1
|
Cao Z, Wang H, Chen J, Zhang Y, Mo Q, Zhang P, Wang M, Liu H, Bao X, Sun Y, Zhang W, Yao Q. Silk-based hydrogel incorporated with metal-organic framework nanozymes for enhanced osteochondral regeneration. Bioact Mater 2023; 20:221-242. [PMID: 35702612 PMCID: PMC9163388 DOI: 10.1016/j.bioactmat.2022.05.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/02/2022] [Accepted: 05/19/2022] [Indexed: 11/17/2022] Open
Abstract
Osteochondral defects (OCD) cannot be efficiently repaired due to the unique physical architecture and the pathological microenvironment including enhanced oxidative stress and inflammation. Conventional strategies, such as the control of implant microstructure or the introduction of growth factors, have limited functions failing to manage these complex environments. Here we developed a multifunctional silk-based hydrogel incorporated with metal-organic framework nanozymes (CuTA@SF) to provide a suitable microenvironment for enhanced OCD regeneration. The incorporation of CuTA nanozymes endowed the SF hydrogel with a uniform microstructure and elevated hydrophilicity. In vitro cultivation of mesenchymal stem cells (MSCs) and chondrocytes showed that CuTA@SF hydrogel accelerated cell proliferation and enhanced cell viability, as well as had antioxidant and antibacterial properties. Under the inflammatory environment with the stimulation of IL-1β, CuTA@SF hydrogel still possessed the potential to promote MSC osteogenesis and deposition of cartilage-specific extracellular matrix (ECM). The proteomics analysis further confirmed that CuTA@SF hydrogel promoted cell proliferation and ECM synthesis. In the full-thickness OCD model of rabbit, CuTA@SF hydrogel displayed successfully in situ OCD regeneration, as evidenced by micro-CT, histology (HE, S/O, and toluidine blue staining) and immunohistochemistry (Col I and aggrecan immunostaining). Therefore, CuTA@SF hydrogel is a promising biomaterial targeted at the regeneration of OCD.
Collapse
Affiliation(s)
- Zhicheng Cao
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China
- School of Medicine, Southeast University, 210009, Nanjing, China
| | - Hongmei Wang
- School of Medicine, Southeast University, 210009, Nanjing, China
- Department of Pharmaceutical Sciences, Binzhou Medical University, 264003, Yantai, Shandong, China
| | - Jialin Chen
- School of Medicine, Southeast University, 210009, Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096, Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), China
| | - Yanan Zhang
- School of Medicine, Southeast University, 210009, Nanjing, China
| | - Qingyun Mo
- School of Medicine, Southeast University, 210009, Nanjing, China
| | - Po Zhang
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China
- School of Medicine, Southeast University, 210009, Nanjing, China
| | - Mingyue Wang
- School of Medicine, Southeast University, 210009, Nanjing, China
| | - Haoyang Liu
- School of Medicine, Southeast University, 210009, Nanjing, China
| | - Xueyang Bao
- School of Medicine, Southeast University, 210009, Nanjing, China
| | - Yuzhi Sun
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China
- School of Medicine, Southeast University, 210009, Nanjing, China
| | - Wei Zhang
- School of Medicine, Southeast University, 210009, Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096, Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), China
| | - Qingqiang Yao
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), China
| |
Collapse
|
2
|
Stone RN, Frahs SM, Hardy MJ, Fujimoto A, Pu X, Keller-Peck C, Oxford JT. Decellularized Porcine Cartilage Scaffold; Validation of Decellularization and Evaluation of Biomarkers of Chondrogenesis. Int J Mol Sci 2021; 22:6241. [PMID: 34207917 PMCID: PMC8230108 DOI: 10.3390/ijms22126241] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 12/21/2022] Open
Abstract
Osteoarthritis is a major concern in the United States and worldwide. Current non-surgical and surgical approaches alleviate pain but show little evidence of cartilage restoration. Cell-based treatments may hold promise for the regeneration of hyaline cartilage-like tissue at the site of injury or wear. Cell-cell and cell-matrix interactions have been shown to drive cell differentiation pathways. Biomaterials for clinically relevant applications can be generated from decellularized porcine auricular cartilage. This material may represent a suitable scaffold on which to seed and grow chondrocytes to create new cartilage. In this study, we used decellularization techniques to create an extracellular matrix scaffold that supports chondrocyte cell attachment and growth in tissue culture conditions. Results presented here evaluate the decellularization process histologically and molecularly. We identified new and novel biomarker profiles that may aid future cartilage decellularization efforts. Additionally, the resulting scaffold was characterized using scanning electron microscopy, fluorescence microscopy, and proteomics. Cellular response to the decellularized scaffold was evaluated by quantitative real-time PCR for gene expression analysis.
Collapse
Affiliation(s)
- Roxanne N. Stone
- Interdisciplinary Studies Program, Boise State University, Boise, ID 83725, USA;
- Biomolecular Research Center, Boise State University, Boise, ID 83725, USA; (S.M.F.); (M.J.H.); (A.F.); (X.P.); (C.K.-P.)
| | - Stephanie M. Frahs
- Biomolecular Research Center, Boise State University, Boise, ID 83725, USA; (S.M.F.); (M.J.H.); (A.F.); (X.P.); (C.K.-P.)
- Center of Biomedical Research Excellence in Matrix Biology, Boise State University, Boise, ID 83725, USA
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID 83725, USA
| | - Makenna J. Hardy
- Biomolecular Research Center, Boise State University, Boise, ID 83725, USA; (S.M.F.); (M.J.H.); (A.F.); (X.P.); (C.K.-P.)
- Center of Biomedical Research Excellence in Matrix Biology, Boise State University, Boise, ID 83725, USA
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID 83725, USA
| | - Akina Fujimoto
- Biomolecular Research Center, Boise State University, Boise, ID 83725, USA; (S.M.F.); (M.J.H.); (A.F.); (X.P.); (C.K.-P.)
- Center of Biomedical Research Excellence in Matrix Biology, Boise State University, Boise, ID 83725, USA
| | - Xinzhu Pu
- Biomolecular Research Center, Boise State University, Boise, ID 83725, USA; (S.M.F.); (M.J.H.); (A.F.); (X.P.); (C.K.-P.)
- Center of Biomedical Research Excellence in Matrix Biology, Boise State University, Boise, ID 83725, USA
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID 83725, USA
| | - Cynthia Keller-Peck
- Biomolecular Research Center, Boise State University, Boise, ID 83725, USA; (S.M.F.); (M.J.H.); (A.F.); (X.P.); (C.K.-P.)
- Center of Biomedical Research Excellence in Matrix Biology, Boise State University, Boise, ID 83725, USA
| | - Julia Thom Oxford
- Biomolecular Research Center, Boise State University, Boise, ID 83725, USA; (S.M.F.); (M.J.H.); (A.F.); (X.P.); (C.K.-P.)
- Center of Biomedical Research Excellence in Matrix Biology, Boise State University, Boise, ID 83725, USA
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID 83725, USA
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| |
Collapse
|
3
|
Darvish M, Payandeh Z, Soleimanifar F, Taheri B, Soleimani M, Islami M. Umbilical cord blood mesenchymal stem cells application in hematopoietic stem cells expansion on nanofiber three-dimensional scaffold. J Cell Biochem 2019; 120:12018-12026. [PMID: 30805977 DOI: 10.1002/jcb.28487] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/22/2018] [Accepted: 01/07/2019] [Indexed: 01/24/2023]
Abstract
Umbilical cord blood (UCB) hematopoietic stem cells (HSCs) transplantation (HSCTs) is considered as a therapeutic strategy for malignant and nonmalignant hematologic disorders. Nevertheless, the low number of HSCs obtained from each unit of UCB can be a major challenge for using these cells in adults. In addition, UCB is a rich source of mesenchymal stem cells (MSCs) creating hopes for nonaggressive and painless treatment in tissue engineering compared with bone marrow MSCs. This study was designed to evaluate the effects of UCB-MSCs application in UCB-HSCs expansion on the nanoscaffold that mimics the cell's natural niche. To achieve this goal, after flow cytometry confirmation of isolated HSCs from UCB, they were expanded on three-dimensional (3D) poly-l-lactic acid (PLLA) scaffolds fabricated by electrospinning and two-dimensional (2D)-culture systems, such as (1) HSCs-MSCs culturing on the scaffold, (2) HSCs culturing on the scaffold, (3) HSCs-MSCs culturing on 2D, and (4) HSCs culturing on 2D. After 7 days, real-time polymerase chain reaction (PCR) was performed to evaluate the CXCR4 gene expression in the mentioned groups. Moreover, for the next validation, the number of total HSCs, 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide assay, scanning electron microscopy imaging, and colony-forming unit assay were evaluated as well. The results of the study indicated that UCB-MSCs interaction with HSCs in 3D-culture systems led to the highest expansion of UCB-HSCs on day 7. Flow cytometry results showed the highest purity of HSCs cocultured with MSCs. Real-time PCR showed a significant increase in gene expression of CXCR4 in the mentioned group. The highest viability and clonogenicity were detected in the mentioned group too. Considered together, our results suggest that UCB-HSCs and MSCs coculturing on PLLA scaffold could provide a proper microenvironment that efficiently promotes UCB-HSCs expansion and UCB-MSCs can also be considered as a promising candidate for UCB-HSCTs.
Collapse
Affiliation(s)
- Maryam Darvish
- Department of Medical Biotechnology, Faculty of Medicine, Arak University of Medical Science, Arāk, Iran
| | - Zahra Payandeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Soleimanifar
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Behnaz Taheri
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Maryam Islami
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
4
|
Bicho D, Ajami S, Liu C, Reis RL, Oliveira JM. Peptide-biofunctionalization of biomaterials for osteochondral tissue regeneration in early stage osteoarthritis: challenges and opportunities. J Mater Chem B 2019; 7:1027-1044. [DOI: 10.1039/c8tb03173h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Osteoarthritis is a degenerative joint disease characterized by the progressive deterioration of articular cartilage, synovial inflammation and changes in periarticular and subchondral bone, being a leading cause of disability.
Collapse
Affiliation(s)
- D. Bicho
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra
- Guimarães
- Portugal
- ICVS/3B's – PT Government Associate Laboratory
- Braga/Guimarães
| | - S. Ajami
- Institute of Orthopaedics and Musculo-Skeletal Sci, University College London, Royal National Orthopaedic Hospital
- Stanmore
- UK
| | - C. Liu
- Institute of Orthopaedics and Musculo-Skeletal Sci, University College London, Royal National Orthopaedic Hospital
- Stanmore
- UK
| | - R. L. Reis
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra
- Guimarães
- Portugal
- ICVS/3B's – PT Government Associate Laboratory
- Braga/Guimarães
| | - J. M. Oliveira
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra
- Guimarães
- Portugal
- ICVS/3B's – PT Government Associate Laboratory
- Braga/Guimarães
| |
Collapse
|
5
|
Homing Genes Expression in Fucosyltransferase VI-Treated Umbilical Cord Blood CD133+ Cells which Expanded on Protein-Coated Nanoscaffolds. Mol Biotechnol 2018; 60:455-467. [PMID: 29730712 DOI: 10.1007/s12033-018-0086-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Umbilical cord blood (UCB)-derived hematopoietic stem cells (HSCs) are considered because of their self-renewing, differentiating, proliferating, and readily available properties. Moreover, HSCs' homing to the hematopoietic microenvironment is an important step in their transplantation process. But low content of progenitor cells in one unit of UCB and defect in the bone marrow (BM) homing limit their applications. Hence, we decided to correct this deficiency with ex vivo incubation of CD133+ cells using fucosyltransferase VI and GDP-fucose. Then C-X-C chemokines receptor-4 (CXCR4), very late activation antigen-4 (VLA4), very late activation antigen-5 (VLA5), lymphocyte function-associated antigen-1 (LFA-1), and E-cadherin (E-cad) genes expressions were investigated with the goal of homing evaluation. The purity of MACS isolated CD133+ cells and confirmation of fucosylation were done by flow cytometry, and the viability of cells seeded on protein-coated poly L-lactic acid (PLLA) scaffold was proven via MTT assay. Scanning electron microscopy (SEM), CFU assays, and expression assays of CXCR4, VLA4, VLA5, LFA-1 and E-cad by real-time PCR were performed, too. Flow cytometry data showed that isolated cells were suitable for fucosyltransferase VI (FT-VI) incubation and expansion on nanoscaffolds. MTT, CFU assays, and SEM micrographs demonstrated fibronectin (FN)-collagen-selectin (FCS)-coated scaffold serve as best environment for viability, clonogenicity, and cell attachment. High levels of homing genes expression were also observed in cells seeded on FCS-coated scaffolds. Also, CXCR4 flow cytometry analysis confirmed real-time data. FCS-PLLA scaffolds provided optimal conditions for viability of FT-VI-treated CD133+ cells, and clonogenicity with the goal of improving homing following UCB-HSCs transplantation.
Collapse
|
6
|
Dothel G, Raschi E, Rimondini R, De Ponti F. Mesenchymal stromal cell-based therapy: Regulatory and translational aspects in gastroenterology. World J Gastroenterol 2016; 22:9057-9068. [PMID: 27895395 PMCID: PMC5107589 DOI: 10.3748/wjg.v22.i41.9057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/09/2016] [Accepted: 10/19/2016] [Indexed: 02/06/2023] Open
Abstract
The past decade has witnessed an outstanding scientific production focused towards the possible clinical applications of mesenchymal stromal cells (MSCs) in autoimmune and chronic inflammatory diseases. This raised the need of novel standards to adequately address quality, efficacy and safety issues of this advanced therapy. The development of a streamlined regulation is currently hampered by the complexity of analyzing dynamic biological entities rather than chemicals. Although numerous pieces of evidence show efficacy in reducing intestinal inflammation, some inconsistencies between the mechanisms of action of rodent vs human MSCs suggest caution before assigning translational value to preclinical studies. Preliminary evidence from clinical trials showed efficacy of MSCs in the treatment of fistulizing Crohn's disease (CD), and preparations of heterologous MSCs for CD treatment are currently tested in ongoing clinical trials. However, safety issues, especially in long-term treatment, still require solid clinical data. In this regard, standardized guidelines for appropriate dosing and methods of infusion could enhance the likelihood to predict more accurately the number of responders and the duration of remission periods. In addition, elucidating MSC mechanisms of action could lead to novel and more reliable formulations such as those derived from the MSCs themselves (e.g., supernatants).
Collapse
|
7
|
CXCL13 inhibits microRNA-23a through PI3K/AKT signaling pathway in adipose tissue derived-mesenchymal stem cells. Biomed Pharmacother 2016; 83:876-880. [DOI: 10.1016/j.biopha.2016.07.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/29/2016] [Accepted: 07/31/2016] [Indexed: 01/08/2023] Open
|
8
|
Yun YR, Pham LBH, Yoo YR, Lee S, Kim HW, Jang JH. Engineering of Self-Assembled Fibronectin Matrix Protein and Its Effects on Mesenchymal Stem Cells. Int J Mol Sci 2015; 16:19645-56. [PMID: 26295389 PMCID: PMC4581317 DOI: 10.3390/ijms160819645] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/30/2015] [Accepted: 08/12/2015] [Indexed: 01/21/2023] Open
Abstract
Fibronectin (FN) contributes to cell adhesion, proliferation, and differentiation in various cell types. To enhance the activity of fibronectin at the sites of focal adhesion, we engineered a novel recombinant fibronectin (FNIII10) fragment connected to the peptide amphiphile sequence (PA), LLLLLLCCCGGDS. In this study, the effects of FNIII10-PA on rat mesenchymal stem cells (rMSCs) were compared with those of FNIII10. FNIII10-PA showed the prominent protein adhesion activity. In addition, FNIII10-PA showed a significantly higher effect on adhesion, proliferation, and differentiation of rMSCs than FNIII10. Taken together, the FNIII10-containing self-assembled sequence enhanced rMSCs adhesion, proliferation, and differentiation.
Collapse
Affiliation(s)
- Ye-Rang Yun
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Korea.
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Korea.
| | - Le B Hang Pham
- Department of Biochemistry, Inha University School of Medicine, Incheon 400-712, Korea.
| | - Yie-Ri Yoo
- Department of Biochemistry, Inha University School of Medicine, Incheon 400-712, Korea.
| | - Sujin Lee
- Department of Biochemistry, Inha University School of Medicine, Incheon 400-712, Korea.
| | - Hae-Won Kim
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Korea.
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Korea.
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 330-714, Korea.
| | - Jun-Hyeog Jang
- Department of Biochemistry, Inha University School of Medicine, Incheon 400-712, Korea.
| |
Collapse
|
9
|
Motamedian SR, Hosseinpour S, Ahsaie MG, Khojasteh A. Smart scaffolds in bone tissue engineering: A systematic review of literature. World J Stem Cells 2015; 7:657-668. [PMID: 25914772 PMCID: PMC4404400 DOI: 10.4252/wjsc.v7.i3.657] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 12/10/2014] [Accepted: 12/29/2014] [Indexed: 02/06/2023] Open
Abstract
AIM To improve osteogenic differentiation and attachment of cells. METHODS An electronic search was conducted in PubMed from January 2004 to December 2013. Studies which performed smart modifications on conventional bone scaffold materials were included. Scaffolds with controlled release or encapsulation of bioactive molecules were not included. Experiments which did not investigate response of cells toward the scaffold (cell attachment, proliferation or osteoblastic differentiation) were excluded. RESULTS Among 1458 studies, 38 met the inclusion and exclusion criteria. The main scaffold varied extensively among the included studies. Smart modifications included addition of growth factors (group I-11 studies), extracellular matrix-like molecules (group II-13 studies) and nanoparticles (nano-HA) (group III-17 studies). In all groups, surface coating was the most commonly applied approach for smart modification of scaffolds. In group I, bone morphogenetic proteins were mainly used as growth factor stabilized on polycaprolactone (PCL). In group II, collagen 1 in combination with PCL, hydroxyapatite (HA) and tricalcium phosphate were the most frequent scaffolds used. In the third group, nano-HA with PCL and chitosan were used the most. As variable methods were used, a thorough and comprehensible compare between the results and approaches was unattainable. CONCLUSION Regarding the variability in methodology of these in vitro studies it was demonstrated that smart modification of scaffolds can improve tissue properties.
Collapse
Affiliation(s)
- Saeed Reza Motamedian
- Saeed Reza Motamedian, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran PO Box 19839, Iran
| | - Sepanta Hosseinpour
- Saeed Reza Motamedian, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran PO Box 19839, Iran
| | - Mitra Ghazizadeh Ahsaie
- Saeed Reza Motamedian, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran PO Box 19839, Iran
| | - Arash Khojasteh
- Saeed Reza Motamedian, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran PO Box 19839, Iran
| |
Collapse
|