. Therefore, HUC-MSCs are a promising candidate for cell-based therapy. AREAS COVERED Here we reviewed the development of stem cell-based therapy, the manufacturing and banking process of HUC-MSCs, the emerging clinical studies in the field of cancer, central nervous system diseases, liver diseases and graft-versus-host disease, the potential therapeutic mechanisms, as well as challenges of HUC-MSCs in clinical translation. EXPERT OPINION HUC-MSCs seem to be an optimal choice for stem cell-based therapy. However, before the cells translate from basic to clinical research, some problems still remain to be solved: i) building regulatory guidelines as well as an efficient and safe manufacturing procedure; ii) establishing donor's genetic testing and long-term closely monitoring system; iii) conducting further clinical trials to determine the optimum and standard dosage, time, route, frequency and many other technical issues of HUC-MSCs transplantation.
Collapse
Affiliation(s)
- Tan Li
- Drum Tower Hospital, Medical School of Nanjing University, Department of Neurology , 321 Zhongshan Road, Nanjing City, Jiangsu Province 210008 , China +86 25 6818 2212 ; +86 25 8310 5208 ; ;
| | | | | | | | | |
Collapse
|
29
|
Orellana MD, De Santis GC, Abraham KJ, Fontes AM, Magalhães DAR, Oliveira VDC, Costa EDBO, Palma PVB, Covas DT. Efficient recovery of undifferentiated human embryonic stem cell cryopreserved with hydroxyethyl starch, dimethyl sulphoxide and serum replacement. Cryobiology 2015; 71:151-60. [PMID: 25641609 DOI: 10.1016/j.cryobiol.2015.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/19/2015] [Accepted: 01/20/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND The therapeutic use of human embryonic stem cells (hESCs) is dependent on an efficient cryopreservation protocol for long-term storage. The aim of this study was to determine whether the combination of three cryoprotecting reagents using two freezing systems might improve hESC recovery rates with maintenance of hESC pluripotency properties for potential cell therapy application. METHODS Recovery rates of hESC colonies which were frozen in three cryoprotective solutions: Me2SO/HES/SR medium, Defined-medium® and Me2SO/SFB in medium solution were evaluated in ultra-slow programmable freezing system (USPF) and a slow-rate freezing system (SRF). The hESC pluripotency properties after freezing-thawing were evaluated. RESULTS We estimated the distribution frequency of survival colonies and observed that independent of the freezing system used (USPF or SRF) the best results were obtained with Me2SO/HES/SR as cryopreservation medium. We showed a significant hESC recovery colonies rate after thawing in Me2SO/HES/SR medium were 3.88 and 2.9 in USPF and SRF, respectively. The recovery colonies rate with Defined-medium® were 1.05 and 1.07 however in classical Me2SO medium were 0.5 and 0.86 in USPF and SRF, respectively. We showed significant difference between Me2SO/HES/SR medium×Defined-medium® and between Me2SO/HES/SR medium×Me2SO medium, for two cryopreservation systems (P<0.05). CONCLUSION We developed an in house protocol using the combination of Me2SO/HES/SR medium and ultra-slow programmable freezing system which resulted in hESC colonies that remain undifferentiated, maintain their in vitro and in vivo pluripotency properties and genetic stability. This approach may be suitable for cell therapy studies.
Collapse
Affiliation(s)
- Maristela Delgado Orellana
- Hemotherapy Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Brazil; Department of Clinical Medicine, Ribeirão Preto Medical School, University of São Paulo, Brazil.
| | - Gil Cunha De Santis
- Hemotherapy Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | | | | | | | - Viviane de Cássia Oliveira
- Department of Dental Materials and Prosthodontics, School of Dentistry of Ribeirão Preto, University of São Paulo, Brazil
| | | | | | - Dimas Tadeu Covas
- Hemotherapy Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Brazil; Department of Clinical Medicine, Ribeirão Preto Medical School, University of São Paulo, Brazil
| |
Collapse
|
30
|
Abstract
Cryopreservation is the only method for long-term storage of viable cells and tissues used for cellular therapy, stem cell transplantation and/or tissue engineering. However, the freeze-thaw process strongly contributes to cell and tissue damage through several mechanisms, including oxidative stress, cell injury from intracellular ice formation and altered physical cellular properties. Our previous proteomics investigation was carried out on Wharton's Jelly Stem Cells (WJSCs) having similar properties to adult mesenchymal stem cells and thus representing a rich source of primitive cells to be potentially used in regenerative medicine. The aim of the present work was to investigate molecular changes that occur in WJSCs proteome in different experimental conditions: fresh primary cell culture and frozen cell. To analyze changes in protein expression of WJSCs undergoing different culturing procedures, we performed a comparative proteomic analysis (2DE followed by MALDI-TOF MS/MS nanoESI-Q-TOF MS coupled with nanoLC) between WJSCs from fresh and frozen cell culturing, respectively. Frozen WJSCs showed qualitative and quantitative changes compared to cells from fresh preparation, expressing proteins involved in replication, cellular defence mechanism and metabolism, that could ensure freeze-thaw survival. The results of this study could play a key role in elucidating possible mechanisms related to maintaining active proliferation and maximal cellular plasticity and thus making the use of WJSCs in cell therapy safe following bio-banking.
Collapse
|
31
|
Defined serum- and xeno-free cryopreservation of mesenchymal stem cells. Cell Tissue Bank 2014; 16:181-93. [DOI: 10.1007/s10561-014-9463-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/23/2014] [Indexed: 12/18/2022]
|
32
|
Afonso Cornélio D, Batistuzzo de Medeiros SR. Genetic evaluation of mesenchymal stem cells. Rev Bras Hematol Hemoter 2014; 36:238-40. [PMID: 25031159 PMCID: PMC4207913 DOI: 10.1016/j.bjhh.2014.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
33
|
Weymann A, Radovits T, Schmack B, Li S, Korkmaz S, Soós P, Istók R, Veres G, Chaimow N, Karck M, Szabó G. In vitro generation of atrioventricular heart valve neoscaffolds. Artif Organs 2014; 38:E118-28. [PMID: 24842040 DOI: 10.1111/aor.12321] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tissue engineering of cardiovascular structures represents a novel approach to improve clinical strategies in heart valve disease treatment. The aim of this study was to engineer decellularized atrioventricular heart valve neoscaffolds with an intact ultrastructure and to reseed them with umbilical cord-derived endothelial cells under physiological conditions in a bioreactor environment. Mitral (n=38) and tricuspid (n=36) valves were harvested from 40 hearts of German Landrace swine from a selected abattoir. Decellularization of atrioventricular heart valves was achieved by a detergent-based cell extraction protocol. Evaluation of the decellularization method was conducted with light microscopy and quantitative analysis of collagen and elastin content. The presence of residual DNA within the decellularized atrioventricular heart valves was determined with spectrophotometric quantification. The described decellularization regime produced full removal of native cells while maintaining the mechanical stability and the quantitative composition of the atrioventricular heart valve neoscaffolds. The surface of the xenogeneic matrix could be successfully reseeded with in vitro-expanded human umbilical cord-derived endothelial cells under physiological flow conditions. After complete decellularization with the detergent-based protocol described here, physiological reseeding of the xenogeneic neoscaffolds resulted in the formation of a confluent layer of human umbilical cord-derived endothelial cells. These results warrant further research toward the generation of atrioventricular heart valve neoscaffolds on the basis of decellularized xenogeneic tissue.
Collapse
Affiliation(s)
- Alexander Weymann
- Heart and Marfan Center, Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany; Department of Cardiothoracic Transplantation and Mechanical Circulatory Support, Royal Brompton & Harefield NHS Foundation Trust, Harefield, Middlesex, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Holubova M, Lysak D, Vlas T, Vannucci L, Jindra P. Expanded cryopreserved mesenchymal stromal cells as an optimal source for graft-versus-host disease treatment. Biologicals 2014; 42:139-44. [PMID: 24548911 DOI: 10.1016/j.biologicals.2014.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/09/2014] [Accepted: 01/21/2014] [Indexed: 01/04/2023] Open
Abstract
Mesenchymal stromal cells (MSC) are fibroblast-like cells present in different types of tissues. Their immunomodulatory potential represents a promising method for post-transplant immunotherapy in the treatment of GVHD (graft-versus-host disease) with suboptimal response to standard immunosuppression. In this study we tested influence of 1-8 month-long cryopreservation on ability of MSC to suppress activation of non-specifically stimulated lymphocytes. We did not observe any changes in proliferation capacity of MSC after thawing. Lymphocytes metabolic activity was inhibited by 30% and number of dividing cells was three times smaller in the presence of MSC. Two activation markers were studied (CD25 and CD69) to confirm preservation of functional cell integrity. Expression of CD25 antigen on CD3(+)CD4(+) and CD3(+)CD4(-) cells was decreased in all co-cultivated samples. Level of CD69 expression on CD3(+)CD4(+) cells was lower in samples with added MSC (10-15% on day +2) but without reaching statistical significance. The lower expression (approximately 5%) was observed also on CD4-cells. The study confirms the preservation of immunomodulatory properties of cryopreserved and re-expanded MSC. Aliquots with cryopreserved cells can represent an optimal source for a quick preparation of MSC cell product with the possibility to apply the same cells repeatedly.
Collapse
Affiliation(s)
- Monika Holubova
- Department of Hematology and Oncology, Charles University in Prague, Medical School and Teaching Hospital in Pilsen, Pilsen, Czech Republic; Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic.
| | - Daniel Lysak
- Department of Hematology and Oncology, Charles University in Prague, Medical School and Teaching Hospital in Pilsen, Pilsen, Czech Republic; Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| | - Tomas Vlas
- Institute of Immunology and Allergology, Charles University in Prague, Medical School and Teaching Hospital in Pilsen, Pilsen, Czech Republic
| | - Luca Vannucci
- Laboratory of Immunotherapy, Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i, Prague, Czech Republic
| | - Pavel Jindra
- Czech National Marrow Donor Registry (CS-2), Pilsen, Czech Republic
| |
Collapse
|
35
|
Mizukami A, Orellana MD, Caruso SR, de Lima Prata K, Covas DT, Swiech K. Efficient expansion of mesenchymal stromal cells in a disposable fixed bed culture system. Biotechnol Prog 2013; 29:568-72. [DOI: 10.1002/btpr.1707] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 02/06/2013] [Indexed: 01/05/2023]
Affiliation(s)
- Amanda Mizukami
- Hemotherapy Center of Ribeirão Preto; Faculty of Medicine of Ribeirão Preto; University of São Paulo; CEP 14051-140 Ribeirão Preto-SP Brazil
| | - Maristela D. Orellana
- Hemotherapy Center of Ribeirão Preto; Faculty of Medicine of Ribeirão Preto; University of São Paulo; CEP 14051-140 Ribeirão Preto-SP Brazil
| | - Sâmia R. Caruso
- Hemotherapy Center of Ribeirão Preto; Faculty of Medicine of Ribeirão Preto; University of São Paulo; CEP 14051-140 Ribeirão Preto-SP Brazil
| | - Karen de Lima Prata
- Hemotherapy Center of Ribeirão Preto; Faculty of Medicine of Ribeirão Preto; University of São Paulo; CEP 14051-140 Ribeirão Preto-SP Brazil
| | - Dimas T. Covas
- Hemotherapy Center of Ribeirão Preto; Faculty of Medicine of Ribeirão Preto; University of São Paulo; CEP 14051-140 Ribeirão Preto-SP Brazil
| | - Kamilla Swiech
- Hemotherapy Center of Ribeirão Preto; Faculty of Medicine of Ribeirão Preto; University of São Paulo; CEP 14051-140 Ribeirão Preto-SP Brazil
- Dept. of Pharmaceutical Sciences; Faculty of Pharmaceutical Sciences of Ribeirão Preto; University of São Paulo; CEP 14040-903 Ribeirão Preto-SP Brazil
| |
Collapse
|
36
|
Current world literature. Curr Opin Organ Transplant 2013; 18:111-30. [PMID: 23299306 DOI: 10.1097/mot.0b013e32835daf68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Soares DM, Ginani F, Barboza CAG. Rendimento de células mesenquimais do ligamento periodontal humano submetidas a diferentes protocolos de criopreservação. REVISTA DE ODONTOLOGIA DA UNESP 2012. [DOI: 10.1590/s1807-25772012000600008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
INTRODUÇÃO: A técnica de criopreservação tem como característica cessar reversivelmente todas as funções biológicas dos tecidos vivos em baixas temperaturas e tem sido aplicada a diversas células humanas, visando à sua utilização posterior. OBJETIVO: Avaliar a proliferação de células mesenquimais do ligamento periodontal humano após a criopreservação por dois diferentes protocolos. MÉTODO: As células do ligamento periodontal foram obtidas a partir de dois dentes (terceiros molares) hígidos, com indicação de remoção cirúrgica. Após o processamento, as células foram cultivadas em placas de Petri e mantidas a 37 °C em 5% de CO2, até atingirem 70-90% de confluência, com troca de meio a cada três dias. Na primeira passagem, as células foram divididas em dois grupos e criopreservadas: Grupo -80 °C - criopreservação em ultrafreezer por 45 dias; Grupo -196 °C - criopreservação em nitrogênio líquido por 45 dias. Decorrido esse tempo, as células dos dois grupos foram descongeladas e plaqueadas para o experimento. A curva de crescimento dos grupos estudados foi traçada a partir de contagem em Câmara de Neubauer e pelo método de ensaio do MTT, nos intervalos de 24, 48 e 72 horas. Os resultados foram analisados por meio do teste de Mann‑Whitney, com nível de significância de 5%. RESULTADO: Verificou-se um crescimento ascendente nos dois protocolos utilizados, porém uma maior taxa proliferativa foi verificada no grupo criopreservado em nitrogênio líquido (p < 0,05). CONCLUSÃO: Ambos os protocolos de criopreservação estudados foram eficazes, porém a criopreservação em nitrogênio líquido (-196 °C) manteve uma maior taxa de proliferação celular em todos os intervalos de tempo.
Collapse
|