1
|
Patel KI, Saha N, Dhameliya TM, Chakraborti AK. Recent advancements in the quest of benzazoles as anti-Mycobacterium tuberculosis agents. Bioorg Chem 2025; 155:108093. [PMID: 39764919 DOI: 10.1016/j.bioorg.2024.108093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/14/2024] [Accepted: 12/22/2024] [Indexed: 01/24/2025]
Abstract
Tuberculosis (TB) remains a global health challenge, claiming numerous lives each year, despite recent advancements in drug discovery and treatment strategies. Current TB treatment typically involves long-duration chemotherapy regimens that are often accompanied by adverse effects. The introduction of new anti-TB drugs, such as Bedaquiline, Delamanid, and Pretomanid, offers hope for more effective treatment, although challenges persist keeping the quest to find new anti-TB chemotypes an incessant exercise of medicinal chemists. Towards this initiative, the benzazoles continue to draw attention and have been recognised as new anti-TB scaffolds. Benzazole-containing compounds emerged as new chemotypes with potential to offer a versatile platform for new anti-TB drug design to generate new leads for further optimization. The elucidation of their chemical properties, biological effects, and potential mechanisms of action, would lead to identify innovative candidates for TB therapy. As medicinal chemists delve deeper into the SARs and mechanisms of action of benzazole derivatives, new opportunities for creating effective and safe anti-TB medications arise. This review highlights the potential impact of benzazole-based compounds on the search for new therapeutic agents against tuberculosis, emphasizing the importance of continued research and innovation in the field.
Collapse
Affiliation(s)
- Kshitij I Patel
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Punjab 160 062, India
| | - Nirjhar Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, West Bengal 700 032, India
| | - Tejas M Dhameliya
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382 481, India
| | - Asit K Chakraborti
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Punjab 160 062, India; School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, West Bengal 700 032, India.
| |
Collapse
|
2
|
Agili F. Novel Thiazole Derivatives Containing Imidazole and Furan Scaffold: Design, Synthesis, Molecular Docking, Antibacterial, and Antioxidant Evaluation. Molecules 2024; 29:1491. [PMID: 38611769 PMCID: PMC11013646 DOI: 10.3390/molecules29071491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024] Open
Abstract
Carbothioamides 3a,b were generated in high yield by reacting furan imidazolyl ketone 1 with N-arylthiosemicarbazide in EtOH with a catalytic amount of conc. HCl. The reaction of carbothioamides 3a,b with hydrazonyl chlorides 4a-c in EtOH with triethylamine at reflux produced 1,3-thiazole derivatives 6a-f. In a different approach, the 1,3-thiazole derivatives 6b and 6e were produced by reacting 3a and 3b with chloroacetone to afford 8a and 8b, respectively, followed by diazotization with 4-methylbenzenediazonium chloride. The thiourea derivatives 3a and 3b then reacted with ethyl chloroacetate in ethanol with AcONa at reflux to give the thiazolidinone derivatives 10a and 10b. The produced compounds were tested for antioxidant and antibacterial properties. Using phosphomolybdate, promising thiazoles 3a and 6a showed the best antioxidant activities at 1962.48 and 2007.67 µgAAE/g dry samples, respectively. Thiazoles 3a and 8a had the highest antibacterial activity against S. aureus and E. coli with 28, 25 and 27, 28 mm, respectively. Thiazoles 3a and 6d had the best activity against C. albicans with 26 mm and 37 mm, respectively. Thiazole 6c had the highest activity against A. niger, surpassing cyclohexamide. Most compounds demonstrated lower MIC values than neomycin against E. coli, S. aureus and C. albicans. A molecular docking study examined how antimicrobial compounds interact with DNA gyrase B crystal structures. The study found that all of the compounds had good binding energy to the enzymes and reacted similarly to the native inhibitor with the target DNA gyrase B enzymes' key amino acids.
Collapse
Affiliation(s)
- Fatimah Agili
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| |
Collapse
|
3
|
Gurav SS, Waghmode KT, Lotlikar OA, Dandekar SN, Jadhav SR. An Efficient One-Pot Synthesis of 2-Aryl-4,5-diphenyl-1H-imidazoles with Amberlite IR-120(H) as a Reusable Heterogeneous Catalyst. ORG PREP PROCED INT 2022. [DOI: 10.1080/00304948.2022.2090221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
4
|
Siwach A, Verma PK. Synthesis and therapeutic potential of imidazole containing compounds. BMC Chem 2021; 15:12. [PMID: 33602331 PMCID: PMC7893931 DOI: 10.1186/s13065-020-00730-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 12/15/2020] [Indexed: 02/15/2023] Open
Abstract
Imidazole is a five-membered heterocyclic moiety that possesses three carbon, two nitrogen, four hydrogen atoms, and two double bonds. It is also known as 1, 3-diazole. It contains two nitrogen atoms, in which one nitrogen bear a hydrogen atom, and the other is called pyrrole type nitrogen. The imidazole name was reported by Arthur Rudolf Hantzsch (1857–1935) in 1887. 1, 3-diazole is an amphoteric in nature i.e. it shows both acidic and basic properties. It is a white or colorless solid that is highly soluble in water and other polar solvents. Due to the presence of a positive charge on either of two nitrogen atom, it shows two equivalent tautomeric forms. Imidazole was first named glyoxaline because the first synthesis has been made by glyoxal and ammonia. It is the basic core of some natural products such as histidine, purine, histamine and DNA based structures, etc. Among the different heterocyclic compounds, imidazole is better known due to its broad range of chemical and biological properties. Imidazole has become an important synthon in the development of new drugs. The derivatives of 1, 3-diazole show different biological activities such as antibacterial, antimycobacterial, anti-inflammatory, antitumor, antidiabetic, anti-allergic, antipyretic, antiviral, antioxidant, anti-amoebic, antihelmintic, antifungal and ulcerogenic activities, etc. as reported in the literature. There are different examples of commercially available drugs in the market which contains 1, 3-diazole ring such as clemizole (antihistaminic agent), etonitazene (analgesic), enviroxime (antiviral), astemizole (antihistaminic agent), omeprazole, pantoprazole (antiulcer), thiabendazole (antihelmintic), nocodazole (antinematodal), metronidazole, nitroso-imidazole (bactericidal), megazol (trypanocidal), azathioprine (anti rheumatoid arthritis), dacarbazine (Hodgkin's disease), tinidazole, ornidazole (antiprotozoal and antibacterial), etc. This present review summarized some pharmacological activities and various kinds of synthetic routes for imidazole and their derived products. ![]()
Collapse
Affiliation(s)
- Ankit Siwach
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Prabhakar Kumar Verma
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India.
| |
Collapse
|
5
|
Khandebharad AU, Sarda SR, Gill C, Agrawal BR. An Efficient Synthesis of Substituted Imidazoles Catalyzed by 3-N-Morpholinopropanesulfonic Acid (MOPS) under Ultrasound Irradiation. ORG PREP PROCED INT 2020. [DOI: 10.1080/00304948.2020.1804773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | | | - Charansingh Gill
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India
| | | |
Collapse
|
6
|
Sivakumar KK, Rajasekaran A. Synthesis, in-vitro antimicrobial and antitubercular screening of Schiff bases of 3-amino-1-phenyl-4- [2-(4-phenyl-1,3-thiazol-2-yl) hydrazin-1-ylidene]-4,5-dihydro-1H-pyrazol-5-one. J Pharm Bioallied Sci 2013; 5:126-35. [PMID: 23833518 PMCID: PMC3697191 DOI: 10.4103/0975-7406.111828] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/01/2013] [Accepted: 03/02/2013] [Indexed: 11/04/2022] Open
Abstract
PURPOSE: Synthesis and antimicrobial activity of some Schiff bases of 3-amino-1-phenyl-4- [2-(4-phenyl-1,3-thiazol-2-yl) hydrazin-1-ylidene]-4,5-dihydro-1H-pyrazol-5-ones (TZP4a-l) are described. MATERIALS AND METHODS: Structures of the synthesized compounds were confirmed using infrared, 1H nuclear magnetic resonance, and mass spectral data. Synthesized compounds were tested in-vitro against four Gram-positive and four Gram-negative bacterial strains, three fungal strains and two mycobacterial strains. Title compounds were screened its in-vitro cytotoxicity (IC50) by 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay using mouse embryonic fibroblasts cell line (NIH 3T3). RESULTS AND DISCUSSION: Compounds TZP4 g and TZP4 h were found to be significant activity against Bacillus substilis (bacteria) and Aspergillus niger (fungi). In-vitro anti-tuberculosis (TB) activity of compound TZP4g showed appreciable antitubercular activity against Mycobacterium tuberculosis H37Rv strain (minimum inhibitory concentration [MIC] =0.6.48 × 10−3 μM/mL) which was 1.69 and 3.91 times more active than the standard drug, pyrazinamide (25.38 × 10−3 μM/mL) and streptomycin (MIC = 11.01 × 10−3 μM/mL), respectively. Their in-vitro cytotoxicity (IC50) was determined to establish a selectivity index (SI) (SI = IC50/MIC). Compounds TZP4 c, TZP4 g, and TZP4 h have SI 82.85, 168.88, and 199.07, respectively. CONCLUSION: All the title compounds had mild toxicity on the mouse embryonic fibroblasts NIH 3T3 cells (IC50 ≥ 100 μM). In comparison to the results of toxicity and antimycobacterial activity tests, it was observed that the activity of the compounds is not due to general toxicity effect; however, their antimycobacterial activity can be possibly because of their selective antimycobacterial effect. We concluded from our investigations that TZP4 c, TZP4 g, and TZP4 h may be considered promising for the development of new anti-TB agents.
Collapse
Affiliation(s)
- K K Sivakumar
- Department of Pharmaceutical Chemistry, Karpagam University, Coimbatore, Tamil Nadu, India
| | | |
Collapse
|
7
|
Zhang L, Peng XM, Damu GLV, Geng RX, Zhou CH. Comprehensive review in current developments of imidazole-based medicinal chemistry. Med Res Rev 2013; 34:340-437. [PMID: 23740514 DOI: 10.1002/med.21290] [Citation(s) in RCA: 499] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Imidazole ring is an important five-membered aromatic heterocycle widely present in natural products and synthetic molecules. The unique structural feature of imidazole ring with desirable electron-rich characteristic is beneficial for imidazole derivatives to readily bind with a variety of enzymes and receptors in biological systems through diverse weak interactions, thereby exhibiting broad bioactivities. The related research and developments of imidazole-based medicinal chemistry have become a rapidly developing and increasingly active topic. Particularly, numerous imidazole-based compounds as clinical drugs have been extensively used in the clinic to treat various types of diseases with high therapeutic potency, which have shown the enormous development value. This work systematically gives a comprehensive review in current developments of imidazole-based compounds in the whole range of medicinal chemistry as anticancer, antifungal, antibacterial, antitubercular, anti-inflammatory, antineuropathic, antihypertensive, antihistaminic, antiparasitic, antiobesity, antiviral, and other medicinal agents, together with their potential applications in diagnostics and pathology. It is hoped that this review will be helpful for new thoughts in the quest for rational designs of more active and less toxic imidazole-based medicinal drugs, as well as more effective diagnostic agents and pathologic probes.
Collapse
Affiliation(s)
- Ling Zhang
- Laboratory of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | | | | | | | | |
Collapse
|
8
|
7-chloro-3-(substituted benzylidene/phenyl ethylidene amino)-2-phenylquinazolin-4(3H)-ones: synthesis, antimicrobial and antitubercular evaluation. Med Chem Res 2012. [DOI: 10.1007/s00044-011-9813-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
9
|
Supuran CT, Scozzafava A. Heterocyclic urea derivatives and methods of use thereof (WO2010142978). Expert Opin Ther Pat 2012; 22:193-7. [DOI: 10.1517/13543776.2012.656594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|