1
|
Yang BF, Li D, Liu CL, Luo Y, Shi J, Guo XQ, Fan HJ, Lv Q. Advances in rhabdomyolysis: A review of pathogenesis, diagnosis, and treatment. Chin J Traumatol 2025:S1008-1275(25)00010-0. [PMID: 40082140 DOI: 10.1016/j.cjtee.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/21/2024] [Accepted: 10/25/2024] [Indexed: 03/16/2025] Open
Abstract
Rhabdomyolysis (RM) is a multifactorial clinical syndrome characterized by the disintegration and necrosis of muscle tissue, leading to the release of cellular contents into the circulation. One of the most severe complications of RM is acute kidney injury, with a mortality rate of 20%-50%. Early and timely diagnosis is the key to improving the prognosis of patients with RM. The etiology of RM is complex and associated with various traumas, drugs, medications, and hereditary diseases, and the clinical symptoms are nonspecific. Therefore, its diagnosis highly relies on the doctor's experience and the level of medical equipment. However, RM often occurs in situations with limited medical resources, such as natural disasters, battlefields, and large-scale traffic accidents. In these scenarios, the varying levels of expertise among rescue personnel can lead to delays in diagnosis and treatment, thereby increasing the risk of mortality. This article provides a comprehensive review of the etiology, pathogenesis, complications, diagnostic, and treatment methods of RM. It also aims to offer new perspectives on the diagnosis and prognosis of RM by integrating machine learning and artificial intelligence. It is believed that this article can help pre-hospital rescuers and in-hospital doctors have a comprehensive understanding of RM to improve the patients' outcomes and overcome the challenges.
Collapse
Affiliation(s)
- Bo-Fan Yang
- School of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China
| | - Duo Li
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, 325000, Zhejiang Province, China
| | - Chun-Li Liu
- School of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, 325000, Zhejiang Province, China
| | - Yu Luo
- School of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, 325000, Zhejiang Province, China
| | - Jie Shi
- School of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, 325000, Zhejiang Province, China
| | - Xiao-Qin Guo
- School of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, 325000, Zhejiang Province, China
| | - Hao-Jun Fan
- School of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, 325000, Zhejiang Province, China
| | - Qi Lv
- School of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, 325000, Zhejiang Province, China.
| |
Collapse
|
2
|
Mishra KA, Sethi KK. Unveiling tomorrow: Carbonic anhydrase activators and inhibitors pioneering new frontiers in Alzheimer's disease. Arch Pharm (Weinheim) 2024:e2400748. [PMID: 39506506 DOI: 10.1002/ardp.202400748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder and a principal basis of dementia in the elderly population globally. Recently, human carbonic anhydrases (hCAs, EC 4.2.1.1) were demonstrated as possible new targets for treating AD. hCAs are vital for maintaining pH balance and performing other physiological processes as they catalyze the reversible hydration of carbon dioxide to bicarbonate and a proton. Current research indicates that hCA plays a role in brain functions critical for transmitting neural signals. Activation of carbonic anhydrase (CA) has emerged as a promising avenue in addressing memory loss and cognitive issues. Conversely, the exploration of CA inhibition represents a novel frontier in this field. By enhancing glial fitness and cerebrovascular health and blocking amyloid-β (Aβ)-induced mitochondrial dysfunction pathways, cytochrome C (CytC) release, caspase 9 activation, and H2O2 generation in neurons, CA inhibitors improve cognition and lessen the pathology caused by Aβ. Recent research has pushed hCAs into the spotlight as critical players in AD pathogenesis and precise therapeutic targets. The captivating dilemma of choosing between hCA inhibitors and activators looms large, as inhibitors reduce Aβ aggregation and improve cerebral blood flow, while activators enhance cerebrovascular functions and restore pH balance. The current review sheds light on the clinical evidence for hCAs and the roles of inhibitors and activators in AD. Additionally, this review offers a fascinating outlook on the data that may aid medicinal chemists in designing and developing new leads that are more effective and selective for upcoming in vitro and in vivo studies, allowing for the discovery and introduction of novel drug candidates for the treatment of AD to the market and into the clinical pipeline.
Collapse
Affiliation(s)
- Km Abha Mishra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Guwahati, Guwahati, Assam, India
| | - Kalyan K Sethi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Guwahati, Guwahati, Assam, India
| |
Collapse
|
3
|
Yu Y, Sternicki LM, Hilko DH, Jarrott RJ, Di Trapani G, Tonissen KF, Poulsen SA. Investigating Active Site Binding of Ligands to High and Low Activity Carbonic Anhydrase Enzymes Using Native Mass Spectrometry. J Med Chem 2024; 67:15862-15872. [PMID: 39161321 DOI: 10.1021/acs.jmedchem.4c01512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Carbonic anhydrases (CAs) are a family of enzymes that play an important pH regulatory role in health and disease. While different CA isozymes have a high degree of structural similarity, they have variable enzymatic activity, with CA III being the least active and having less than 1% of the activity of CA II, the most active. Furthermore, ligand binding studies for CA III are limited, and a resulting lack of chemical probes impedes understanding of this CA isozyme in comparison to other CA family members where studies are abundant. Therefore, we employed native mass spectrometry (nMS), also known as intact mass spectrometry, to assess ligand binding to CA II and CA III and discovered two novel compounds that for the first time display strong binding to CA III. We present a new data visualization and quantification tool developed to display native mass spectra as an intuitive stacked heat map representation for rapidly interpreting the results of ligand-protein binding from nMS screening.
Collapse
Affiliation(s)
- Yezhou Yu
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
- School of Environment and Science, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Louise M Sternicki
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - David H Hilko
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Russell J Jarrott
- School of Environment and Science, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Giovanna Di Trapani
- School of Environment and Science, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Kathryn F Tonissen
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
- School of Environment and Science, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Sally-Ann Poulsen
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
- School of Environment and Science, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| |
Collapse
|
4
|
Giovannuzzi S, Bonardi A, Gratteri P, Nocentini A, Supuran CT. Discovery of the first-in-class potent and isoform-selective human carbonic anhydrase III inhibitors. J Enzyme Inhib Med Chem 2023; 38:2202360. [PMID: 37092262 PMCID: PMC10128460 DOI: 10.1080/14756366.2023.2202360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/25/2023] Open
Abstract
Considering the unrecognised physio-pathological role of human carbonic anhydrase III (hCA III), a structure-based drug design was set up to identify the first-in-class potent and selective inhibitors of this neglected isoform. hCA III targeting was planned considering a unique feature of its active site among the other hCA isoforms, i.e. the Leu198/Phe198 substitution which interferes with the binding of aromatic/heterocyclic sulfonamides and other inhibitors. Thus, new aliphatic primary sulfonamides possessing long and flexible (CH2)nSO2NH2 moieties were designed to coordinate the zinc(II) ion, bypassing the bulky Phe198 residue. They incorporate 1,2,3-triazole linkers which connect the tail moieties to the sulfonamide head, enhancing thus the contacts at the active site entrance. Some of these compounds act as nanomolar and selective inhibitors of hCA III over other isoforms. Docking/molecular dynamics simulations were used to investigate ligand/target interactions for these sulfonamides which might improve our understanding of the physio-pathological roles of hCA III.
Collapse
Affiliation(s)
- Simone Giovannuzzi
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, Firenze, Italy
| | - Alessandro Bonardi
- NEUROFARBA Department, Laboratory of Molecular Modeling, Cheminformatics & QSAR, University of Florence, Firenze, Italy
| | - Paola Gratteri
- NEUROFARBA Department, Laboratory of Molecular Modeling, Cheminformatics & QSAR, University of Florence, Firenze, Italy
| | - Alessio Nocentini
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, Firenze, Italy
- NEUROFARBA Department, Laboratory of Molecular Modeling, Cheminformatics & QSAR, University of Florence, Firenze, Italy
| | - Claudiu T. Supuran
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, Firenze, Italy
| |
Collapse
|
5
|
Ostrowski P, Bonczar M, Avram AE, Lippi G, Henry BM. Safety monitoring of drug-induced muscle injury and rhabdomyolysis: a biomarker-guided approach for clinical practice and drug trials. Clin Chem Lab Med 2023; 61:1688-1699. [PMID: 37184941 DOI: 10.1515/cclm-2023-0313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/28/2023] [Indexed: 05/16/2023]
Abstract
Skeletal muscle tissue (SKM) may be damaged due to mechanical, metabolic, and exertional causes. However, drug-induced myopathy is among the most frequent causes of muscle disease. The clinical picture of drug-induced myopathies may be highly variable. It may present as asymptomatic or mild myalgias, with or without muscle weakness, which are likely underreported. However, it may also appear as chronic myopathy with severe weakness and, rarely, even as massive rhabdomyolysis with acute kidney injury (AKI). Unfortunately, the available biomarkers for SKM injury do not fully meet the needs for satisfactory detection of drug-induced damage, both in clinical and research settings, mainly due to their low sensitivity and specificity. Therefore, the present study proposes a strategy for drug safety monitoring using the available biomarkers of SKM injury. Moreover, we will discuss mechanisms of drug-induced SKM injury, traditional laboratory testing for SKM injury, and novel skeletal myocyte biomarkers under investigation. This can be incredibly useful in both clinical practice and for de-challenge/re-challenge investigational trials where the risk of drug-induced SKM injury is present.
Collapse
Affiliation(s)
- Patryk Ostrowski
- Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Michał Bonczar
- Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | | | - Giuseppe Lippi
- Section of Clinical Biochemistry and School of Medicine, University Hospital of Verona, Verona, Italy
| | - Brandon M Henry
- Cmed Research Inc., Morrisville, NC, USA
- Clinical Laboratory, Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| |
Collapse
|
6
|
Johansson C, Hunt H, Signorelli M, Edfors F, Hober A, Svensson AS, Tegel H, Forstström B, Aartsma-Rus A, Niks E, Spitali P, Uhlén M, Szigyarto CAK. Orthogonal proteomics methods warrant the development of Duchenne muscular dystrophy biomarkers. Clin Proteomics 2023; 20:23. [PMID: 37308827 DOI: 10.1186/s12014-023-09412-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 06/01/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Molecular components in blood, such as proteins, are used as biomarkers to detect or predict disease states, guide clinical interventions and aid in the development of therapies. While multiplexing proteomics methods promote discovery of such biomarkers, their translation to clinical use is difficult due to the lack of substantial evidence regarding their reliability as quantifiable indicators of disease state or outcome. To overcome this challenge, a novel orthogonal strategy was developed and used to assess the reliability of biomarkers and analytically corroborate already identified serum biomarkers for Duchenne muscular dystrophy (DMD). DMD is a monogenic incurable disease characterized by progressive muscle damage that currently lacks reliable and specific disease monitoring tools. METHODS Two technological platforms are used to detect and quantify the biomarkers in 72 longitudinally collected serum samples from DMD patients at 3 to 5 timepoints. Quantification of the biomarkers is achieved by detection of the same biomarker fragment either through interaction with validated antibodies in immuno-assays or through quantification of peptides by Parallel Reaction Monitoring Mass Spectrometry assay (PRM-MS). RESULTS Five, out of ten biomarkers previously identified by affinity-based proteomics methods, were confirmed to be associated with DMD using the mass spectrometry-based method. Two biomarkers, carbonic anhydrase III and lactate dehydrogenase B, were quantified with two independent methods, sandwich immunoassays and PRM-MS, with Pearson correlations of 0.92 and 0.946 respectively. The median concentrations of CA3 and LDHB in DMD patients was elevated in comparison to those in healthy individuals by 35- and 3-fold, respectively. Levels of CA3 vary between 10.26 and 0.36 ng/ml in DMD patients whereas those of LDHB vary between 15.1 and 0.8 ng/ml. CONCLUSIONS These results demonstrate that orthogonal assays can be used to assess the analytical reliability of biomarker quantification assays, providing a means to facilitate the translation of biomarkers to clinical practice. This strategy also warrants the development of the most relevant biomarkers, markers that can be reliably quantified with different proteomics methods.
Collapse
Affiliation(s)
- Camilla Johansson
- Department of Protein Science, School of Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Helian Hunt
- Science for Life Laboratory, KTH - Royal Institute of Technology, Solna, Sweden
| | - Mirko Signorelli
- Mathematical Institute, Leiden University, Leiden, The Netherlands
| | - Fredrik Edfors
- Science for Life Laboratory, KTH - Royal Institute of Technology, Solna, Sweden
| | - Andreas Hober
- Science for Life Laboratory, KTH - Royal Institute of Technology, Solna, Sweden
| | - Anne-Sophie Svensson
- Department of Protein Science, School of Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Hanna Tegel
- Department of Protein Science, School of Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Björn Forstström
- Science for Life Laboratory, KTH - Royal Institute of Technology, Solna, Sweden
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Erik Niks
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Pietro Spitali
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Mathias Uhlén
- Science for Life Laboratory, KTH - Royal Institute of Technology, Solna, Sweden
| | - Cristina Al-Khalili Szigyarto
- Department of Protein Science, School of Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden.
- Science for Life Laboratory, KTH - Royal Institute of Technology, Solna, Sweden.
| |
Collapse
|
7
|
Huang X, Winter D, Glover DJ, Supuran CT, Donald WA. Effects of Phosphorylation on the Activity, Inhibition and Stability of Carbonic Anhydrases. Int J Mol Sci 2023; 24:ijms24119275. [PMID: 37298228 DOI: 10.3390/ijms24119275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Carbonic anhydrases (CAs) are a metalloenzyme family that have important roles in cellular processes including pH homeostasis and have been implicated in multiple pathological conditions. Small molecule inhibitors have been developed to target carbonic anhydrases, but the effects of post-translational modifications (PTMs) on the activity and inhibition profiles of these enzymes remain unclear. Here, we investigate the effects of phosphorylation, the most prevalent carbonic anhydrase PTM, on the activities and drug-binding affinities of human CAI and CAII, two heavily modified active isozymes. Using serine to glutamic acid (S > E) mutations to mimic the effect of phosphorylation, we demonstrate that phosphomimics at a single site can significantly increase or decrease the catalytic efficiencies of CAs, depending on both the position of the modification and the CA isoform. We also show that the S > E mutation at Ser50 of hCAII decreases the binding affinities of hCAII with well-characterized sulphonamide inhibitors including by over 800-fold for acetazolamide. Our findings suggest that CA phosphorylation may serve as a regulatory mechanism for enzymatic activity, and affect the binding affinity and specificity of small, drug and drug-like molecules. This work should motivate future studies examining the PTM-modification forms of CAs and their distributions, which should provide insights into CA physiopathological functions and facilitate the development of 'modform-specific' carbonic anhydrase inhibitors.
Collapse
Affiliation(s)
- Xiaojing Huang
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Daniel Winter
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Dominic J Glover
- School of Biotechnology & Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Claudiu T Supuran
- Neurofarba Department, Sezione di Scienze Farmaceutiche, Universita degli Studi di Firenze, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
8
|
A Proof of Principle Proteomic Study Detects Dystrophin in Human Plasma: Implications in DMD Diagnosis and Clinical Monitoring. Int J Mol Sci 2023; 24:ijms24065215. [PMID: 36982290 PMCID: PMC10049465 DOI: 10.3390/ijms24065215] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a rare neuromuscular disease caused by pathogenic variations in the DMD gene. There is a need for robust DMD biomarkers for diagnostic screening and to aid therapy monitoring. Creatine kinase, to date, is the only routinely used blood biomarker for DMD, although it lacks specificity and does not correlate with disease severity. To fill this critical gap, we present here novel data about dystrophin protein fragments detected in human plasma by a suspension bead immunoassay using two validated anti-dystrophin-specific antibodies. Using both antibodies, a reduction of the dystrophin signal is detected in a small cohort of plasma samples from DMD patients when compared to healthy controls, female carriers, and other neuromuscular diseases. We also demonstrate the detection of dystrophin protein by an antibody-independent method using targeted liquid chromatography mass spectrometry. This last assay detects three different dystrophin peptides in all healthy individuals analysed and supports our finding that dystrophin protein is detectable in plasma. The results of our proof-of-concept study encourage further studies in larger sample cohorts to investigate the value of dystrophin protein as a low invasive blood biomarker for diagnostic screening and clinical monitoring of DMD.
Collapse
|
9
|
Hamid Z, Zimmerman KD, Guillen-Ahlers H, Li C, Nathanielsz P, Cox LA, Olivier M. Assessment of label-free quantification and missing value imputation for proteomics in non-human primates. BMC Genomics 2022; 23:496. [PMID: 35804317 PMCID: PMC9264528 DOI: 10.1186/s12864-022-08723-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 06/23/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Reliable and effective label-free quantification (LFQ) analyses are dependent not only on the method of data acquisition in the mass spectrometer, but also on the downstream data processing, including software tools, query database, data normalization and imputation. In non-human primates (NHP), LFQ is challenging because the query databases for NHP are limited since the genomes of these species are not comprehensively annotated. This invariably results in limited discovery of proteins and associated Post Translational Modifications (PTMs) and a higher fraction of missing data points. While identification of fewer proteins and PTMs due to database limitations can negatively impact uncovering important and meaningful biological information, missing data also limits downstream analyses (e.g., multivariate analyses), decreases statistical power, biases statistical inference, and makes biological interpretation of the data more challenging. In this study we attempted to address both issues: first, we used the MetaMorphues proteomics search engine to counter the limits of NHP query databases and maximize the discovery of proteins and associated PTMs, and second, we evaluated different imputation methods for accurate data inference. We used a generic approach for missing data imputation analysis without distinguising the potential source of missing data (either non-assigned m/z or missing values across runs). RESULTS Using the MetaMorpheus proteomics search engine we obtained quantitative data for 1622 proteins and 10,634 peptides including 58 different PTMs (biological, metal and artifacts) across a diverse age range of NHP brain frontal cortex. However, among the 1622 proteins identified, only 293 proteins were quantified across all samples with no missing values, emphasizing the importance of implementing an accurate and statiscaly valid imputation method to fill in missing data. In our imputation analysis we demonstrate that Single Imputation methods that borrow information from correlated proteins such as Generalized Ridge Regression (GRR), Random Forest (RF), local least squares (LLS), and a Bayesian Principal Component Analysis methods (BPCA), are able to estimate missing protein abundance values with great accuracy. CONCLUSIONS Overall, this study offers a detailed comparative analysis of LFQ data generated in NHP and proposes strategies for improved LFQ in NHP proteomics data.
Collapse
Affiliation(s)
- Zeeshan Hamid
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Kip D Zimmerman
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Hector Guillen-Ahlers
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Cun Li
- Southwest National Primate Research Center, San Antonio, TX, USA
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
| | - Peter Nathanielsz
- Southwest National Primate Research Center, San Antonio, TX, USA
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
| | - Laura A Cox
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Southwest National Primate Research Center, San Antonio, TX, USA
| | - Michael Olivier
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
10
|
Dowling P, Gargan S, Zweyer M, Sabir H, Swandulla D, Ohlendieck K. Proteomic profiling of carbonic anhydrase CA3 in skeletal muscle. Expert Rev Proteomics 2021; 18:1073-1086. [PMID: 34890519 DOI: 10.1080/14789450.2021.2017776] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Carbonic anhydrase (CA) is a key enzyme that mediates the reversible hydration of carbon dioxide. Skeletal muscles contain high levels of the cytosolic isoform CA3. This enzyme has antioxidative function and plays a crucial role in the maintenance of intracellular pH homeostasis. AREAS COVERED Since elevated levels of serum CA3, often in combination with other muscle-specific proteins, are routinely used as a marker of general muscle damage, it was of interest to examine recent analyses of this enzyme carried out by modern proteomics. This review summarizes the mass spectrometry-based identification and evaluation of CA3 in normal, adapting, dystrophic, and aging skeletal muscle tissues. EXPERT OPINION The mass spectrometric characterization of CA3 confirmed this enzyme as a highly useful marker of both physiological and pathophysiological alterations in skeletal muscles. Cytosolic CA3 is clearly enriched in slow-twitching type I fibers, which makes it an ideal marker for studying fiber type shifting and muscle adaptations. Importantly, neuromuscular diseases feature distinct alterations in CA3 in skeletal muscle tissues versus biofluids, such as serum. Characteristic changes of CA3 in age-related muscle wasting and dystrophinopathy established this enzyme as a suitable biomarker candidate for differential diagnosis and monitoring of disease progression and therapeutic impact.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| | - Margit Zweyer
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| | - Hemmen Sabir
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| | | | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| |
Collapse
|
11
|
Carbonic Anhydrase Inhibitors and Epilepsy: State of the Art and Future Perspectives. Molecules 2021; 26:molecules26216380. [PMID: 34770789 PMCID: PMC8588504 DOI: 10.3390/molecules26216380] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022] Open
Abstract
Carbonic anhydrases (CAs) are a group of ubiquitously expressed metalloenzymes that catalyze the reversible hydration/dehydration of CO2/HCO3. Thus, they are involved in those physiological and pathological processes in which cellular pH buffering plays a relevant role. The inhibition of CAs has pharmacologic applications for several diseases. In addition to the well-known employment of CA inhibitors (CAIs) as diuretics and antiglaucoma drugs, it has recently been demonstrated that CAIs could be considered as valid therapeutic agents against obesity, cancer, kidney dysfunction, migraine, Alzheimer's disease and epilepsy. Epilepsy is a chronic brain disorder that dramatically affects people of all ages. It is characterized by spontaneous recurrent seizures that are related to a rapid change in ionic composition, including an increase in intracellular potassium concentration and pH shifts. It has been reported that CAs II, VII and XIV are implicated in epilepsy. In this context, selective CAIs towards the mentioned isoforms (CAs II, VII and XIV) have been proposed and actually exploited as anticonvulsants agents in the treatment of epilepsy. Here, we describe the research achievements published on CAIs, focusing on those clinically used as anticonvulsants. In particular, we examine the new CAIs currently under development that might represent novel therapeutic options for the treatment of epilepsy.
Collapse
|
12
|
Ozsoy HZ. Anticonvulsant Effects of Carbonic Anhydrase Inhibitors: The Enigmatic Link Between Carbonic Anhydrases and Electrical Activity of the Brain. Neurochem Res 2021; 46:2783-2799. [PMID: 34226984 DOI: 10.1007/s11064-021-03390-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/08/2021] [Accepted: 06/25/2021] [Indexed: 10/20/2022]
Abstract
Acetazolamide (ACZ), a sulfonamide carbonic anhydrase (CA) inhibitor, was first introduced into medical use as a diuretic in the1950s. Shortly after its introduction, its antiglaucoma and anticonvulsant properties came to light. Subsequently, studies of ACZ have explored a plethora of neurophysiological functions of CAs in the CNS. In addition, topiramate (TPM) and zonisamide (ZNS), which were developed as antiepileptic drugs (AEDs) in the1990s, were found to have the ability to inhibit CAs. How CA inhibition prevents seizures is elusive. CA expression and activity are extensively detected in neurons, the choroid plexus, oligodendrocytes and astrocytes. TPM and ZNS appear to produce multimodal actions in the CNS as well as CA inhibition unlike ACZ. Nonetheless, CA inhibitors share some common denominators. They do not only affect the fine equilibrium among CO2, H+ and HCO3- in the extraneuronal and intraneuronal milieu, but also modulate the activity of ligand gated ion channels at the neuronal level such as GABA-A signaling through inhibiting CA-replenished HCO3- efflux. In addition, there are studies reporting their ability to alter Ca2+ kinetics through modulation of ligand gated Ca2+ channels, voltage gated Ca2+ channels (VGCC) or Ca2+-induced Ca2+ release channels (CICRC). The present study will review the involvement of CAs in the formation of epileptogenesis, and likely mechanisms by which CA inhibitors suppress the electrical activity of the brain. The common properties of CA inhibitors provide some clues for a possible link among metabolism, CAs, Ca2+ and GABA signaling.
Collapse
|
13
|
Liu D, Wong CC, Zhou Y, Li C, Chen H, Ji F, Go MYY, Wang F, Su H, Wei H, Cai Z, Wong N, Wong VWS, Yu J. Squalene Epoxidase Induces Nonalcoholic Steatohepatitis Via Binding to Carbonic Anhydrase III and is a Therapeutic Target. Gastroenterology 2021; 160:2467-2482.e3. [PMID: 33647280 DOI: 10.1053/j.gastro.2021.02.051] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUNDS & AIMS Squalene epoxidase (SQLE) is the rate-limiting enzyme for cholesterol biosynthesis. We elucidated the functional significance, molecular mechanisms, and clinical impact of SQLE in nonalcoholic steatohepatitis (NASH). METHODS We performed studies with hepatocyte-specific Sqle overexpression transgenic (Sqle tg) mice and mice given high-fat high-cholesterol (HFHC) or methionine- and choline-deficient (MCD) diet to induce NASH. SQLE downstream target carbonic anhydrase III (CA3) was identified using co-immunoprecipitation and Western Blot. Some mice were given SQLE inhibitor (terbinafine) and CA3 inhibitor (acetazolamide) to study the therapeutic effects in NASH. Human samples (N = 217) including 65 steatoses, 80 NASH, and 72 healthy controls were analyzed for SQLE levels in liver tissue and in serum. RESULTS SQLE is highly up-regulated in human NASH and mouse models of NASH. Sqle tg mice triggered spontaneous insulin resistance, hepatic steatosis, liver injury, and accelerated HFHC or MCD diet-induced NASH development. Mechanistically, SQLE tg mice caused hepatic cholesterol accumulation, thereby triggering proinflammatory nuclear factor-κB signaling and steatohepatitis. SQLE directly bound to CA3, which induced sterol regulatory element-binding protein 1C activation, acetyl-CoA carboxylase, fatty acid synthase, and stearoyl-CoA desaturase1 expression and de novo hepatic lipogenesis. Combined targeting SQLE (terbinafine) and CA3 (acetazolamide) synergistically ameliorated NASH in mice with superior efficacy to either drug alone. Serum SQLE with CA3 could distinguish patients with NASH from steatosis and healthy controls (area under the receiver operating characteristic curve, 0.815; 95% confidence interval, 0.758-0.871). CONCLUSIONS SQLE drives the initiation and progression of NASH through inducing cholesterol biosynthesis, and SQLE/CA3 axis-mediated lipogenesis. Combined targeting of SQLE and CA3 confers therapeutic benefit in NASH. Serum SQLE and CA3 are novel biomarkers for the noninvasive diagnosis of patients with NASH.
Collapse
Affiliation(s)
- Dabin Liu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Chun Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Yunfei Zhou
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Chuangen Li
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Huarong Chen
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Fenfen Ji
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Minnie Y Y Go
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Feixue Wang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Hao Su
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Hong Wei
- Department of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Nathalie Wong
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Vincent W S Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
14
|
Transcriptomic Analysis of LNCaP Tumor Xenograft to Elucidate the Components and Mechanisms Contributed by Tumor Environment as Targets for Dietary Prostate Cancer Prevention Studies. Nutrients 2021; 13:nu13031000. [PMID: 33808801 PMCID: PMC8003580 DOI: 10.3390/nu13031000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 11/24/2022] Open
Abstract
LNCaP athymic xenograft model has been widely used to allow researchers to examine the effects and mechanisms of experimental treatments such as diet and diet-derived cancer preventive and therapeutic compounds on prostate cancer. However, the biological characteristics of human LNCaP cells before/after implanting in athymic mouse and its relevance to clinical human prostate outcomes remain unclear and may dictate interpretation of biological efficacies/mechanisms of diet/diet-derived experimental treatments. In this study, transcriptome profiles and pathways of human prostate LNCaP cells before (in vitro) and after (in vivo) implanting into xenograft mouse were compared using RNA-sequencing technology (RNA-seq) followed by bioinformatic analysis. A shift from androgen-responsive to androgen nonresponsive status was observed when comparing LNCaP xenograft tumor to culture cells. Androgen receptor and aryl-hydrocarbon pathway were found to be inhibited and interleukin-1 (IL-1) mediated pathways contributed to these changes. Coupled with in vitro experiments modeling for androgen exposure, cell-matrix interaction, inflammation, and hypoxia, we identified specific mechanisms that may contribute to the observed changes in genes and pathways. Our results provide critical baseline transcriptomic information for a tumor xenograft model and the tumor environments that might be associated with regulating the progression of the xenograft tumor, which may influence interpretation of diet/diet-derived experimental treatments.
Collapse
|
15
|
El-Darzi N, Mast N, Petrov AM, Pikuleva IA. 2-Hydroxypropyl-β-cyclodextrin reduces retinal cholesterol in wild-type and Cyp27a1 -/- Cyp46a1 -/- mice with deficiency in the oxysterol production. Br J Pharmacol 2020; 178:3220-3234. [PMID: 32698250 DOI: 10.1111/bph.15209] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE 2-Hydroxypropyl-β-cyclodextrin (HPCD) is an FDA approved vehicle for drug delivery and an efficient cholesterol-lowering agent. HPCD was proposed to lower tissue cholesterol via multiple mechanisms including those mediated by oxysterols. CYP27A1 and CYP46A1 are the major oxysterol-producing enzymes in the retina that convert cholesterol to 27- and 24-hydroxycholesterol, respectively. We investigated whether HPCD treatments affected the retina of wild-type and Cyp27a1-/- Cyp46a1-/- mice that do not produce the major retinal oxysterols. EXPERIMENTAL APPROACH HPCD administration was either by i.p., p.o. or s.c. Delivery to the retina was confirmed by angiography using the fluorescently labelled HPCD. Effects on the levels of retinal sterols, mRNA and proteins were evaluated by GC-MS, qRT-PCR and label-free approach, respectively. KEY RESULTS In both wild-type and Cyp27a1-/- Cyp46a1-/- mice, HPCD crossed the blood-retinal barrier when delivered i.p. and lowered the retinal cholesterol content when administered p.o. and s.c. In both genotypes, oral HPCD treatment affected the expression of cholesterol-related genes as well as the proteins involved in endocytosis, lysosomal function and lipid homeostasis. Mechanistically, liver X receptors and the altered expression of Lipe (hormone-sensitive lipase), Nceh1 (neutral cholesterol ester hydrolase 1) and NLTP (non-specific lipid-transfer protein) could mediate some of the HPCD effects. CONCLUSIONS AND IMPLICATIONS HPCD treatment altered retinal cholesterol homeostasis and is a potential therapeutic approach for the reduction of drusen and subretinal drusenoid deposits, cholesterol-rich lesions and hallmarks of age-related macular degeneration. LINKED ARTICLES This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.
Collapse
Affiliation(s)
- Nicole El-Darzi
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Natalia Mast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Alexey M Petrov
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
16
|
Lionetto MG, Caricato R, Giordano ME. Carbonic Anhydrase Sensitivity to Pesticides: Perspectives for Biomarker Development. Int J Mol Sci 2020; 21:ijms21103562. [PMID: 32443560 PMCID: PMC7278955 DOI: 10.3390/ijms21103562] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/13/2020] [Accepted: 05/17/2020] [Indexed: 02/06/2023] Open
Abstract
Carbonic anhydrase (CA) is a widespread metalloenzyme playing a pivotal role in several physiological processes. Many studies have demonstrated the in vitro and in vivo sensitivity of CA to the exposure to several classes of pesticides in both humans and wildlife. This review aims to analyze and to discuss the literature available in this field, providing a comprehensive view useful to foresee perspectives for the development of novel CA-based pesticide biomarkers. The analysis of the available data highlighted the ability of several pesticide molecules to interact directly with the enzyme in humans and wildlife and to inhibit CA activity in vitro and in vivo, with possible alterations of key physiological functions. The analysis disclosed key areas of further research and, at the same time, identified some perspectives for the development of novel CA-based sensitive biomarkers to pesticide exposure, suitable to be used in several fields from human biomonitoring in occupational and environmental medicine to environmental monitoring on non-target species.
Collapse
|
17
|
Huang H, Zhao Y, Shang X, Ren H, Zhao Y, Liu X. CAIII expression in skeletal muscle is regulated by Ca2+–CaMKII–MEF2C signaling. Exp Cell Res 2019; 385:111672. [DOI: 10.1016/j.yexcr.2019.111672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/25/2019] [Accepted: 10/08/2019] [Indexed: 12/13/2022]
|
18
|
Lippi G, Schena F, Ceriotti F. Diagnostic biomarkers of muscle injury and exertional rhabdomyolysis. Clin Chem Lab Med 2019; 57:175-182. [PMID: 30173201 DOI: 10.1515/cclm-2018-0656] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 08/02/2018] [Indexed: 12/18/2022]
Abstract
Early recognition of muscle injury, up to development of exertional rhabdomyolysis (ER), is essential for many clinical and practical reasons, such as planning the suitable period of recovery and deciding an appropriate time for return to exercise. Albeit magnetic resonance imaging (MRI) remains the reference technique for assessing muscle injuries, and ultrasonography (US) may be a complementary approach for easy, inexpensive and fast screening, the potential drawbacks of both techniques may be overcome by some laboratory tests, which may help guiding both diagnostic reasoning and clinical decision making. Current evidence attest that creatine kinase remains the most validated test across the clinical spectrum of muscles injuries, as its measurement may be helpful for screening subjects with suggestive signs and symptoms, its concentration substantially reflects the amount of injured muscle and its kinetics appears suitable, combined with clinics and results of imaging testing, for making decisions on return to exercise. Relatively low cost and widespread availability are additional advantages of this test. In athletes with ER, myoglobin assessment may provide adjunctive useful information, due to high predictive value for development of acute kidney injury. Regarding other historical biomarkers, namely aldolase and lactate dehydrogenase, the kinetics, correlation with injury severity, laboratory standardization and availability make their measurement unsuitable and redundant. Some innovative biomarkers have also been tested in recent years, including fatty acid-binding proteins and carbonic anhydrase III, myosin light chain 3 and muscle micro RNAs. However, their clinical effectiveness, standardization, availability in clinical laboratories and costs are still regarded as major drawbacks.
Collapse
Affiliation(s)
- Giuseppe Lippi
- Section of Clinical Biochemistry, University Hospital of Verona, Piazzale LA Scuro, 37100 Verona, Italy
| | - Federico Schena
- School of Sport and Exercise Sciences, University of Verona, Verona, Italy
| | - Ferruccio Ceriotti
- Clinical Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
19
|
Coats CJ, Heywood WE, Virasami A, Ashrafi N, Syrris P, Dos Remedios C, Treibel TA, Moon JC, Lopes LR, McGregor CGA, Ashworth M, Sebire NJ, McKenna WJ, Mills K, Elliott PM. Proteomic Analysis of the Myocardium in Hypertrophic Obstructive Cardiomyopathy. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 11:e001974. [PMID: 30562113 DOI: 10.1161/circgen.117.001974] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is characterized by a complex phenotype that is only partly explained by the biological effects of individual genetic variants. The aim of this study was to use proteomic analysis of myocardial tissue to explore the postgenomic phenotype. METHODS Label-free proteomic analysis was used initially to compare protein profiles in myocardial samples from 11 patients with HCM undergoing surgical myectomy with control samples from 6 healthy unused donor hearts. Differentially expressed proteins of interest were validated in myocardial samples from 65 unrelated individuals (HCM [n=51], controls [n=7], and aortic stenosis [n=7]) by the development and use of targeted multiple reaction monitoring-based triple quadrupole mass spectrometry. RESULTS In this exploratory study, 1586 proteins were identified with 151 proteins differentially expressed in HCM samples compared with controls ( P<0.05). Protein expression profiling showed that many proteins identified in the initial discovery study were associated with metabolism, muscle contraction, calcium regulation, and oxidative stress. Proteins downregulated in HCM versus controls included creatine kinase M-type, fructose-bisphosphate aldolase A, and phosphoglycerate mutase ( P<0.001). Proteins upregulated in HCM included lumican, carbonic anhydrase 3, desmin, α-actin skeletal, and FHL1 (four and a half LIM domain protein 1; P<0.01). Myocardial lumican concentration correlated with the left atrial area (ρ=0.34, P=0.015), late gadolinium enhancement on cardiac magnetic resonance imaging ( P=0.03) and the presence of a pathogenic sarcomere mutation ( P=0.04). CONCLUSIONS The myocardial proteome of HCM provides supporting evidence for dysregulation of metabolic and structural proteins. The finding that lumican is raised in HCM hearts provides insight into the myocardial fibrosis that characterizes this disease.
Collapse
Affiliation(s)
- Caroline J Coats
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.).,University College London Great Ormond Street Institute of Child Health, London, United Kingdom (C.J.C., W.E.H., N.A., K.M.)
| | - Wendy E Heywood
- University College London Great Ormond Street Institute of Child Health, London, United Kingdom (C.J.C., W.E.H., N.A., K.M.)
| | - Alex Virasami
- Histopathology Unit, Great Ormond Street Hospital for Children, London, United Kingdom (A.V., M.A., N.J.S.)
| | - Nadia Ashrafi
- University College London Great Ormond Street Institute of Child Health, London, United Kingdom (C.J.C., W.E.H., N.A., K.M.)
| | - Petros Syrris
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.)
| | - Cris Dos Remedios
- Department of Anatomy and Histology, Bosch Institute, The University of Sydney, New South Wales, Australia (C.d.R.)
| | - Thomas A Treibel
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.).,Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom (T.A.T., J.C.M., L.R.L., P.M.E.)
| | - James C Moon
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.).,Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom (T.A.T., J.C.M., L.R.L., P.M.E.)
| | - Luis R Lopes
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.).,Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom (T.A.T., J.C.M., L.R.L., P.M.E.)
| | - Christopher G A McGregor
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.)
| | - Michael Ashworth
- Histopathology Unit, Great Ormond Street Hospital for Children, London, United Kingdom (A.V., M.A., N.J.S.)
| | - Neil J Sebire
- Histopathology Unit, Great Ormond Street Hospital for Children, London, United Kingdom (A.V., M.A., N.J.S.)
| | - William J McKenna
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.)
| | - Kevin Mills
- University College London Great Ormond Street Institute of Child Health, London, United Kingdom (C.J.C., W.E.H., N.A., K.M.)
| | - Perry M Elliott
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.).,Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom (T.A.T., J.C.M., L.R.L., P.M.E.)
| |
Collapse
|
20
|
3,5-Diiodo-L-Thyronine Exerts Metabolically Favorable Effects on Visceral Adipose Tissue of Rats Receiving a High-Fat Diet. Nutrients 2019; 11:nu11020278. [PMID: 30691227 PMCID: PMC6412262 DOI: 10.3390/nu11020278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/21/2019] [Accepted: 01/24/2019] [Indexed: 12/30/2022] Open
Abstract
When administered to rats receiving a high-fat diet (HFD), 3,5-diiodo-L-thyronine (3,5-T2) [at a dose of 25 μg/100 g body weight (BW)] is known to increase energy expenditure and to prevent HFD-induced adiposity. Here, we investigated which cellular and molecular processes in visceral white adipose tissue (VAT) contributed to the beneficial effect of 3,5-T2 over time (between 1 day and 4 weeks following administration). 3,5-T2 programmed the adipocyte for lipolysis by rapidly inducing hormone sensitive lipase (HSL) phosphorylation at the protein kinase A-responsive site Ser563, accompanied with glycerol release at the 1-week time-point, contributing to the partial normalization of adipocyte volume with respect to control (N) animals. After two weeks, when the adipocyte volumes of HFD-3,5-T2 rats were completely normalized to those of the controls (N), 3,5-T2 consistently induced HSL phosphorylation at Ser563, indicative of a combined effect of 3,5-T2-induced adipose lipolysis and increasing non-adipose oxidative metabolism. VAT proteome analysis after 4 weeks of treatment revealed that 3,5-T2 significantly altered the proteomic profile of HFD rats and produced a marked pro-angiogenic action. This was associated with a reduced representation of proteins involved in lipid storage or related to response to oxidative stress, and a normalization of the levels of those involved in lipogenesis-associated mitochondrial function. In conclusion, the prevention of VAT mass-gain by 3,5-T2 occurred through different molecular pathways that, together with the previously reported stimulation of resting metabolism and liver fatty acid oxidation, are associated with an anti adipogenic/lipogenic potential and positively impact on tissue health.
Collapse
|
21
|
Coats CJ, Heywood WE, Virasami A, Ashrafi N, Syrris P, dos Remedios C, Treibel TA, Moon JC, Lopes LR, McGregor CG, Ashworth M, Sebire NJ, McKenna WJ, Mills K, Elliott PM. Proteomic Analysis of the Myocardium in Hypertrophic Obstructive Cardiomyopathy. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2018. [DOI: 10.1161/circgenetics.117.001974] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Caroline J. Coats
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.)
- University College London Great Ormond Street Institute of Child Health, London, United Kingdom (C.J.C., W.E.H., N.A., K.M.)
| | - Wendy E. Heywood
- University College London Great Ormond Street Institute of Child Health, London, United Kingdom (C.J.C., W.E.H., N.A., K.M.)
| | - Alex Virasami
- Histopathology Unit, Great Ormond Street Hospital for Children, London, United Kingdom (A.V., M.A., N.J.S.)
| | - Nadia Ashrafi
- University College London Great Ormond Street Institute of Child Health, London, United Kingdom (C.J.C., W.E.H., N.A., K.M.)
| | - Petros Syrris
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.)
| | - Cris dos Remedios
- Department of Anatomy and Histology, Bosch Institute, The University of Sydney, New South Wales, Australia (C.d.R.)
| | - Thomas A. Treibel
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.)
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom (T.A.T., J.C.M., L.R.L., P.M.E.)
| | - James C. Moon
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.)
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom (T.A.T., J.C.M., L.R.L., P.M.E.)
| | - Luis R. Lopes
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.)
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom (T.A.T., J.C.M., L.R.L., P.M.E.)
| | - Christopher G.A. McGregor
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.)
| | - Michael Ashworth
- Histopathology Unit, Great Ormond Street Hospital for Children, London, United Kingdom (A.V., M.A., N.J.S.)
| | - Neil J. Sebire
- Histopathology Unit, Great Ormond Street Hospital for Children, London, United Kingdom (A.V., M.A., N.J.S.)
| | - William J. McKenna
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.)
| | - Kevin Mills
- University College London Great Ormond Street Institute of Child Health, London, United Kingdom (C.J.C., W.E.H., N.A., K.M.)
| | - Perry M. Elliott
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.)
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom (T.A.T., J.C.M., L.R.L., P.M.E.)
| |
Collapse
|
22
|
Yassin M, Sadowska Z, Tritsaris K, Kissow H, Hansen CHF, Forman JL, Rogler G, Troelsen JT, Pedersen AE, Olsen J. Rectal Insulin Instillation Inhibits Inflammation and Tumor Development in Chemically Induced Colitis. J Crohns Colitis 2018; 12:1459-1474. [PMID: 30137286 DOI: 10.1093/ecco-jcc/jjy112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Epithelial expression of the insulin receptor in the colon has previously been reported to correlate with extent of colonic inflammation. However, the impact of insulin signalling in the intestinal mucosa is still unknown. Here, we investigated the effects of inactivating the epithelial insulin receptor in the intestinal tract, in an experimental model of inflammation-induced colorectal cancer. METHODS The mice were generated by utilizing the intestinal- and epithelial-specific villin promoter and the Cre-Lox technology. All mice included in the cohorts were generated by crossing [vil-Cre-INSR+/-] × [INSRfl/fl] to obtain [vil-Cre-INSR-/-], and their floxed littermates [INSRfl/fl] served as the control group. For the intervention study, phosphate-buffered saline with or without insulin was instilled rectally in anaesthetized wild-type mice with chemically induced colitis. RESULTS We found higher endoscopic colitis scores together with potentiated colonic tumorigenesis in the knockout mice. Furthermore, we showed that topically administered insulin in inflamed colons of wild-type mice reduced inflammation-induced weight loss and improved remission in a dose-dependent manner. Mice receiving rectal insulin enemas exhibited lower colitis endoscopic scores and reduced cyclooxygenase 2 mRNA expression, and developed significantly fewer and smaller tumours compared with the control group receiving phosphate-buffered saline only. CONCLUSIONS Rectal insulin therapy could potentially be a novel treatment, targeting the epithelial layer to enhance mucosal healing in ulcerated areas. Our findings open up new possibilities for combination treatments to synergize with the existing anti-inflammatory therapies.
Collapse
Affiliation(s)
- Mohammad Yassin
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Zuzanna Sadowska
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Katerina Tritsaris
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Hannelouise Kissow
- Department of Biomedical Sciences and NNF Center of Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Camilla H F Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Julie L Forman
- Section of Biostatistics, Department of Public Health, Faculty of Health Sciences, University of Copenhagen, Copenhagen K, Denmark
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Jesper T Troelsen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Anders E Pedersen
- Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Jørgen Olsen
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
23
|
Thomas S, Hoxha K, Alexander W, Gilligan J, Dilbarova R, Whittaker K, Kossenkov A, Prendergast GC, Mullin JM. Intestinal barrier tightening by a cell-penetrating antibody to Bin1, a candidate target for immunotherapy of ulcerative colitis. J Cell Biochem 2018; 120:4225-4237. [PMID: 30269357 DOI: 10.1002/jcb.27716] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 08/28/2018] [Indexed: 12/19/2022]
Abstract
Patients afflicted with ulcerative colitis (UC) are at increased risk of colorectal cancer. While its causes are not fully understood, UC is associated with defects in colonic epithelial barriers that sustain inflammation of the colon mucosa caused by recruitment of lymphocytes and neutrophils into the lamina propria. Based on genetic evidence that attenuation of the bridging integrator 1 (Bin1) gene can limit UC pathogenicity in animals, we have explored Bin1 targeting as a therapeutic option. Early feasibility studies in the dextran sodium sulfate mouse model of experimental colitis showed that administration of a cell-penetrating Bin1 monoclonal antibody (Bin1 mAb 99D) could prevent lesion formation in the colon mucosa in part by preventing rupture of lymphoid follicles. In vivo administration of Bin1 mAb altered tight junction protein expression and cecal barrier function. Strikingly, electrophysiology studies in organ cultures showed that Bin1 mAb could elevate resistance and lower 14 C-mannitol leakage across the cecal mucosa, consistent with a direct strengthening of colonic barrier function. Transcriptomic analyses of colitis tissues highlighted altered expression of genes involved in circadian rhythm, lipid metabolism, and inflammation, with a correction of the alterations by Bin1 mAb treatment to patterns characteristic of normal tissues. Overall, our results suggest that Bin1 mAb protects against UC by directly improving colonic epithelial barrier function to limit gene expression and cytokine programs associated with colonic inflammation.
Collapse
Affiliation(s)
- Sunil Thomas
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania
| | - Kevther Hoxha
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania
| | - Walker Alexander
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania
| | - John Gilligan
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania
| | - Rima Dilbarova
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania
| | | | | | - George C Prendergast
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania.,Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical School, Thomas Jefferson University, Philadelphia, Pennsylvania.,Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - James M Mullin
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania.,Division of Gastroenterology, Lankenau Medical Center, Wynnewood, Pennsylvania
| |
Collapse
|
24
|
Protective Role of Carbonic Anhydrases III and VII in Cellular Defense Mechanisms upon Redox Unbalance. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2018306. [PMID: 30154947 PMCID: PMC6098850 DOI: 10.1155/2018/2018306] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/24/2018] [Indexed: 01/07/2023]
Abstract
Under oxidative stress conditions, several constitutive cellular defense systems are activated, which involve both enzymatic systems and molecules with antioxidant properties such as glutathione and vitamins. In addition, proteins containing reactive sulfhydryl groups may eventually undergo reversible redox modifications whose products act as protective shields able to avoid further permanent molecular oxidative damage either in stressful conditions or under pathological circumstances. After the recovery of normal redox conditions, the reduced state of protein sulfhydryl groups is restored. In this context, carbonic anhydrases (CAs) III and VII, which are human metalloenzymes catalyzing the reversible hydration of carbon dioxide to bicarbonate and proton, have been identified to play an antioxidant role in cells where oxidative damage occurs. Both proteins are mainly localized in tissues characterized by a high rate of oxygen consumption, and contain on their molecular surface two reactive cysteine residues eventually undergoing S-glutathionylation. Here, we will provide an overview on the molecular and functional features of these proteins highlighting their implications into molecular processes occurring during oxidative stress conditions.
Collapse
|
25
|
Mboge MY, Mahon BP, McKenna R, Frost SC. Carbonic Anhydrases: Role in pH Control and Cancer. Metabolites 2018; 8:E19. [PMID: 29495652 PMCID: PMC5876008 DOI: 10.3390/metabo8010019] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/08/2018] [Accepted: 02/22/2018] [Indexed: 02/07/2023] Open
Abstract
The pH of the tumor microenvironment drives the metastatic phenotype and chemotherapeutic resistance of tumors. Understanding the mechanisms underlying this pH-dependent phenomenon will lead to improved drug delivery and allow the identification of new therapeutic targets. This includes an understanding of the role pH plays in primary tumor cells, and the regulatory factors that permit cancer cells to thrive. Over the last decade, carbonic anhydrases (CAs) have been shown to be important mediators of tumor cell pH by modulating the bicarbonate and proton concentrations for cell survival and proliferation. This has prompted an effort to inhibit specific CA isoforms, as an anti-cancer therapeutic strategy. Of the 12 active CA isoforms, two, CA IX and XII, have been considered anti-cancer targets. However, other CA isoforms also show similar activity and tissue distribution in cancers and have not been considered as therapeutic targets for cancer treatment. In this review, we consider all the CA isoforms and their possible role in tumors and their potential as targets for cancer therapy.
Collapse
Affiliation(s)
- Mam Y Mboge
- University of Florida, College of Medicine, Department of Biochemistry and Molecular Biology, P.O. Box 100245, Gainesville, FL 32610, USA.
| | - Brian P Mahon
- University of Florida, College of Medicine, Department of Biochemistry and Molecular Biology, P.O. Box 100245, Gainesville, FL 32610, USA.
| | - Robert McKenna
- University of Florida, College of Medicine, Department of Biochemistry and Molecular Biology, P.O. Box 100245, Gainesville, FL 32610, USA.
| | - Susan C Frost
- University of Florida, College of Medicine, Department of Biochemistry and Molecular Biology, P.O. Box 100245, Gainesville, FL 32610, USA.
| |
Collapse
|
26
|
Silagi ES, Schoepflin ZR, Seifert EL, Merceron C, Schipani E, Shapiro IM, Risbud MV. Bicarbonate Recycling by HIF-1-Dependent Carbonic Anhydrase Isoforms 9 and 12 Is Critical in Maintaining Intracellular pH and Viability of Nucleus Pulposus Cells. J Bone Miner Res 2018; 33:338-355. [PMID: 28940640 PMCID: PMC5947995 DOI: 10.1002/jbmr.3293] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/18/2017] [Accepted: 09/06/2017] [Indexed: 02/06/2023]
Abstract
Intervertebral disc degeneration is a ubiquitous condition closely linked to chronic low-back pain. The health of the avascular nucleus pulposus (NP) plays a crucial role in the development of this pathology. We tested the hypothesis that a network comprising HIF-1α, carbonic anhydrase (CA) 9 and 12 isoforms, and sodium-coupled bicarbonate cotransporters (NBCs) buffer intracellular pH through coordinated bicarbonate recycling. Contrary to the current understanding of NP cell metabolism, analysis of metabolic-flux data from Seahorse XF analyzer showed that CO2 hydration contributes a significant source of extracellular proton production in NP cells, with a smaller input from glycolysis. Because enzymatic hydration of CO2 is catalyzed by plasma membrane-associated CAs we measured their expression and function in NP tissue. NP cells robustly expressed isoforms CA9/12, which were hypoxia-inducible. In addition to increased mRNA stability under hypoxia, we observed binding of HIF-1α to select hypoxia-responsive elements on CA9/12 promoters using genomic chromatin immunoprecipitation. Importantly, in vitro loss of function studies and analysis of discs from NP-specific HIF-1α null mice confirmed the dependency of CA9/12 expression on HIF-1α. As expected, inhibition of CA activity decreased extracellular acidification rate independent of changes in HIF activity or lactate/H+ efflux. Surprisingly, CA inhibition resulted in a concomitant decrease in intracellular pH that was mirrored by inhibition of sodium-bicarbonate importers. These results suggested that extracellular bicarbonate generated by CA9/12 is recycled to buffer cytosolic pH fluctuations. Importantly, long-term intracellular acidification from CA inhibition lead to compromised cell viability, suggesting that plasma-membrane proton extrusion pathways alone are not sufficient to maintain homeostatic pH in NP cells. Taken together, our studies show for the first time that bicarbonate buffering through the HIF-1α-CA axis is critical for NP cell survival in the hypoxic niche of the intervertebral disc. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Elizabeth S. Silagi
- Program in Cell Biology and Regenerative Medicine, Jefferson College of Biomedical Sciences, Thomas Jefferson University, Philadelphia, PA
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Zachary R. Schoepflin
- Program in Cell Biology and Regenerative Medicine, Jefferson College of Biomedical Sciences, Thomas Jefferson University, Philadelphia, PA
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Erin L. Seifert
- Program in Cell Biology and Regenerative Medicine, Jefferson College of Biomedical Sciences, Thomas Jefferson University, Philadelphia, PA
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA
| | - Christophe Merceron
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Ernestina Schipani
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Medicine, Division of Endocrinology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Irving M. Shapiro
- Program in Cell Biology and Regenerative Medicine, Jefferson College of Biomedical Sciences, Thomas Jefferson University, Philadelphia, PA
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Makarand V. Risbud
- Program in Cell Biology and Regenerative Medicine, Jefferson College of Biomedical Sciences, Thomas Jefferson University, Philadelphia, PA
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
27
|
Huang H, Zhao Y, Shang X, Liu X, Ren H. Expression of carbonic anhydrase III and skeletal muscle remodeling following selective denervation. Mol Med Rep 2017; 16:8289-8294. [PMID: 28983629 DOI: 10.3892/mmr.2017.7644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 07/31/2017] [Indexed: 11/06/2022] Open
Abstract
Carbonic anhydrase III (CAIII) is expressed selectively in type I (slow‑twitch) myofibers. To investigate the association between changes in the expression of CAIII and skeletal muscle structure following denervation, the present study stained adjacent sections of skeletal muscle for ATPase and immunohistochemically for CAIII. In addition, differences in the protein expression and phosphatase activity of CAIII were examined by western blot and phosphatase staining between rat soleus and extensol digitorum longus (EDL) muscles, which are composed of predominantly slow‑ and fast‑twitch fibers, respectively. Upon denervation, the EDL muscle showed more pronounced structural changes, compared with the soleus muscle. There was a transformation from fast to slow fibers, and a concomitant increase in fibers positive for CAIII. Following denervation, the protein expression of CAIII initially increased and then decreased in the soleus muscle, whereas the protein expression of CAIII in the EDL muscle increased gradually with time. In contrast to the protein changes, phosphatase activity in the soleus and EDL muscles decreased significantly following denervation. These results indicated that, following denervation, changes in the expression of CAIII were associated with myofiber remodeling. Specifically, the change in the expression of CAIII reflected the conversion to type I myofibers, suggesting the importance of CAIII in resistance to fatigue in skeletal muscle.
Collapse
Affiliation(s)
- He Huang
- Department of Neurology, Tenth People's Hospital of Tongji University, Shanghai 200072, P.R. China
| | - Yanling Zhao
- Department of Geriatrics, Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200080, P.R. China
| | - Xiliang Shang
- Department of Sports Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Xueyuan Liu
- Department of Neurology, Tenth People's Hospital of Tongji University, Shanghai 200072, P.R. China
| | - Huimin Ren
- Institute of Neurology, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
28
|
Du A, Huang S, Zhao X, Feng K, Zhang S, Huang J, Miao X, Baggi F, Ostrom RS, Zhang Y, Chen X, Xu C. Suppression of CHRN endocytosis by carbonic anhydrase CAR3 in the pathogenesis of myasthenia gravis. Autophagy 2017; 13:1981-1994. [PMID: 28933591 PMCID: PMC5788490 DOI: 10.1080/15548627.2017.1375633] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Myasthenia gravis is an autoimmune disorder of the neuromuscular junction manifested as fatigable muscle weakness, which is typically caused by pathogenic autoantibodies against postsynaptic CHRN/AChR (cholinergic receptor nicotinic) in the endplate of skeletal muscle. Our previous studies have identified CA3 (carbonic anhydrase 3) as a specific protein insufficient in skeletal muscle from myasthenia gravis patients. In this study, we investigated the underlying mechanism of how CA3 insufficiency might contribute to myasthenia gravis. Using an experimental autoimmune myasthenia gravis animal model and the skeletal muscle cell C2C12, we find that inhibition of CAR3 (the mouse homolog of CA3) promotes CHRN internalization via a lipid raft-mediated pathway, leading to accelerated degradation of postsynaptic CHRN. Activation of CAR3 reduces CHRN degradation by suppressing receptor endocytosis. CAR3 exerts this effect by suppressing chaperone-assisted selective autophagy via interaction with BAG3 (BCL2-associated athanogene 3) and by dampening endoplasmic reticulum stress. Collectively, our study illustrates that skeletal muscle cell CAR3 is critical for CHRN homeostasis in the neuromuscular junction, and its deficiency leads to accelerated degradation of CHRN and development of myasthenia gravis, potentially revealing a novel therapeutic approach for this disorder.
Collapse
Affiliation(s)
- Ailian Du
- a Department of Neurology, Tongren Hospital , Shanghai Jiao Tong University School of Medicine (SJTUSM) , Shanghai , China
| | - Shiqian Huang
- b Shanghai Institute of Immunology, Institutes of Medical Sciences , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Xiaonan Zhao
- b Shanghai Institute of Immunology, Institutes of Medical Sciences , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Kuan Feng
- c Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & SJTUSM , Shanghai , China
| | - Shuangyan Zhang
- b Shanghai Institute of Immunology, Institutes of Medical Sciences , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Jiefang Huang
- c Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & SJTUSM , Shanghai , China
| | - Xiang Miao
- c Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & SJTUSM , Shanghai , China
| | - Fulvio Baggi
- d Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico "Carlo Besta" , Milan , Italy
| | - Rennolds S Ostrom
- e Department of Biomedical and Pharmaceutical Sciences , Chapman University School of Pharmacy , Irvine , CA , USA
| | - Yanyun Zhang
- b Shanghai Institute of Immunology, Institutes of Medical Sciences , Shanghai Jiao Tong University School of Medicine , Shanghai , China.,c Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & SJTUSM , Shanghai , China
| | - Xiangjun Chen
- f Department of Neurology , Fudan University Huashan Hospital, and Institute of Neurology, Fudan University , Shanghai , China
| | - Congfeng Xu
- b Shanghai Institute of Immunology, Institutes of Medical Sciences , Shanghai Jiao Tong University School of Medicine , Shanghai , China.,c Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & SJTUSM , Shanghai , China
| |
Collapse
|
29
|
5-Substituted-benzylsulfanyl-thiophene-2-sulfonamides with effective carbonic anhydrase inhibitory activity: Solution and crystallographic investigations. Bioorg Med Chem 2017; 25:857-863. [DOI: 10.1016/j.bmc.2016.11.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 11/23/2016] [Indexed: 11/18/2022]
|
30
|
Coumarins and other fused bicyclic heterocycles with selective tumor-associated carbonic anhydrase isoforms inhibitory activity. Bioorg Med Chem 2017; 25:677-683. [DOI: 10.1016/j.bmc.2016.11.039] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 11/19/2016] [Accepted: 11/21/2016] [Indexed: 01/01/2023]
|
31
|
Expression of Carbonic Anhydrase I in Motor Neurons and Alterations in ALS. Int J Mol Sci 2016; 17:ijms17111820. [PMID: 27809276 PMCID: PMC5133821 DOI: 10.3390/ijms17111820] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 12/27/2022] Open
Abstract
Carbonic anhydrase I (CA1) is the cytosolic isoform of mammalian α-CA family members which are responsible for maintaining pH homeostasis in the physiology and pathology of organisms. A subset of CA isoforms are known to be expressed and function in the central nervous system (CNS). CA1 has not been extensively characterized in the CNS. In this study, we demonstrate that CA1 is expressed in the motor neurons in human spinal cord. Unexpectedly, a subpopulation of CA1 appears to be associated with endoplasmic reticulum (ER) membranes. In addition, the membrane-associated CA1s are preferentially upregulated in amyotrophic lateral sclerosis (ALS) and exhibit altered distribution in motor neurons. Furthermore, long-term expression of CA1 in mammalian cells activates apoptosis. Our results suggest a previously unknown role for CA1 function in the CNS and its potential involvement in motor neuron degeneration in ALS.
Collapse
|
32
|
Monti DM, De Simone G, Langella E, Supuran CT, Di Fiore A, Monti SM. Insights into the role of reactive sulfhydryl groups of Carbonic Anhydrase III and VII during oxidative damage. J Enzyme Inhib Med Chem 2016; 32:5-12. [PMID: 27766895 PMCID: PMC6010095 DOI: 10.1080/14756366.2016.1225046] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Carbonic anhydrases (CAs) III and VII are two cytosolic isoforms of the α-CA family which catalyze the physiological reaction of carbon dioxide hydration to bicarbonate and proton. Despite these two enzymes share a 49% sequence identity and present a very similar three-dimensional structure, they show profound differences when comparing the specific activity for CO2 hydration reaction, with CA VII being much more active than CA III. Recently, CA III and CA VII have been proposed to play a new role as scavenger enzymes in cells where oxidative damage occurs. Here, we will examine functional and structural features of these two isoforms giving insights into their newly proposed protective role against oxidative stress.
Collapse
Affiliation(s)
- Daria M Monti
- a Department of Chemical Sciences , University of Naples Federico II , Naples , Italy
| | | | - Emma Langella
- b Institute of Biostructures and Bioimaging, CNR , Naples , Italy
| | - Claudiu T Supuran
- c Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche , Università degli Studi di Firenze , Florence , Italy
| | - Anna Di Fiore
- b Institute of Biostructures and Bioimaging, CNR , Naples , Italy
| | - Simona M Monti
- b Institute of Biostructures and Bioimaging, CNR , Naples , Italy
| |
Collapse
|
33
|
Supuran CT. Bortezomib inhibits mammalian carbonic anhydrases. Bioorg Med Chem 2016; 25:5064-5067. [PMID: 28277280 DOI: 10.1016/j.bmc.2016.10.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/11/2016] [Accepted: 10/18/2016] [Indexed: 11/16/2022]
Abstract
We investigated the carbonic anhydrase (CA, EC 4.2.1.1) inhibitory activity of the clinically used antitumor agent bortezomib, a marketed proteasome inhibitor, against all the catalytically active mammalian isoforms CA I-VII, IX, XII-XV. Bortezomib effectively inhibited all these CAs in the micromolar range. hCA II, the physiologically dominant cytosolic isoform showed the highest affinity for the drug, with a KI of 1.16μM. The cytosolic slow isoform hCA I was also effectively inhibited, with a KI of 1.29μM, whereas the next best affinity was observed for the membrane-anchored form mCA XV, with a KI of 2.68μM, followed by two transmembrane isoforms, hCA IX and XIV (KIs of 3.28-3.38μM). The remaining cytosolic (CA III, VII and XIII), membrane-anchored (CA IV), mitochondrial (CA VA, VB), transmembrane (CA XII) and secreted (CA VI) isoforms were slightly less inhibited by bortezomib compared to isoforms discussed above, with KIs ranging between 4.38 and 8.45μM. These data may shed some light on possible side effects and novel antitumor mechanisms of action of this drug.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
34
|
Vullo D, Del Prete S, De Luca V, Carginale V, Ferraroni M, Dedeoglu N, Osman SM, AlOthman Z, Capasso C, Supuran CT. Anion inhibition studies of the β-carbonic anhydrase from the pathogenic bacterium Vibrio cholerae. Bioorg Med Chem Lett 2016; 26:1406-10. [PMID: 26853167 DOI: 10.1016/j.bmcl.2016.01.072] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 01/22/2016] [Accepted: 01/23/2016] [Indexed: 02/06/2023]
Abstract
The genome of the pathogenic bacterium Vibrio cholerae encodes for three carbonic anhydrases (CAs, EC 4.2.1.1) belonging to the α-, β- and γ-classes. Here we report and anion inhibition study of the β-CA, VchCAβ with anions and other small molecules which inhibit metalloenzymes. The best VchCAβ anion inhibitors were sulfamide, sulfamate, phenylboronic acid and phenylarsonic acid, which showed KIs in the range of 54-86μM. Diethyldithiocarbonate was also an effective VchCAβ inhibitor, with an inhibition constant of 0.73mM. The halides, cyanate, thiocyanate, cyanide, bicarbonate, carbonate, nitrate, nitrite, stannate, selenate, tellurate, divanadate, tetraborate, perrhenate, perruthenate, peroxydisulfate, selenocyanide, trithiocarbonate, and fluorosulfonate showed affinity in the low millimolar range, with KIs of 2.3-9.5mM. Identification of selective inhibitors of VchCAβ (over the human CA isoforms) may lead to pharmacological tools useful for understanding the physiological role(s) of this under-investigated enzyme.
Collapse
Affiliation(s)
- Daniela Vullo
- Università degli Studi di Firenze, Dipartimento Di Chimica, Laboratorio di Chimica Bioinorganica, Polo Scientifico, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Sonia Del Prete
- Università degli Studi di Firenze, Dipartimento Di Chimica, Laboratorio di Chimica Bioinorganica, Polo Scientifico, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy; Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 81, Napoli, Italy
| | - Viviana De Luca
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 81, Napoli, Italy
| | - Vincenzo Carginale
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 81, Napoli, Italy
| | - Marta Ferraroni
- Università degli Studi di Firenze, Dipartimento Di Chimica, Laboratorio di Chimica Bioinorganica, Polo Scientifico, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Nurcan Dedeoglu
- Università degli Studi di Firenze, Dipartimento Di Chimica, Laboratorio di Chimica Bioinorganica, Polo Scientifico, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Sameh M Osman
- King Saud University, Department of Chemistry, Riyadh, Saudi Arabia
| | - Zeid AlOthman
- King Saud University, Department of Chemistry, Riyadh, Saudi Arabia
| | - Clemente Capasso
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 81, Napoli, Italy.
| | - Claudiu T Supuran
- King Saud University, Department of Chemistry, Riyadh, Saudi Arabia; Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
35
|
Vullo D, Bhatt A, Mahon BP, McKenna R, Supuran CT. Sulfonamide inhibition studies of the α-carbonic anhydrase from the gammaproteobacterium Thiomicrospira crunogena XCL-2, TcruCA. Bioorg Med Chem Lett 2016; 26:401-405. [PMID: 26691758 DOI: 10.1016/j.bmcl.2015.11.104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 11/28/2015] [Accepted: 11/30/2015] [Indexed: 11/26/2022]
Abstract
We report a sulfonamide/sulfamate inhibition study of the α-carbonic anhydrase (CA, EC 4.2.1.1) present in the gammaproteobacterium Thiomicrospira crunogena XCL-2, a mesophilic hydrothermal vent-isolate organism, TcruCA. As Thiomicrospira crunogena is one of thousands of marine organisms that uses CA for metabolic regulation, the effect of sulfonamide inhibition has been considered. Sulfonamide-based drugs have been widely used in a variety of antibiotics, and bioelimination of these compounds results in exposure of these compounds to marine life. The enzyme was highly inhibited, with Ki values ranging from 2.5 to 40.7nM by a variety of sulfonamides including acetazolamide, methazolamide, ethoxzolamide, dichlorophenamide, dorzolamide, brinzolamide, benzolamide and benzenesulfonamides incorporating 4-hydroxyalkyl moieties. Less effective inhibitors were topiramate, zonisamide, celecoxib, saccharin and hydrochlorothiazide as well as simple benzenesulfonamides incorporating amino, halogeno, alkyl, aminoalkyl and other moieties in the ortho- or para-positions of the aromatic ring (Kis of 202-933nM). The active site interactions between TcruCA and three clinically-used CA inhibitors, acetazolamide (Diamox®), dorzolamide (Trusopt®), and brinzolamide (Azopt®) are studied using molecular docking to provide insight into the reported Ki values. Comparison between various enzymes belonging to this family may also bring interesting hints in these fascinating phenomena.
Collapse
Affiliation(s)
- Daniela Vullo
- Università degli Studi di Firenze, Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Avni Bhatt
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Box 100245, Gainesville, FL 32610, USA
| | - Brian P Mahon
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Box 100245, Gainesville, FL 32610, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Box 100245, Gainesville, FL 32610, USA
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Polo Scientifico, Neurofarba Department and Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
36
|
Bozdag M, Alafeefy AM, Vullo D, Carta F, Dedeoglu N, Al-Tamimi AMS, Al-Jaber NA, Scozzafava A, Supuran CT. Benzenesulfonamides incorporating bulky aromatic/heterocyclic tails with potent carbonic anhydrase inhibitory activity. Bioorg Med Chem 2015; 23:7751-64. [PMID: 26639945 DOI: 10.1016/j.bmc.2015.11.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/08/2015] [Accepted: 11/20/2015] [Indexed: 12/15/2022]
Abstract
Three series of sulfonamides incorporating long, bulky tails were obtained by applying synthetic strategies in which substituted anthranilic acids, quinazolines and aromatic sulfonamides have been used as starting materials. They incorporate long, bulky diamide-, 4-oxoquinazoline-3-yl- or quinazoline-4-yl moieties in their molecules, and were investigated for the inhibition of four physiologically relevant carbonic anhydrase (CA, EC 4.2.1.1) isoforms, the cytosolic human (h) hCA I and II, as well as the transmembrane hCA IX and XII. Most of the new sulfonamides showed excellent inhibitory effects against the four isoforms, with KIs of 7.6-322nM against hCA I, of 0.06-85.4nM against hCA II; of 6.7-152nM against hCA IX and of 0.49-237nM against hCA XII; respectively. However no relevant isoform-selective behavior has been observed for any of them, although hCA II and XII, isoforms involved in glaucoma-genesis were the most inhibited ones. The structure-activity relationship for inhibiting the four CAs with these derivatives is discussed in detail.
Collapse
Affiliation(s)
- Murat Bozdag
- Università degli Studi di Firenze, Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy
| | - Ahmed M Alafeefy
- Chemistry Department, Kulliyyah of Science, International Islamic University, Kuantan, Malaysia
| | - Daniela Vullo
- Università degli Studi di Firenze, Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy
| | - Fabrizio Carta
- Università degli Studi di Firenze, Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy
| | - Nurcan Dedeoglu
- Università degli Studi di Firenze, Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy
| | - Abdul-Malek S Al-Tamimi
- Pharmaceutical Chemistry Dept., College of Pharmacy, Prince Sattam Bin Abdulaziz University, Saudi Arabia
| | - Nabila A Al-Jaber
- Chemistry Department, College of Science, King Saud University, Saudi Arabia
| | - Andrea Scozzafava
- Università degli Studi di Firenze, Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy
| | - Claudiu T Supuran
- Università degli Studi di Firenze, NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy.
| |
Collapse
|
37
|
Cincinelli A, Martellini T, Vullo D, Supuran CT. Anion and sulfonamide inhibition studies of an α-carbonic anhydrase from the Antarctic hemoglobinless fish Chionodraco hamatus. Bioorg Med Chem Lett 2015; 25:5485-9. [DOI: 10.1016/j.bmcl.2015.10.074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 01/19/2023]
|
38
|
Singasane N, Kharkar PS, Ceruso M, Supuran CT, Toraskar MP. Inhibition of carbonic anhydrase isoforms I, II, IX and XII with Schiff's bases incorporating iminoureido moieties. J Enzyme Inhib Med Chem 2015; 30:901-907. [PMID: 25744513 DOI: 10.3109/14756366.2014.986118] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/03/2014] [Indexed: 02/05/2023] Open
Abstract
A series of new Schiff's bases was obtained from the sulfanilamide semicarbazone (4-aminosulfonylphenyl semicarbazide) and aromatic/heterocyclic aldehydes. The new compounds were designed to incorporate moieties known to induce effective inhibitory activity against carbonic anhydrase (CA, EC 4.2.1.1) isoforms involved in crucial physiologic or pathologic processes such as the cytosolic CA I and II or the transmembrane, tumor-associated CA IX and XII: the compounds were medium potency - weak CA I inhibitors, highly effective, low nanomolar CA II inhibitors, but few of them inhibited effectively CA IX and XII. This may probably due to the long spacer between the sulfamoylphenyl and imine fragments of the molecules, which probably induces a highly flexible conformation of the inhibitor bound to the active site of the enzyme, with destabilizing effects for the adduct. The detailed structure activity relationship for this class of inhibitors is discussed.
Collapse
Affiliation(s)
- Namrata Singasane
- a Department of Pharmaceutical Chemistry , Bharati Vidyapeeth's College of Pharmacy , Navi Mumbai , India
| | - Prashant S Kharkar
- b Department of Pharmaceutical Chemistry , SPP School of Pharmacy and Technology Management, SVKM's NMIMS , Mumbai , India
| | - Mariangela Ceruso
- c Laboratorio di Chimica Bioinorganica , Università degli Studi di Firenze , Sesto Fiorentino (Firenze) , Italy , and
- d Neurofarba Department , Sezione di Scienze Farmaceutiche , Sesto Fiorentino (Firenze) , Italy
| | - Claudiu T Supuran
- c Laboratorio di Chimica Bioinorganica , Università degli Studi di Firenze , Sesto Fiorentino (Firenze) , Italy , and
- d Neurofarba Department , Sezione di Scienze Farmaceutiche , Sesto Fiorentino (Firenze) , Italy
| | - Mrunmayee P Toraskar
- a Department of Pharmaceutical Chemistry , Bharati Vidyapeeth's College of Pharmacy , Navi Mumbai , India
| |
Collapse
|
39
|
El-Azab AS, Abdel-Aziz AAM, Ayyad RR, Ceruso M, Supuran CT. Inhibition of carbonic anhydrase isoforms I, II, IV, VII and XII with carboxylates and sulfonamides incorporating phthalimide/phthalic anhydride scaffolds. Bioorg Med Chem 2015; 24:20-5. [PMID: 26678172 DOI: 10.1016/j.bmc.2015.11.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 11/21/2015] [Accepted: 11/25/2015] [Indexed: 02/06/2023]
Abstract
We report a panel of carboxylates and sulfonamides incorporating phthalic anhydride and phthalimide moieties in their structure and their interaction with the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1). They were synthesized from substituted anthranilic acids and trimellitic anhydride chloride, followed by reaction with primary amines and were tested for the inhibition of five physiologically relevant CA isoforms, the human (h) hCA I, II, IV, VII and XII, some of which are involved in serious pathologies (CA II, IV and XII in glaucoma; CA VII in epilepsy; CA XII in some solid tumors). The carboxylic acids were generally poor inhibitors of isoforms hCA I, II and IV but were highly effective, low nanomolar inhibitors of hCA VII and XII. The sulfonamides inhibited all isoforms significantly, and some of them were sub-nanomolar hCA VII inhibitors, although their isoform selectivity was lower compared to the carboxylates. This study proves that carboxylic acids incorporating a phthalic anhydride/phthalimide based scaffold may lead to isoform-selective inhibitors by applying the tail approach, mostly used up until now for obtaining sulfonamide, sulfamide and sulfamate CA inhibitors.
Collapse
Affiliation(s)
- Adel S El-Azab
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
| | - Alaa A-M Abdel-Aziz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura, Egypt
| | - Rezk R Ayyad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mariangela Ceruso
- Università degli Studi di Firenze, Polo Scientifico, Neurofarba Department and Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Polo Scientifico, Neurofarba Department and Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
40
|
De Luca V, Del Prete S, Carginale V, Vullo D, Supuran CT, Capasso C. Cloning, characterization and anion inhibition studies of a γ-carbonic anhydrase from the Antarctic cyanobacterium Nostoc commune. Bioorg Med Chem Lett 2015; 25:4970-4975. [DOI: 10.1016/j.bmcl.2015.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 02/26/2015] [Accepted: 03/02/2015] [Indexed: 10/23/2022]
|
41
|
Click-tailed coumarins with potent and selective inhibitory action against the tumor-associated carbonic anhydrases IX and XII. Bioorg Med Chem 2015; 23:6955-66. [DOI: 10.1016/j.bmc.2015.09.041] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 01/19/2023]
|
42
|
Inhibition of mammalian carbonic anhydrase isoforms I-XIV with a series of phenolic acid esters. Bioorg Med Chem 2015; 23:7181-8. [PMID: 26498394 DOI: 10.1016/j.bmc.2015.10.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/09/2015] [Accepted: 10/11/2015] [Indexed: 12/31/2022]
Abstract
A series of phenolic acid esters incorporating caffeic, ferulic, and p-coumaric acid, and benzyl, m/p-hydroxyphenethyl- as well as p-hydroxy-phenethoxy-phenethyl moieties were investigated for their inhibitory effects against the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1). Many of the mammalian isozymes of human (h) or murine (m) origin, hCA I-hCA XII, mCA XIII and hCA XIV, were inhibited in the submicromolar range by these derivatives (with KIs of 0.31-1.03 μM against hCA VA, VB, VI, VII, IX and XIV). The off-target, highly abundant isoforms hCA I and II, as well as hCA III, IV and XII were poorly inhibited by many of these esters, although the original phenolic acids were micromolar inhibitors. These phenols, like others investigated earlier, possess a CA inhibition mechanism distinct of the sulfonamides/sulfamates, clinically used drugs for the treatment of a multitude of pathologies, but with severe side effects due to hCA I/II inhibition. Unlike the sulfonamides, which bind to the catalytic zinc ion, phenols are anchored at the Zn(II)-coordinated water molecule, binding more externally within the active site cavity, and making contacts with amino acid residues at the entrance of the active site. As this is the region with the highest variability between the many CA isozymes found in mammals, this class of compounds shows isoform-selective inhibitory profiles, which may be exploited for obtaining pharmacological agents with less side effects compared to other classes of inhibitors.
Collapse
|
43
|
Carta F, Osman SM, Vullo D, AlOthman Z, Del Prete S, Capasso C, Supuran CT. Poly(amidoamine) dendrimers show carbonic anhydrase inhibitory activity against α-, β-, γ- and η-class enzymes. Bioorg Med Chem 2015; 23:6794-8. [PMID: 26476668 DOI: 10.1016/j.bmc.2015.10.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/03/2015] [Accepted: 10/05/2015] [Indexed: 10/22/2022]
Abstract
Four generations of poly(amidoamine) (PAMAM) dendrimers incorporating benzenesulfonamide moieties were investigated as inhibitors of carbonic anhydrases (CAs, EC 4.2.1.1) belonging to the α-, β-, γ- and η-classes which are present in pathogenic bacteria, fungi or protozoa. The following bacterial, fungal and protozoan organisms were included in the study: Vibrio cholerae, Trypanosoma cruzi, Leishmania donovani chagasi, Porphyromonas gingivalis, Cryptococcus neoformans, Candida glabrata, and Plasmodium falciparum. The eight pathozymes present in these organisms were efficiently inhibited by the four generations PAMAM-sulfonamide dendrimers, but multivalency effects were highly variable among the different enzyme classes. The Vibrio enzyme VchCA was best inhibited by the G3 dendrimer incorporating 32 sulfamoyl moieties. The Trypanosoma enzyme TcCA on the other hand was best inhibited by the first generation dendrimer G0 (with 4 sulfamoyl groups), whereas for other enzymes the optimal inhibitory power was observed for the G1 or G2 dendrimers, with 8 and 16 sulfonamide functionalities. This study thus proves that the multivalency may be highly relevant for enzyme inhibition for some but not all CAs from pathogenic organisms. On the other hand, some dendrimers investigated here showed a better inhibitory power compared to acetazolamide for enzymes from widespread pathogens, such as the η-CA from Plasmodium falciparum. Overall, the main conclusion is that this class of molecules may lead to important developments in the field of anti-infective CA inhibitors.
Collapse
Affiliation(s)
- Fabrizio Carta
- Università degli Studi di Firenze, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, I-50019 Sesto Fiorentino (Firenze), Italy
| | - Sameh M Osman
- Department of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Daniela Vullo
- Università degli Studi di Firenze, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, I-50019 Sesto Fiorentino (Firenze), Italy
| | - Zeid AlOthman
- Department of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Sonia Del Prete
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy; Università degli Studi di Firenze, Polo Scientifico, Dipartimento NEUROFARBA, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Firenze), Italy
| | - Clemente Capasso
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Claudiu T Supuran
- Department of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia; Università degli Studi di Firenze, Polo Scientifico, Dipartimento NEUROFARBA, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Firenze), Italy.
| |
Collapse
|
44
|
Del Prete S, Vullo D, Osman SM, AlOthman Z, Capasso C, Supuran CT. Anion inhibition studies of the dandruff-producing fungus Malassezia globosa β-carbonic anhydrase MgCA. Bioorg Med Chem Lett 2015; 25:5194-8. [PMID: 26459213 DOI: 10.1016/j.bmcl.2015.09.068] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 09/27/2015] [Accepted: 09/28/2015] [Indexed: 10/22/2022]
Abstract
The genome of the fungal parasite Malassezia globosa, the causative agent of dandruff, contains a single gene annotated as encoding a carbonic anhydrase (CAs, EC 4.2.1.1) belonging to the β-class (MgCA). In an earlier work (J. Med. Chem. 2012, 55, 3513) we have validated this enzyme as an anti-dandruff drug target, reporting that sulfonamide inhibitors show in vitro and in vivo effects, in an animal model of Malassezia infection. However, few classes of compounds apart the sulfonamides, were investigated for their activity against MgCA. Here we present an anion inhibition study of this enzyme, reporting that metal complexing anions such as cyanate, thiocyanate, cyanide, azide are weak MgCA inhibitors (KIs ranging between 6.81 and 45.2 mM) whereas bicarbonate (KI of 0.59 mM) and diethyldithiocarbamate (KI of 0.30 mM) together with sulfamide, sulfamate, phenylboronic acid and phenylarsonic acid were the most effective inhibitors detected so far, with KIs ranging between 83 and 94 μM. This study may help a better understanding of the inhibition profile of this enzyme and may offer the possibility to design new such modulators of activity belonging to different chemical classes.
Collapse
Affiliation(s)
- Sonia Del Prete
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche, Polo Scientifico, Sesto Fiorentino, Firenze, Italy; Istituto di Biochimica delle Proteine-CNR, Via P. Castellino 111, 80131 Napoli, Italy
| | - Daniela Vullo
- Università degli Studi di Firenze, Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy
| | - Sameh M Osman
- Department of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Zeid AlOthman
- Department of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Clemente Capasso
- Istituto di Biochimica delle Proteine-CNR, Via P. Castellino 111, 80131 Napoli, Italy.
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche, Polo Scientifico, Sesto Fiorentino, Firenze, Italy; Università degli Studi di Firenze, Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy.
| |
Collapse
|
45
|
Esirden İ, Ulus R, Aday B, Tanç M, Supuran CT, Kaya M. Synthesis of novel acridine bis-sulfonamides with effective inhibitory activity against the carbonic anhydrase isoforms I, II, IX and XII. Bioorg Med Chem 2015; 23:6573-80. [DOI: 10.1016/j.bmc.2015.09.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/10/2015] [Accepted: 09/14/2015] [Indexed: 10/23/2022]
|
46
|
Congiu C, Onnis V, Deplano A, Balboni G, Ceruso M, Supuran CT. Synthesis and carbonic anhydrase I, II, IX and XII inhibitory activity of sulfamates incorporating piperazinyl-ureido moieties. Bioorg Med Chem 2015; 23:5619-25. [DOI: 10.1016/j.bmc.2015.07.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 07/13/2015] [Accepted: 07/14/2015] [Indexed: 11/28/2022]
|
47
|
Oktay K, Köse LP, Şendil K, Gültekin MS, Gülçin İ, Supuran CT. The synthesis of (Z)-4-oxo-4-(arylamino)but-2-enoic acids derivatives and determination of their inhibition properties against human carbonic anhydrase I and II isoenzymes. J Enzyme Inhib Med Chem 2015; 31:939-45. [PMID: 26308288 DOI: 10.3109/14756366.2015.1071808] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The synthesis of (Z)-4-oxo-4-(arylamino)but-2-enoic acid (4) derivatives containing structural characteristics that can be used for the synthesis of several active molecules, is presented. Some of the butenoic acid derivatives (4a, 4c, 4e, 4i, 4j, 4k) are synthesized following literature procedures and at the end of the reaction. In addition, structures of all synthesized derivatives (4a-4m) were determined by (1)H-NMR, (13)C-NMR and IR spectroscopy. Carbonic anhydrase is a metalloenzyme involved in many crucial physiologic processes as it catalyzes a simple but fundamental reaction, the reversible hydration of carbon dioxide to bicarbonate and protons. Significant results were obtained by evaluating the enzyme inhibitory activities of these derivatives against human carbonic anhydrase hCA I and II isoenzymes (hCA I and II). Butenoic acid derivatives (4a-4m) strongly inhibited hCA I and II with Kis in the low nanomolar range of 1.85 ± 0.58 to 5.04 ± 1.46 nM against hCA I and in the range of 2.01 ± 0.52 to 2.94 ± 1.31 nM against hCA II.
Collapse
Affiliation(s)
- Koray Oktay
- a Faculty of Science, Department of Chemistry , Ataturk University , Erzurum , Turkey
| | - Leyla Polat Köse
- a Faculty of Science, Department of Chemistry , Ataturk University , Erzurum , Turkey
| | - Kıvılcım Şendil
- b Faculty of Science and Arts, Department of Chemistry , Kafkas University , Kars , Turkey
| | | | - İlhami Gülçin
- a Faculty of Science, Department of Chemistry , Ataturk University , Erzurum , Turkey .,c Department of Zoology , College of Science, King Saud University , Riyadh , Saudi Arabia
| | - Claudiu T Supuran
- d Dipartimento di Chimica Ugo Schiff, Università degli Studi di Firenze , Sesto Fiorentino (Firenze) , Italy , and.,e Neurofarba Department, Section of Pharmaceutical and Nutriceutical Sciences, Università degli Studi di Firenze , Sesto Fiorentino (Florence) , Italy
| |
Collapse
|
48
|
De Luca V, Del Prete S, Vullo D, Carginale V, Di Fonzo P, Osman SM, AlOthman Z, Supuran CT, Capasso C. Expression and characterization of a recombinant psychrophilic γ-carbonic anhydrase (NcoCA) identified in the genome of the Antarctic cyanobacteria belonging to the genus Nostoc. J Enzyme Inhib Med Chem 2015. [DOI: 10.3109/14756366.2015.1069289] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
| | - Sonia Del Prete
- Istituto di Bioscienze e Biorisorse, CNR, Napoli, Italy,
- Laboratorio di Chimica Bioinorganica, Dipartimento Di Chimica, Polo Scientifico, Università degli Studi di Firenze, Sesto Fiorentino, Florence, Italy,
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche, Polo Scientifico, Sesto Fiorentino, Florence, Italy, and
| | - Daniela Vullo
- Laboratorio di Chimica Bioinorganica, Dipartimento Di Chimica, Polo Scientifico, Università degli Studi di Firenze, Sesto Fiorentino, Florence, Italy,
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche, Polo Scientifico, Sesto Fiorentino, Florence, Italy, and
| | | | | | - Sameh M Osman
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Zeid AlOthman
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Claudiu T Supuran
- Laboratorio di Chimica Bioinorganica, Dipartimento Di Chimica, Polo Scientifico, Università degli Studi di Firenze, Sesto Fiorentino, Florence, Italy,
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche, Polo Scientifico, Sesto Fiorentino, Florence, Italy, and
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
49
|
Congiu C, Onnis V, Deplano A, Balboni G, Dedeoglu N, Supuran CT. Synthesis of sulfonamides incorporating piperazinyl-ureido moieties and their carbonic anhydrase I, II, IX and XII inhibitory activity. Bioorg Med Chem Lett 2015; 25:3850-3. [PMID: 26233435 DOI: 10.1016/j.bmcl.2015.07.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/17/2015] [Accepted: 07/18/2015] [Indexed: 01/15/2023]
Abstract
By using SLC-0111 (4-fluorophenylureido-benzenesulfonamide), a sulfonamide carbonic anhydrase (CA, EC 4.2.1.1) inhibitor in Phase I clinical trials as an antitumor agent as lead molecule, a series of benzenesulfonamide derivatives incorporating ureido moieties was synthesized. The new compounds contain a 4-N-substituted piperazine fragment in which the ureido linker has been included, and were tested as inhibitors of the cytosolic human (h) hCA I and II isoforms, as well as the transmembrane, tumor-associated enzymes hCA IX and XII. Depending on the substitution pattern at the piperazine ring, low nanomolar inhibitors were detected against all four isoforms, making the new class of sulfonamides of interest for various pharmacologic applications.
Collapse
Affiliation(s)
- Cenzo Congiu
- Department of Life and Environmental Sciences, Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, Via Ospedale 72, Cagliari I-09124, Italy.
| | - Valentina Onnis
- Department of Life and Environmental Sciences, Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, Via Ospedale 72, Cagliari I-09124, Italy
| | - Alessandro Deplano
- Department of Life and Environmental Sciences, Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, Via Ospedale 72, Cagliari I-09124, Italy
| | - Gianfranco Balboni
- Department of Life and Environmental Sciences, Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, Via Ospedale 72, Cagliari I-09124, Italy
| | - Nurcan Dedeoglu
- Università degli Studi di Firenze, Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy; Università degli Studi di Firenze, NEUROFARBA Department, Section of Pharmaceutical and Nutraceutical Chemistry, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy.
| |
Collapse
|
50
|
Ozensoy Guler O, Capasso C, Supuran CT. A magnificent enzyme superfamily: carbonic anhydrases, their purification and characterization. J Enzyme Inhib Med Chem 2015; 31:689-94. [PMID: 26118417 DOI: 10.3109/14756366.2015.1059333] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In this paper, we reviewed the purification and characterization methods of the α-carbonic anhydrase (CA, EC 4.2.1.1) class. Six genetic families (α-, β-, γ-, δ-, ζ- and η-CAs) all know to date, all encoding such enzymes in organisms widely distributed over the phylogenetic tree. Starting from the manuscripts published in the 1930s on the isolation and purification of α-CAs from blood and other tissues, and ending with the recent discovery of the last genetic family in protozoa, the η-CAs, considered for long time an α-CA, we present historically the numerous and different procedures which were employed for obtaining these catalysts in pure form. α-CAs possess important application in medicine (as many human α-CA isoforms are drug targets) as well as biotechnological processes, in which the enzymes are ultimately used for CO2 capture in order to mitigate the global warming effects due to greenhouse gases. Recently, it was discovered an involvement of CAs in cancerogenesis as well as infection caused by pathogenic agents such as bacteria, fungi and protozoa. Inhibition studies of CAs identified in the genome of the aforementioned organisms might lead to the discovery of innovative drugs with a novel mechanism of action.
Collapse
Affiliation(s)
- Ozen Ozensoy Guler
- a Department of Medical Biology, Faculty of Medicine , Yildirim Beyazit University, Bilkent Campus , Ankara , Turkey
| | - Clemente Capasso
- b CNR-Institute of Biosciences and Bioresources, Napoli, Italy , Napoli , Italy , and
| | - Claudiu T Supuran
- c Università degli Studi di Firenze, Laboratorio di Chimica Bioinorganica, NEUROFARBA Department, Section of Pharmaceutical and Nutriceutical Chemistry , Florence , Italy
| |
Collapse
|