1
|
Yang C, Lu D, Zhang X, Li Y, Zhao M, Yang Y. Edible and herbal plants against Helicobacter pylori infection: From epidemiological, experimental studies to clinical perspectives. Microb Pathog 2025; 201:107386. [PMID: 39983882 DOI: 10.1016/j.micpath.2025.107386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 02/02/2025] [Accepted: 02/17/2025] [Indexed: 02/23/2025]
Abstract
Helicobacter pylori (H. pylori) infection is an important global public health concern, causing conditions like gastritis, gastroduodenal ulcers, gastric lymphoma, distal gastric cancer and other gastric diseases. With the increasing prevalence of antibiotics resistance, the cure rate of antibiotics-based triple or quadruple therapy has declined to 80 % or less. Moreover, side effects still remain. Hence, alternative, more potent and safer anti-H. pylori medications are required. Numerous studies have indicated that natural products from medical plants are valuable repositories for the prevention of H. pylori infection with advantages in little side effects due to the co-evolution with biological systems for millions of years. In this review, we highlighted the anti-H. pylori activities and the responsive mechanism of edible and medical plants based on epidemiological, experimental, and clinical studies, providing the basis for future development of functional foods or drugs against H. pylori.
Collapse
Affiliation(s)
- Chaofeng Yang
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Dan Lu
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Xiaoyuan Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Yuying Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Mojiao Zhao
- Department of Chinese Medicine and Health Care, Changchun Humanities and Sciences College, Changchun, China
| | - Yong Yang
- School of Pharmaceutical Sciences, Jilin University, Changchun, China; International College, Krirk University, Bangkok, Thailand.
| |
Collapse
|
2
|
Khattak SU, Ahmad M, Ahmad J, Ikram S, Ahmad S, Alshabrmi FM, Alatawi EA. Purification of Potential Antimicrobial Metabolites from Endophytic Fusarium oxysporum Isolated from Myrtus communis. Appl Biochem Biotechnol 2024; 196:8940-8964. [PMID: 39083194 DOI: 10.1007/s12010-024-05016-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 01/04/2025]
Abstract
The rise of microbial resistance and emerging infections pose significant health threats. Natural products from endophytic fungi offer a promising source of novel compounds with the potential as major drug leads. This research aims to screen Myrtus communis and Moringa oleifera for endophytic fungi and screen their metabolites for antibacterial and antifungal potential. Six endophytic fungal strains were isolated using a potato dextrose agar (PDA) medium. The M. communis isolates were designated MC1, MC2, and MC3, and the M. oleifera isolates were named MO1, MO2, and MO3. Preliminary bioactivity testing revealed that the MC3 isolate exhibited significant growth inhibition against multidrug-resistant bacterial and fungal pathogens, including Staphylococcus aureus, Enterococcus faecalis, Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli, Candida albicans, and Candida glabrata. The MC3 isolate was identified as Fusarium oxysporum through morphological and microscopic methods. For metabolite production, the fungal strain was cultured in potato dextrose broth (PDB) medium at 28 °C for 14 days in a shaking incubator. The metabolites were purified using various chromatographic techniques, HPLC and GC-MS. The GC-MS analysis of the bioactive compound containing fungal strain (F. oxysporum) revealed multiple compounds at different retention times using the NIST-20 Library. Based on RSI values and probability indices, two compounds were targeted for further purification. Structure elucidation was performed using 1D and 2D nuclear magnetic resonance (NMR) experiments on a Varian 500 NMR machine. The compounds identified were ethyl iso-allocholate (C26H44O5, exact mass 436.32) and 1-monolinoleoyl glycerol trimethylsilyl ether (C27H56O4Si2, exact mass 500.37). The MS (NIST-20) library facilitated the investigation of the in silico antimicrobial activity of these compounds against the elastase virulence protein of P. aeruginosa and protease Sapp1p from C. parapsilosis. Both the compounds were docked with druggable proteins using the Glide induced fit docking (IFD) algorithm. The ethyl iso-allocholate and 1-monolinoleoyl glycerol trimethylsilyl ether compounds showed binding scores - 10.07 kcal mol-1 and - 7.47 kcal mol-1 against elastase, and - 8.16 kcal mol-1 and - 6.89 kcal mol-1 against aspartic protease, respectively. In vitro studies confirmed the inhibitory activity of these compounds against multidrug-resistant P. aeruginosa and E. faecalis. Ethyl iso-allocholate exhibited higher bioactivity against P. aeruginosa with inhibition rates of 41%, 27%, and 35% at concentrations of 1000, 500, and 250 µg mL-1, respectively. These results suggest that bioactive compounds from F. oxysporum have the potential as antimicrobial agents, warranting further research.
Collapse
Affiliation(s)
- Saeed Ullah Khattak
- Centre of Biotechnology and Microbiology, University of Peshawar, Peshawar, Pakistan.
| | - Mansoor Ahmad
- Centre of Biotechnology and Microbiology, University of Peshawar, Peshawar, Pakistan
| | - Jamshaid Ahmad
- Centre of Biotechnology and Microbiology, University of Peshawar, Peshawar, Pakistan
| | - Saima Ikram
- Centre of Biotechnology and Microbiology, University of Peshawar, Peshawar, Pakistan
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, 25000, Pakistan.
- Department of Natural Sciences, Lebanese American University, P.O. Box 36, Beirut, Lebanon.
| | - Fahad M Alshabrmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, 1452, Buraydah, Saudi Arabia
| | - Eid A Alatawi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, 71491, Tabuk, Saudi Arabia
| |
Collapse
|
3
|
Aghighi K, Heidarpour M, Borji H. The anti-echinococcal activity of crocin in mice experimentally infected with Echinococcus granulosus. Exp Parasitol 2023; 246:108463. [PMID: 36649915 DOI: 10.1016/j.exppara.2023.108463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/01/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Herbal preparations have good medicinal value for potential use as therapeutic agents in cystic echinococcosis. The efficiency of crocin in the case of cystic echinococcosis was investigated, and compared with that of albendazole, one of the few licensed anti-echinococcosis drugs that served as a positive control. Five months after infecting BALB/C mice with E. granulosus sensu lato the experimental group was divided into 7 subgroups containing 10 animals each: 1- Crocin 80 (80 mg/kg), 2- Crocin 40 (40 mg/kg), 3- Crocin 10 (10 mg/kg), 4- Albendazole (200 mg/kg), 5- Crocin 10 (10 mg/kg) +Albendazole (100 mg/kg), 6- Crocin 20 (20 mg/kg) +Albendazole (50 mg/kg), 7- the control (infected and untreated). After two weeks of daily treatment, significant reductions of cysts' weights, sizes, and total numbers concerning the control group were achieved by treatment with crocin 80, crocin 40, crocin 10, crocin 10 + ABZ100, crocin 20+ ABZ50 and ABZ200 (p < 0.05). Moreover, there was no difference concentrations of crocin and those treated with albendazole,. The concentration of bilirubin was higher in the control group than all treated groups with crocin, significantly. However, the ALT activity showeda significant decrease in the crocin 10 group, compared to the crocin 80, crocin 40, crocin 10 + ABZ100, crocin 20 + ABZ50, control groups (p < 0.05). Based on our results, the administration of crocin used at 10 mg/kg concentrations seems a hopeful applicant for the treatment of cystic echinococcosis.
Collapse
Affiliation(s)
- Karim Aghighi
- Department of Pathobiology, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Heidarpour
- Department of Clinical Sciences, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hassan Borji
- Department of Pathobiology, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
4
|
Ijinu TP, Prabha B, Pushpangadan P, George V. Essential Oil-Derived Monoterpenes in Drug Discovery and Development. DRUG DISCOVERY AND DESIGN USING NATURAL PRODUCTS 2023:103-149. [DOI: 10.1007/978-3-031-35205-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
5
|
Ezati P, Khan A, Rhim JW, Roy S, Hassan ZU. Saffron: Perspectives and Sustainability for Active and Intelligent Food Packaging Applications. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02949-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Saffron, Its Active Components, and Their Association with DNA and Histone Modification: A Narrative Review of Current Knowledge. Nutrients 2022; 14:nu14163317. [PMID: 36014823 PMCID: PMC9414768 DOI: 10.3390/nu14163317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/02/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Intensive screening for better and safer medications to treat diseases such as cancer and inflammatory diseases continue, and some phytochemicals have been discovered to have anti-cancer and many therapeutical activities. Among the traditionally used spices, Crocus sativus (saffron) and its principal bioactive constituents have anti-inflammatory, antioxidant, and chemopreventive properties against multiple malignancies. Early reports have shown that the epigenetic profiles of healthy and tumor cells vary significantly in the context of different epigenetic factors. Multiple components, such as carotenoids as bioactive dietary phytochemicals, can directly or indirectly regulate epigenetic factors and alter gene expression profiles. Previous reports have shown the interaction between active saffron compounds with linker histone H1. Other reports have shown that high concentrations of saffron bind to the minor groove of calf thymus DNA, resulting in specific structural changes from B- to C-form of DNA. Moreover, the interaction of crocin G-quadruplex was reported. A recent in silico study has shown that residues of SIRT1 interact with saffron bio-active compounds and might enhance SIRT1 activation. Other reports have shown that the treatment of Saffron bio-active compounds increases γH2AX, decreases HDAC1 and phosphorylated histone H3 (p-H3). However, the question that still remains to be addressed how saffron triggers various epigenetic changes? Therefore, this review discusses the literature published till 2022 regarding saffron as dietary components and its impact on epigenetic mechanisms. Novel bioactive compounds such as saffron components that lead to epigenetic alterations might be a valuable strategy as an adjuvant therapeutic drug.
Collapse
|
7
|
In Vitro Activity of the Arylaminoartemisinin GC012 against Helicobacter pylori and Its Effects on Biofilm. Pathogens 2022; 11:pathogens11070740. [PMID: 35889986 PMCID: PMC9324866 DOI: 10.3390/pathogens11070740] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 12/17/2022] Open
Abstract
This study evaluated the in vitro activity of the arylaminoartemisinin GC012, readily obtained from dihydroartemisinin (DHA), against clinical strains of Helicobacter pylori (H. pylori) with different antibiotic susceptibilities in the planktonic and sessile state. The activity was assessed in terms of bacteriostatic and bactericidal potential. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined by the broth microdilution method. After treatment with GC012, all bacterial strains showed significantly lower MIC and MBC values compared to those of DHA. The effect of combination of GC012 with antibiotics was examined using the checkerboard method. GC012 displayed synergistic interactions with metronidazole, clarithromycin, and amoxicillin in all the strains. The antibiofilm activity was evaluated via crystal violet staining, AlamarBlue® assay, colony-forming unit count, and fluorescence microscopy. At ½ MIC and ¼ MIC concentration, both GC012 and DHA inhibited biofilm formation, but only GC012 showed a minimal biofilm eradication concentration (MBEC) on mature biofilm. Furthermore, both compounds induced structural changes in the bacterial membrane, as observed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). It is thereby demonstrated that GC012 has the potential to be efficacious against H. pylori infection.
Collapse
|
8
|
Phytochemical profiling, antibacterial and antioxidant properties of Crocus sativus flower: A comparison between tepals and stigmas. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abstract
Several studies have demonstrated that stigmas of Crocus sativus contain several bioactive compounds with potential health-promoting properties. However, during the processing of stigmas, large amounts of floral bio-residues are normally discarded as by-products. In this study, using untargeted metabolomics, the comprehensive phytochemical composition of C. sativus stigma and tepals was investigated. Moreover, the antibacterial and anti-biofilm properties of the extracts of C. sativus stigmas and tepals were compared. The study was carried out using two methicillin-resistant staphylococcal reference strains (i.e., Staphylococcus aureus ATCC 43300 and Staphylococcus epidermidis ATCC 35984), representing important Gram-positive biofilm-forming human pathogens. The antibacterial properties were correlated with total polyphenol content, total terpenoid content, and in vitro antioxidant properties of tepals and stigmas. The results demonstrated that stigma and tepal extracts, at the sub-toxic concentrations, were able to interfere with biofilm formation by ATCC 43300 and ATCC 35984. Besides, the higher antibacterial activity of tepals than stigmas was associated with higher levels of phycompounds. Therefore, our results demonstrated that C. sativus stigmas and bio-residues, such as tepals, are potential antioxidant sources and good candidates as antibacterial agents to prevent biofilm formation. Taken together, these findings showed that C. sativus could be used as functional ingredient by the food and pharmaceutical industries.
Collapse
|
9
|
Xing B, Li S, Yang J, Lin D, Feng Y, Lu J, Shao Q. Phytochemistry, pharmacology, and potential clinical applications of saffron: A review. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114555. [PMID: 34438035 DOI: 10.1016/j.jep.2021.114555] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/11/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Saffron, the dried red stigma of the perennial herb Crocus sativus L. (Iridaceae), is one of the most important and expensive spices in the world. It is used as a traditional Chinese medicine with demonstrated effects in promoting blood circulation and suppressing blood stasis, cooling blood detoxification, and relieving depression. It is mainly used for the treatment of depression, irregular menstruation, postpartum thrombosis, and bruises. AIM OF THE STUDY This review aims to provide a systematic and up-to-date overview of the phytochemistry, pharmacology, and clinical applications of saffron. We hope it could provide useful references and guidance for the future directions of research on saffron. MATERIALS AND METHODS The online database, such as Web of Science, Google Scholar, Science Direct, PubMed, SpringerLink, Wiley Online Library, SciFinder and Chemical book, and CNKI were used to collect relevant literature. And the classic books about Chinese herbal medicine were also being referenced. RESULTS More than 150 chemical compounds, including carotenoids, flavonoids and flavonoid glycosides, monoterpenes and monoterpenoid derivatives, monocyclic aromatic hydrocarbons, amino acids, alkaloids and others, were revealed. The pharmacological activities study of saffron were focused on the antioxidant, anti-inflammatory, antitumor, antidepressant, hypoglycemic, hypolipidemic, memory-enhancing, and so on. Currently, saffron is mainly used for the treatment of diabetes, Alzheimer's disease, depression, anxiety disorders, cardiovascular diseases, learning and memory disorders, cancer, and other conditions. CONCLUSIONS Phytochemical and pharmacological analyses of saffron have been revealed in recent studies. However, clinical studies have focused mainly on AD, depression and anxiety disorders. Therefore, a large number of clinical trials are needed to study the efficacy of saffron and its major chemical components against other diseases including hypertension, hyperlipidemia, and cancer. Further studies of the mechanism of action and toxicological properties of saffron are also required, especially research to establish an effective dose of saffron and its long-term toxicity in vivo.
Collapse
Affiliation(s)
- Bingcong Xing
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, 311300, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Shuailing Li
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, 311300, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Jiaxin Yang
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, 311300, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Ding Lin
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, 311300, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yue Feng
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jiangjie Lu
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 310036, China
| | - Qingsong Shao
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, 311300, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
10
|
Razavi SE, Jafari SM. Effect of corm age on the antioxidant, bactericidal and fungicidal activities of saffron (Crocus sativus L.) stigmas. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Musazadeh V, Zarezadeh M, Faghfouri AH, Keramati M, Ghoreishi Z, Farnam A. Saffron, as an adjunct therapy, contributes to relieve depression symptoms: An umbrella meta-analysis. Pharmacol Res 2021; 175:105963. [PMID: 34757208 DOI: 10.1016/j.phrs.2021.105963] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Saffron is a traditional herbal medicine that has been used to treat various ailments such as depressive mood. However, the findings of several meta-analyses regarding anti-depressive properties of saffron (Crocus sativus L.) are controversial. The current umbrella meta-analysis was carried out to determine the magnitude and direction of saffron administration on depression. METHODS Relevant studies were searched in international databases including PubMed, Scopus, EMBASE, Web of Science, and Cochrane Central Library up to June 2021. Meta-analysis studies investigating the effects of saffron on depression were considered to include in the study. Random-effects model was used to perform the meta-analysis. Additional analyses including subgroup and sensitivity analyses were carried out. RESULTS Overall, 7 meta-analyses were included in the study. The results demonstrated that the consumption of saffron resulted in a significant reduction in BDI scores (ES: -3.87; 95% CI: -5.27, -2.46). However, saffron did not change the HAMD scores (ES: -2.10; 95% CI: -5.05, 0.86, p = 0.164) and mixed scores (HAM-D/BDI/DASS) (ES: 0.02; 95% CI: -0.39, 0.43,p = 0.941). CONCLUSION Present umbrella meta-analysis demonstrated that saffron intake might contribute to alleviation of depression disorder, however, it cannot be considered as a single therapeutic approach to treat depression.
Collapse
Affiliation(s)
- Vali Musazadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Community Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Meysam Zarezadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Amir Hossein Faghfouri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Community Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Keramati
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Community Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Ghoreishi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Farnam
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
12
|
Vázquez-Jiménez LK, Moreno-Herrera A, Juárez-Saldivar A, González-González A, Ortiz-Pérez E, Paz-González AD, Palos-Pizarro I, Ramírez-Moreno E, Rivera G. Recent Advances in the Development of Triose Phosphate Isomerase Inhibitors as Antiprotozoal Agents. Curr Med Chem 2021; 29:2504-2529. [PMID: 34517794 DOI: 10.2174/0929867328666210913090928] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/10/2021] [Accepted: 07/20/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Parasitic diseases caused by protozoa such as Chagas disease, leishmaniasis, malaria, African trypanosomiasis, amebiasis, trichomoniasis, and giardiasis are considered serious public health problems in developing countries. Drug-resistance among parasites justifies the search for new therapeutic drugs and the identification of new targets becomes a valuable approach. In this scenario, glycolysis pathway which consists of the conversion of glucose into pyruvate plays an important role in the protozoa energy supply and it is therefore considered as a promising target. In this pathway, triose phosphate isomerase (TIM) plays an essential role in efficient energy production. Furthermore, protozoa TIM show structural differences with human enzyme counterparts suggesting the possibility of obtaining selective inhibitors. Therefore, TIM is considered a valid approach to develop new antiprotozoal agents, inhibiting the glycolysis in the parasite. OBJECTIVE In this review, we discuss the drug design strategies, structure-activity relationship, and binding modes of outstanding TIM inhibitors against Trypanosoma cruzi, Trypanosoma brucei, Plasmodium falciparum, Giardia lamblia, Leishmania mexicana, Trichomonas vaginalis, and Entamoeba histolytica. RESULTS TIM inhibitors showed mainly aromatic systems and symmetrical structure, where the size and type of heteroatom are important for enzyme inhibition. This inhibition is mainly based on the interaction with i) the interfacial region of TIM inducing changes on the quaternary and tertiary structure or ii) with the TIM catalytic region were the main pathways that disabled the catalytic activity of the enzyme. CONCLUSION Benzothiazole, benzoxazole, benzimidazole, and sulfhydryl derivatives stand out as TIM inhibitors. In silico and in vitro studies demonstrate that the inhibitors bind mainly at the TIM dimer interface. In this review, the development of new TIM inhibitors as antiprotozoal drugs is demonstrated as an important pharmaceutical strategy that may lead to new therapies for these ancient parasitic diseases.
Collapse
Affiliation(s)
- Lenci K Vázquez-Jiménez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710 Reynosa. Mexico
| | - Antonio Moreno-Herrera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710 Reynosa. Mexico
| | - Alfredo Juárez-Saldivar
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710 Reynosa. Mexico
| | - Alonzo González-González
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710 Reynosa. Mexico
| | - Eyra Ortiz-Pérez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710 Reynosa. Mexico
| | - Alma D Paz-González
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710 Reynosa. Mexico
| | - Isidro Palos-Pizarro
- Unidad Académica Multidisciplinaria Reynosa-Rodhe, Universidad Autónoma de Tamaulipas, 88779 Reynosa. Mexico
| | - Esther Ramírez-Moreno
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, 07320 Ciudad de México. Mexico
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710 Reynosa. Mexico
| |
Collapse
|
13
|
Liu C, Fan H, Guan L, Ge RL, Ma L. In vivo and in vitro efficacy of crocin against Echinococcus multilocularis. Parasit Vectors 2021; 14:364. [PMID: 34256821 PMCID: PMC8278753 DOI: 10.1186/s13071-021-04866-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 06/29/2021] [Indexed: 12/14/2022] Open
Abstract
Background Alveolar echinococcosis (AE) is a fatal zoonosis caused by the larvae of Echinococcus multilocularis. However, current chemotherapy treatment options are based on benzimidazoles [albendazole (ABZ) and mebendazole], which have limited efficacy. Therefore, novel drugs are necessary for the treatment of this disease. Methods The anthelmintic effects of crocin were tested on E. multilocularis metacestodes, germinal cells and protoscoleces in vitro. Human foreskin fibroblasts (HFFs) and Reuber rat hepatoma (RH) cells were used to assess cytotoxicity. The in vivo efficacy of crocin was investigated in mice following secondary infection with E. multilocularis. Furthermore, collagen deposition and degradation in host tissues around the metacestodes were evaluated. Results In vitro, crocin had a median effective concentration of 11.36 μM against cultured E. multilocularis metacestodes, while it reduced germinal cell viability at a median inhibitory concentration of 10.05 μM. Crocin was less toxic to HFFs and RH mammalian cell lines than to metacestodes. Transmission electron microscopy revealed that crocin treatment resulted in structural damage in the germinal layer. In addition, 60.33 ± 3.06% of protoscoleces were killed by treatment with 10 μM crocin for 7 days, indicating that crocin has a parasiticidal effect. In vivo, the metacestode weight was significantly reduced after the administration of crocin at 50 mg/kg and 100 mg/kg (55.1 and 68.1%, respectively). Metacestode pathology showed structural disruption of the germinal and laminated layers after crocin treatment. The crocin- and ABZ-treated groups presented significant increases in the levels of interleukin (IL)-2 and IL-4. Furthermore, crocin inhibited the expression of matrix metalloproteinases (MMPs) (MMP2 and MMP9) and promoted collagen deposition in the metacestode. Conclusions Crocin was demonstrated to exert parasiticidal activity against E. multilocularis in vitro and in vivo, and can be developed as a novel drug for the treatment of AE. Graphical abstract ![]()
Supplementary information The online version contains supplementary material available at 10.1186/s13071-021-04866-4.
Collapse
Affiliation(s)
- Chuanchuan Liu
- Qinghai University Affiliated Hospital, Xining, 810001, Qinghai, People's Republic of China.,Research Center for High Altitude Medicine, Qinghai University, Xining, 810001, Qinghai, People's Republic of China.,Qinghai Key Laboratory for Echinococcosis, Xining, 810001, Qinghai, People's Republic of China
| | - Haining Fan
- Qinghai University Affiliated Hospital, Xining, 810001, Qinghai, People's Republic of China.,Qinghai Key Laboratory for Echinococcosis, Xining, 810001, Qinghai, People's Republic of China
| | - Lu Guan
- Research Center for High Altitude Medicine, Qinghai University, Xining, 810001, Qinghai, People's Republic of China
| | - Ri-Li Ge
- Research Center for High Altitude Medicine, Qinghai University, Xining, 810001, Qinghai, People's Republic of China. .,Qinghai Key Laboratory of Science and Technology for High Altitude Medicine, Xining, 810001, Qinghai, People's Republic of China.
| | - Lan Ma
- Research Center for High Altitude Medicine, Qinghai University, Xining, 810001, Qinghai, People's Republic of China. .,Qinghai Key Laboratory of Science and Technology for High Altitude Medicine, Xining, 810001, Qinghai, People's Republic of China.
| |
Collapse
|
14
|
Ghobadi E, Ghanbarimasir Z, Emami S. A review on the structures and biological activities of anti-Helicobacter pylori agents. Eur J Med Chem 2021; 223:113669. [PMID: 34218084 DOI: 10.1016/j.ejmech.2021.113669] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/11/2021] [Accepted: 06/21/2021] [Indexed: 12/19/2022]
Abstract
Helicobacter pylori is one of the main causal risk factor in the generation of chronic gastritis, gastroduodenal ulcers and gastric carcinoma. Thus, the eradication of H. pylori infection is an important way for preventing and managing the gastric diseases. Multiple-therapy with several antibacterial agents is used for the eradication of H. pylori infections; however the increase of resistance to H. pylori strains has resulted in unsatisfactory eradication and unsuccessful treatment. Furthermore, the combination therapy with high dosing leads to the disruption of intestinal microbial flora and undesired side effects. Therefore, the search for new therapeutic agents with high selectivity against H. pylori is a field of current interest. In recent years, diverse compounds originating from natural sources or synthetic drug design programs were evaluated and tried to optimize for applying against H. pylori. In this review, we have described various classes of anti-H. pylori compounds, their structure-activity relationship studies, and mechanism of actions, which could be useful for the development of new drugs for the treatment of H. pylori infections.
Collapse
Affiliation(s)
- Elham Ghobadi
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Ghanbarimasir
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Saeed Emami
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
15
|
Carraro Junior LR, Alves AG, Rech TDST, Campos Júnior JC, Siqueira GM, Cunico W, Brüning CA, Bortolatto CF. Three -(pyridin-2-yl)-2-(pyridin-2-ylimino)thiazolidin-4-one as a novel inhibitor of cerebral MAO-B activity with antioxidant properties and low toxicity potential. J Biochem Mol Toxicol 2021; 35:e22833. [PMID: 34047428 DOI: 10.1002/jbt.22833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 01/21/2021] [Accepted: 05/18/2021] [Indexed: 11/12/2022]
Abstract
Some brain diseases are associated with oxidative stress and altered monoamine oxidase (MAO) activity. The objective of this study was to evaluate the antioxidant and neuroprotective actions through MAO inhibition of 3-(pyridin-2-yl)-2-(pyridine-2-ylimino) thiazolidin-4-one (PPIT, a synthetic molecule containing a thiazolidinone nucleus), as well as its effects on toxicity parameters in Swiss female mice. Five in vitro assays were carried out to verify the PPIT antioxidant capacity: protein carbonylation (PC), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 1,1-diphenyl-2-picryl-hydrazil (DPPH), ferric ion (Fe3+ ) reducing antioxidant power (FRAP), and superoxide dismutase (SOD)-like activity. The results showed that PPIT reduced the level of PC in the homogenate of the brain. This compound did not demonstrate SOD mimetic activity, but it acted as a free radical scavenger (ABTS and DPPH) and exhibited reducing activity in the FRAP assay. In addition, the effects of PPIT on cerebral MAO activity (MAO-A and B isoforms) were investigated in vitro. Our data revealed inhibition of the MAO-B activity by PPIT with no effects on MAO-A. Lastly, an acute oral toxicity test was conducted in mice. No changes in food intake, body weight, and biochemical markers of kidney and liver damage were detected in mice treated with a high dose of PPIT (300 mg/kg). In conclusion, the present study demonstrated that PPIT exhibits antioxidant activity and selectively inhibits the MAO-B isoform without causing apparent toxicity. These findings suggest PPIT as a potential therapeutic candidate to be tested in preclinical models of brain diseases involving perturbations of MAO-B activity and redox status.
Collapse
Affiliation(s)
- Luiz Roberto Carraro Junior
- Programa de Pós-graduação em Bioquímica e Bioprospecção (PPGBBio), Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brasil
| | - Amália Gonçalves Alves
- Programa de Pós-graduação em Bioquímica e Bioprospecção (PPGBBio), Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brasil
| | - Taís da Silva Teixeira Rech
- Programa de Pós-graduação em Bioquímica e Bioprospecção (PPGBBio), Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brasil
| | - José Coan Campos Júnior
- Programa de Pós-Graduação em Bioquímica e Bioprospecção (PPGBBio), Laboratório de Química Aplicada a Bioativos (LaQuiABio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, UFPel, Pelotas, RS, Brasil
| | - Geonir Machado Siqueira
- Programa de Pós-Graduação em Bioquímica e Bioprospecção (PPGBBio), Laboratório de Química Aplicada a Bioativos (LaQuiABio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, UFPel, Pelotas, RS, Brasil
| | - Wilson Cunico
- Programa de Pós-Graduação em Bioquímica e Bioprospecção (PPGBBio), Laboratório de Química Aplicada a Bioativos (LaQuiABio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, UFPel, Pelotas, RS, Brasil
| | - César Augusto Brüning
- Programa de Pós-graduação em Bioquímica e Bioprospecção (PPGBBio), Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brasil
| | - Cristiani Folharini Bortolatto
- Programa de Pós-graduação em Bioquímica e Bioprospecção (PPGBBio), Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brasil
| |
Collapse
|
16
|
Ranjbar R, Shayanfar P, Maniati M. In Vitro Antileishmanial Effects of Saffron Compounds, Crocin and Stigmasterol, on Iranian Strain of Leishmania major (MHOM/IR/75/ER). IRANIAN JOURNAL OF PARASITOLOGY 2021; 16:151-158. [PMID: 33786057 PMCID: PMC7988674 DOI: 10.18502/ijpa.v16i1.5535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background: Due to numerous side effects of common drugs in treatment of leishmaniasis, new therapeutic approaches focus on herbal compounds. Therefore, we aimed to determine the effect of crocin and stigmasterol on in-vitro growth of promastigotes and amastigotes of Leishmania major in the Department of Parasitology, Pasteur Institute, Tehran, Iran in 2018. Methods: The effect of different concentrations of crocin and stigmasterol were evaluated by determining their in-vitro inhibitory effects on promastigotes and amastigotes of the L. major using MTT assay. Results: The fatality rate was 65.27% and 71.96% for crocin and stigmasterol respectively at 24 h post-culture in concentration of 50 μg/mL. The mean inhibitory effect of crocin and stigmasterol on L major amastigotes after 72 h were 52.22% and 38.96%. Conclusion: The crocin and stigmasterol had efficient adverse effects on promastigote and amastigotes of L. major, hence, further studies on the anti-leishmanial effects of these herbal compounds in human and animal models are recommended.
Collapse
Affiliation(s)
- Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Peyman Shayanfar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahmood Maniati
- English Department, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
17
|
Parvizi MM, Zare F, Handjani F, Nimrouzi M, Zarshenas MM. Overview of herbal and traditional remedies in the treatment of cutaneous leishmaniasis based on Traditional Persian Medicine. Dermatol Ther 2020; 33:e13566. [PMID: 32401415 DOI: 10.1111/dth.13566] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/10/2020] [Indexed: 01/19/2023]
Abstract
This study aims to describe the herbal and traditional remedies in the treatment of cutaneous leishmaniasis (CL) with an overview on related available evidence in modern medicine. This study is a review that focuses on the most important Traditional Persian Medicine (TPM) sources including Avicenna's Canon of Medicine, Jorjani's Zakhīra-yi Khārazmshāhī, and Aazam-Khan's Eksir-e-Aazam, as well as pertinent information from Embase, PubMed, Scopus, Scientific Information Database, and Google Scholar by using the keywords salak, rīsh-e-balkhi, cutaneous leishmaniasis, and leishmaniasis for selected remedies. Several oral and topical herbal remedies, such as Vitis vinifera L. (Unripe grapes), Berberis vulgaris L., Rheum ribes L., Santalum album L., Cinnamomum camphora (L.) J.Presl (Camphor), Brassica nigra (L.) K. Koch, Crocus sativus L., Juniperus excelsa M. Bieb, honey, and Alum root, were mentioned in TPM resources for the treatment of CL. Furthermore, cauterization, cupping, and leech therapy were considered for this purpose. In this review, some evidence-based studies will also be presented that have demonstrated the therapeutic properties of some of these products. In conclusion, the sages of TPM have recommended several systemic or topical medications, in addition to physical procedures, for treatment of CL, all of which could be a base for conducting further research on its efficacy.
Collapse
Affiliation(s)
- Mohammad Mahdi Parvizi
- Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzaneh Zare
- Department of History of Medicine, School of Traditional Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Handjani
- Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Dermatology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Nimrouzi
- Department of Traditional Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad M Zarshenas
- Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
18
|
Nemidkanam V, Kato Y, Kubota T, Chaichanawongsaroj N. Ethyl acetate extract of Kaempferia parviflora inhibits Helicobacter pylori-associated mammalian cell inflammation by regulating proinflammatory cytokine expression and leukocyte chemotaxis. BMC Complement Med Ther 2020; 20:124. [PMID: 32321502 PMCID: PMC7179042 DOI: 10.1186/s12906-020-02927-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/14/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Kaempferia parviflora (KP) has been used in traditional Thai medicine to cure gastrointestinal disorders since ancient times. Helicobacter pylori is an initiating factor in gastric pathogenesis via activation of massive inflammation, the cumulative effect of which leads to gastric disease progression, including gastric carcinogenesis. Accordingly, the effect of a crude ethyl acetate extract of KP (CEAE-KP) on proinflammatory cytokine production and cell chemotaxis was the focus of this study. METHODS The cytotoxicity of CEAE-KP (8-128 μg/ml) on AGS (gastric adenocarcinoma) cells was determined at 6, 12 and 24 h using an MTT assay. The effect of CEAE-KP on H. pylori-induced interleukin (IL)-8 production by AGS cells was evaluated by ELISA and RT-PCR. The effect of CEAE-KP on monocyte and neutrophil chemotaxis to H. pylori soluble protein (sHP) and IL-8, respectively, was determined using a Boyden chamber assay with THP-1 or HL-60 cells. RESULTS CEAE-KP reduced AGS cell viability in a concentration- and time-dependent manner, but at 8-16 μg/ml, it was not cytotoxic after 6-24 h of exposure. Coculture of AGS cells with CEAE-KP at a noncytotoxic concentration of 16 μg/ml and H. pylori reduced IL-8 secretion by ~ 60% at 12 h, which was consistent with the decreased level of mRNA expression, and inhibited neutrophil chemotaxis to IL-8. sHP (100 ng/ml) induced marked monocyte chemoattraction, and this was decreased by ~ 60% by CEAE-KP. CONCLUSION CEAE-KP might serve as a potent alternative medicine to ameliorate the inflammation mediated by H. pylori infection.
Collapse
Affiliation(s)
- Variya Nemidkanam
- Program of Molecular Sciences in Medical Microbiology and Immunology, Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Yuko Kato
- Department of Microbiology and Immunology, Tokyo Medical and Dental University Graduate School of Health Care Sciences, Tokyo, Japan
| | - Tetsuo Kubota
- Department of Microbiology and Immunology, Tokyo Medical and Dental University Graduate School of Health Care Sciences, Tokyo, Japan
| | - Nuntaree Chaichanawongsaroj
- Research Unit of Innovative Diagnosis of Antimicrobial Resistance, Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Pathumwan, Bangkok, Thailand.
| |
Collapse
|
19
|
Systematic Analysis of Monoterpenes: Advances and Challenges in the Treatment of Peptic Ulcer Diseases. Biomolecules 2020; 10:biom10020265. [PMID: 32050614 PMCID: PMC7072639 DOI: 10.3390/biom10020265] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/13/2022] Open
Abstract
Peptic ulcer disease (PUD) is a multifactorial and complex disease caused by an imbalance of protective and aggressive factors (endogenous and exogenous). Despite advances in recent years, it is still responsible for substantial mortality and triggering clinical problems. Over the last decades, the understanding of PUD has changed a lot with the discovery of Helicobacter pylori infection. However, this disease continues to be a challenge due to side-effects, incidence of relapse from use of various anti-ulcer medicines, and the rapid appearance of antimicrobial resistance with current H. pylori therapies. Consequently, there is the need to identify more effective and safe anti-ulcer agents. The search for new therapies with natural products is a viable alternative and has been encouraged. The literature reports the importance of monoterpenes based on the extensive pharmacological action of this class, including wound healing and anti-ulcerogenic agents. In the present study, 20 monoterpenes with anti-ulcerogenic properties were evaluated by assessing recent in vitro and in vivo studies. Here, we review the anti-ulcer effects of monoterpenes against ulcerogenic factors such as ethanol, nonsteroidal anti-inflammatory drugs (NSAIDs), and Helicobacter pylori, highlighting challenges in the field.
Collapse
|
20
|
Draye M, Chatel G, Duwald R. Ultrasound for Drug Synthesis: A Green Approach. Pharmaceuticals (Basel) 2020; 13:E23. [PMID: 32024033 PMCID: PMC7168956 DOI: 10.3390/ph13020023] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023] Open
Abstract
This last century, the development of new medicinal molecules represents a real breakthrough in terms of humans and animal life expectancy and quality of life. However, this success is tainted by negative environmental consequences. Indeed, the synthesis of drug candidates requires the use of many chemicals, solvents, and processes that are very hazardous, toxic, energy consuming, expensive, and generates a large amount of waste. Many large pharmaceutical companies have thus moved to using green chemistry practices for drug discovery, development, and manufacturing. One of them is the use of energy-efficient activation techniques, such as ultrasound. This review summarizes the latest most representative works published on the use of ultrasound for sustainable bioactive molecules synthesis.
Collapse
Affiliation(s)
- Micheline Draye
- Université Savoie Mont Blanc—LCME, F-73000 Chambéry, France; (G.C.); (R.D.)
| | | | | |
Collapse
|
21
|
Empirical "integrated disease management" in Ferrara during the Italian plague (1629-1631). Parasitol Int 2019; 75:102046. [PMID: 31887395 DOI: 10.1016/j.parint.2019.102046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/09/2019] [Accepted: 12/24/2019] [Indexed: 11/24/2022]
Abstract
Plague, a highly infective disease caused by Yersinia pestis (Proteobacteria: Enterobacteriales), ravaged Europe from 1347 over the course of more than 450 years. During the Italian Plague (1629-1631), the disease was rampaging in the entire Northern Italy down to Tuscany, but the city of Ferrara was relatively spared, in spite that the economic activities were maintained with highly affected cities, such as Milan, through the relevant salt commerce. The aim of the study is to evaluate the hygiene rules that were effective in preventing the spread of the plague in Ferrara in 1630, by examining historical documents and reports. According to these documents, a kind of empirical "integrated disease management" was carried out, using remedies including compounds with bactericidal, anti-parasite and repellent activity, and by technical strategies including avoidance of possible plague carriers. The anti-plague remedies and technical strategies used in ancient Ferrara are critically analysed using a multidisciplinary approach (pharmaceutic, medical, epidemiologic and entomological) and compared to current prevention protocols.
Collapse
|
22
|
Hatziagapiou K, Kakouri E, Lambrou GI, Bethanis K, Tarantilis PA. Antioxidant Properties of Crocus Sativus L. and Its Constituents and Relevance to Neurodegenerative Diseases; Focus on Alzheimer's and Parkinson's Disease. Curr Neuropharmacol 2019; 17:377-402. [PMID: 29564976 PMCID: PMC6482475 DOI: 10.2174/1570159x16666180321095705] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 01/03/2018] [Accepted: 03/19/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Reactive oxygen species and reactive nitrogen species, which are collectively called reactive oxygen-nitrogen species, are the inevitable by-products of cellular metabolic redox reactions, such as oxidative phosphorylation in the mitochondrial respiratory chain, phagocytosis, reactions of biotransformation of exogenous and endogenous substrata in endoplasmic reticulum, eicosanoid synthesis, and redox reactions in the presence of metal with variable valence. Among medicinal plants, there is growing interest in Crocus Sativus L. It is a perennial, stemless herb, belonging to Iridaceae family, cultivated in various countries such as Greece, Italy, Spain, Israel, Morocco, Turkey, Iran, India, China, Egypt and Mexico. OBJECTIVE The present study aims to address the protective role of Crocus Sativus L. in neurodegeneration with an emphasis in Parkinson's and Alzheimer's disease. MATERIALS AND METHODS An electronic literature search was conducted by two of the authors from 1993 to August 2017. Original articles and systematic reviews (with or without meta-analysis), as well as case reports were selected. Titles and abstracts of papers were screened by a third reviewer to determine whether they met the eligibility criteria, and full texts of the selected articles were retrieved. RESULTS Hence, the authors focused on the literature concerning the role of Crocus Sativus L. on its anti-oxidant and neuroprotective properties. CONCLUSION Literature findings represented in current review herald promising results for using Crocus Sativus L. and/or its active constituents as antioxidants, anti-inflammatory, and neuroprotective agents.
Collapse
Affiliation(s)
- Kyriaki Hatziagapiou
- First Department of Pediatrics, National and Kapodistrian University of Athens, Choremeio Research Laboratory, Hematology/Oncology Unit, Athens, Greece
| | - Eleni Kakouri
- Laboratory of Chemistry, Department of Food Science & Human Nutrition, School of Food Biotechnology and Development, Agricultural University of Athens, Athens, Greece
| | - George I Lambrou
- First Department of Pediatrics, National and Kapodistrian University of Athens, Choremeio Research Laboratory, Hematology/Oncology Unit, Athens, Greece
| | - Kostas Bethanis
- Physics Laboratory, Department of Biotechnology, School of Food Biotechnology and Development, Agricultural University of Athens, Greece
| | - Petros A Tarantilis
- Laboratory of Chemistry, Department of Food Science & Human Nutrition, School of Food Biotechnology and Development, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
23
|
Mykhailenko O, Kovalyov V, Goryacha O, Ivanauskas L, Georgiyants V. Biologically active compounds and pharmacological activities of species of the genus Crocus: A review. PHYTOCHEMISTRY 2019; 162:56-89. [PMID: 30856530 DOI: 10.1016/j.phytochem.2019.02.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/06/2019] [Accepted: 02/15/2019] [Indexed: 06/09/2023]
Abstract
The present article is the first comprehensive review on the chemical composition and pharmacological activities of the raw materials of Crocus species. In the present review, data on chemical constituents and pharmacological profile of Crocus sativus stigmas, as well as of other plant parts (perianth, stamens, leaves, corms) of different Crocus spp. are given. This review discusses all the classes of compounds (carotenoids, flavonoids, anthocyanins, terpenoids, phenol carboxylic acids, etc.) detected in raw materials of Crocus plants providing information on the current state of knowledge on phytochemicals of Crocus species. Almost all structural formulas of the compounds identified and isolated from Crocus species are given; all compounds are presented in accordance with the types of the studied raw materials. The latest hypotheses relating to the biosynthesis pathways of the main biologically active compounds of saffron (crocin, picrocrocin, safranal), as well as chemotaxonomy of Crocus genus are briefly summarized. The present review discusses the most thoroughly studied pharmacological activities (namely, antioxidant, antiparasitic, hypolipidemic, antihypertensive, immunomodulatory, antimicrobial, antitumor, cytotoxic, antidepressant) of saffron stigmas extracts, of its individual phytochemicals (safranal, crocin, crocetin), as well as pharmacological activities of raw materials of other Crocus species. This comprehensive review will be informative for scientists searching for new properties of saffron stigmas, as well as for saffron producers, since the present review highlights the prospects for the use of waste products in the production of the expensive spice. In addition, the present review provides information on pharmacological properties and composition of other Crocus species as promising medicinal and food plants. In the present review the emphasis will be put on the chemical constituents of Crocus species and the intraspecies variation in phytochemicals and pharmacological activities.
Collapse
Affiliation(s)
- Olga Mykhailenko
- Department of Botany, National University of Pharmacy, 61168, Kharkiv, str. Valentynivska, 4, Ukraine.
| | - Volodymyr Kovalyov
- Department of Pharmacognosy, National University of Pharmacy, 61168, Kharkiv, str. Valentynivska, 4, Ukraine.
| | - Olga Goryacha
- Department of Pharmacognosy, National University of Pharmacy, 61168, Kharkiv, str. Valentynivska, 4, Ukraine.
| | - Liudas Ivanauskas
- Department of Analytical and Toxicological Chemistry, Lithuanian University of Health Sciences, A. Mickevičiaus g. 9, LT 44307, Kaunas, Lithuania.
| | - Victoriya Georgiyants
- Department of Pharmaceutical Chemistry, National University of Pharmacy, 61168, Kharkiv, str. Valentynivska, 4, Ukraine.
| |
Collapse
|
24
|
Safranal, a constituent of saffron, exerts gastro-protective effects against indomethacin-induced gastric ulcer. Life Sci 2019; 224:88-94. [PMID: 30914317 DOI: 10.1016/j.lfs.2019.03.054] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/14/2019] [Accepted: 03/22/2019] [Indexed: 02/06/2023]
Abstract
AIMS Several natural products have been evaluated for management of gastric ulcer induced by non-steroidal anti-inflammatory drugs. Safranal, a plant-derived chemical, has a potent antioxidant and anti-inflammatory properties. The present study was aimed to evaluate possible gastro-protective effects of safranal against indomethacin-induced gastric ulcer in rats. Lansoprazole (a proton pump inhibitor) was used as a reference drug. MATERIALS AND METHODS Thirty rats were divided into five groups. Groups 1 and 2 received vehicle. Groups 3, 4 and 5 treated with 0.063, 0.25 and 1 mg/kg safranal. Group 6 received 30 mg/kg lansoprazole. All groups except of group 1 received indomethacin (50 mg/kg) ingestion. Six hours later, animals were euthanized and their stomachs were removed. Gastric contents volume and pH were measured. Gastric ulcer area and protective index were evaluated using image J software. Histological changes were evaluated by light microscope. Malondialdehyde (MDA) level, superoxide dismutase (SOD) activity, total antioxidant capacity (TAC) content, tumor necrosis factor-alpha (TNF-α) and Caspase-3 levels were determined in the gastric tissue. KEY FINDINGS Safranal and lansoprazole normalized gastric volume and pH, reduced gastric ulcer area and produced gastric protection. Indomethacin-induced histological changes and tissue biochemical alterations were ameliorated by the above-mentioned treatments. SIGNIFICANCE The results of the present study suggest the involvement of anti-secretory, anti-oxidant, anti-inflammatory and anti-apoptotic mechanisms in gastro-protective effect of safranal. In addition, gastro-protective effect of safranal was comparable to lansoprazole.
Collapse
|
25
|
Llorent-Martínez EJ, Fernández-de Córdova ML, Zengin G, Bahadori MB, Aumeeruddy MZ, Rengasamy KR, Fawzi Mahomoodally M. Parentucellia latifolia subsp. latifolia: A potential source for loganin iridoids by HPLC-ESI-MS n technique. J Pharm Biomed Anal 2018; 165:374-380. [PMID: 30590334 DOI: 10.1016/j.jpba.2018.12.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 12/14/2018] [Accepted: 12/16/2018] [Indexed: 12/18/2022]
Abstract
This study attempts to compare the pharmaceutical potential (antioxidant and key enzyme inhibition of clinical relevance) of organic and aqueous extracts of Parentucellia latifolia (L.) Caruel subsp. latifolia (L.) Caruel as well as phytochemical composition. The phytochemical compounds were evaluated by spectrophotometric methods (for total amounts) and HPLC-ESI-DAD-MSn (for individual compounds). The extracts were screened for antioxidant abilities by in vitro assays. Inhibition effects were also investigated against a set of enzymes linked to major health problems. Generally, the methanol (MeOH) and aqueous extracts displayed higher scavenging abilities on radicals and reductive effects when compared with the ethyl acetate (EtOAc) extract. On the other hand, the EtOAc extract was the most active inhibitor on cholinesterases (1.81-1.88 mg GALAE/g), amylase (0.70 mmol ACAE/g), glucosidase (2.85 mmol ACAE/g) and lipase (33.24 mg OE/g). The highest TPC was observed in the aqueous extract (25.07 mg GAE/g) while MeOH extract possessed the highest level of TFC (44.15 mg RE/g) and TPAC (3.46 mg CE/g). LC-MSn metabolite profiling indicated that loganin and its isomers, rutin, and luteolin-O-hexoside were the most abundant compounds. Our results suggest that P. latifolia may be valuable source of phyto-agents for the management of noncommunicable diseases.
Collapse
Affiliation(s)
- Eulogio J Llorent-Martínez
- Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas S/N, E-23071 Jaén, Spain
| | | | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Campus, Konya, Turkey.
| | - Mir Babak Bahadori
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Kannan Rr Rengasamy
- REEF Environmental Consultancy, #2 Kamaraj Street, S.P. Nagar, Puducherry 605 001, India
| | | |
Collapse
|
26
|
Kerkoub N, Panda SK, Yang MR, Lu JG, Jiang ZH, Nasri H, Luyten W. Bioassay-Guided Isolation of Anti-Candida Biofilm Compounds From Methanol Extracts of the Aerial Parts of Salvia officinalis (Annaba, Algeria). Front Pharmacol 2018; 9:1418. [PMID: 30618736 PMCID: PMC6295571 DOI: 10.3389/fphar.2018.01418] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/19/2018] [Indexed: 01/12/2023] Open
Abstract
Salvia officinalis is frequently used in traditional Algerian medicine to treat diverse microbial infections, including oral and vaginal candidiasis. The aerial parts of S. officinalis collected in Annaba, Algeria were extracted in parallel by maceration with four solvents viz. hexane, acetone, methanol and water. All the extracts were tested in vitro against several Candida species: C. albicans, C. glabrata, and C. parapsilosis. Furthermore, the activity against biofilm-forming C. albicans was investigated using bioassay-guided fractionation. A large-scale extract was prepared via maceration in methanol, followed by fractionation on a silica gel column using increasingly polar mixtures of n-hexane, ethyl acetate, methanol, and acetic acid as mobile phase, to yield a total of 150 fractions. Two major active fractions (F-31 and F-39), were further separated by HPLC, resulting in several active chromatographic peaks. Carnosol and 12-methoxy-trans-carnosic acid were isolated as two major active compounds, and identified by a combination of NMR and mass spectrometry. The biofilm inhibitory concentration showed that 12-methoxy-trans-carnosic acid is more effective than carnosol with BIC50 values of 94 μM (95% confidence interval, 78.9-112.1 μM) and 314 μM (95% confidence interval, 200.7-491.2 μM), respectively. The present study supports the traditional use of sage in the treatment of various fungal infections caused by Candida. Further studies of the bioactive compounds in an in vivo Candida biofilm model are required to validate their clinical potential as antifungals.
Collapse
Affiliation(s)
- Neila Kerkoub
- Laboratory of Biodiversity and Pollution of Ecosystems, Department of Biology, University Chadli Bendjedid, El Tarf, Algeria
| | | | - Ming-Rong Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, China
| | - Jing-Guang Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, China
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, China
| | - Hichem Nasri
- Laboratory of Biodiversity and Pollution of Ecosystems, Department of Biology, University Chadli Bendjedid, El Tarf, Algeria
| | | |
Collapse
|
27
|
Ajiboye BO, Akalabu MC, Ojo OA, Afolabi OB, Okesola MA, Olayide I, Oyinloye BE. Inhibitory effect of ethyl acetate fraction of
Solanum macrocarpon
L. leaves on cholinergic, monoaminergic, and purinergic enzyme activities. J Food Biochem 2018. [DOI: 10.1111/jfbc.12643] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Basiru Olaitan Ajiboye
- Nutraceutical and Phytomedicine Research Laboratory, Biochemistry Programme, Department of Chemical Sciences Afe Babalola University Ado‐Ekiti Nigeria
| | - Maureen Chidima Akalabu
- Nutraceutical and Phytomedicine Research Laboratory, Biochemistry Programme, Department of Chemical Sciences Afe Babalola University Ado‐Ekiti Nigeria
| | - Oluwafemi Adeleke Ojo
- Nutraceutical and Phytomedicine Research Laboratory, Biochemistry Programme, Department of Chemical Sciences Afe Babalola University Ado‐Ekiti Nigeria
| | - Olakunle Bamikole Afolabi
- Nutraceutical and Phytomedicine Research Laboratory, Biochemistry Programme, Department of Chemical Sciences Afe Babalola University Ado‐Ekiti Nigeria
| | - Mary Abiola Okesola
- Nutraceutical and Phytomedicine Research Laboratory, Biochemistry Programme, Department of Chemical Sciences Afe Babalola University Ado‐Ekiti Nigeria
| | - Israel Olayide
- Nutraceutical and Phytomedicine Research Laboratory, Biochemistry Programme, Department of Chemical Sciences Afe Babalola University Ado‐Ekiti Nigeria
| | - Babatunji Emmanuel Oyinloye
- Nutraceutical and Phytomedicine Research Laboratory, Biochemistry Programme, Department of Chemical Sciences Afe Babalola University Ado‐Ekiti Nigeria
| |
Collapse
|
28
|
Uysal S. A comparative study of three drying methods on the phenolic profile and biological activities of Salvia absconditiflora. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2018. [DOI: 10.1007/s11694-018-9929-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
29
|
Shapla UM, Raihan J, Islam A, Alam F, Solayman N, Gan SH, Hossen S, Khalil I. Propolis: The future therapy against Helicobacter pylori-mediated gastrointestinal diseases. J Appl Biomed 2018. [DOI: 10.1016/j.jab.2017.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
30
|
Bioactive Components of Saffron and Their Pharmacological Properties. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2018. [DOI: 10.1016/b978-0-444-64056-7.00010-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
31
|
Gálvez Ranilla L, Christopher A, Sarkar D, Shetty K, Chirinos R, Campos D. Phenolic Composition and Evaluation of the Antimicrobial Activity of Free and Bound Phenolic Fractions from a Peruvian Purple Corn (Zea mays L.) Accession. J Food Sci 2017; 82:2968-2976. [PMID: 29125621 DOI: 10.1111/1750-3841.13973] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 09/12/2017] [Accepted: 10/04/2017] [Indexed: 01/24/2023]
Abstract
Beneficial effects on overall gut health by phenolic bioactives-rich foods are potentially due to their modulation of probiotic gut bacteria and antimicrobial activity against pathogenic bacteria. Based on this rationale, the effect of the free and bound phenolic fractions from a Peruvian purple corn accession AREQ-084 on probiotic lactic acid bacteria such as Lactobacillus helveticus and Bifidobacterium longum and the gastric cancer-related pathogen Helicobacter pylori was evaluated. The free and bound phenolic composition was also determined by ultra-performance liquid chromatography. Anthocyanins were the major phenolic compounds (310.04 mg cyanidin-3-glucoside equivalents/100 g dry weight, DW) in the free phenolic fraction along with hydroxycinnamic acids such as p-coumaric acid derivatives, followed by caffeic and ferulic acid derivatives. The bound phenolic form had only hydroxycinnamic acids such as ferulic acid, p-coumaric acid, and a ferulic acid derivative with ferulic acid being the major phenolic compound (156.30 mg/100 g DW). These phenolic compounds were compatible with beneficial probiotic lactic acid bacteria such as L. helveticus and B. longum as these bacteria were not inhibited by the free and bound phenolic fractions at 10 to 50 mg/mL and 10 mg/mL of sample doses, respectively. However, the pathogenic H. pylori was also not inhibited by both purple corn phenolic forms at same above sample doses. This study provides the preliminary base for the characterization of phenolic compounds of Peruvian purple corn biodiversity and its potential health benefits relevant to improving human gut health. PRACTICAL APPLICATION This study provides insights that Peruvian purple corn accession AREQ-084 can be targeted as a potential source of health-relevant phenolic compounds such as anthocyanins along with hydroxycinnamic acids linked to its dietary fiber fraction. Additionally, these phenolic fractions did not affect the gut health associated beneficial bacteria nor the pathogenic H. pylori. Purple corn can be targeted for design of probiotic functional foods integrated with their anthocyanin linked-coloring properties.
Collapse
Affiliation(s)
- Lena Gálvez Ranilla
- Inst. de Biotecnología, Univ. Nacional Agraria La Molina, Av. La Molina s/n, Lima, Perú
| | - Ashish Christopher
- Dept. of Plant Sciences, North Dakota State Univ., Fargo, ND 58108, U.S.A
| | - Dipayan Sarkar
- Dept. of Plant Sciences, North Dakota State Univ., Fargo, ND 58108, U.S.A
| | - Kalidas Shetty
- Dept. of Plant Sciences, North Dakota State Univ., Fargo, ND 58108, U.S.A
| | - Rosana Chirinos
- Inst. de Biotecnología, Univ. Nacional Agraria La Molina, Av. La Molina s/n, Lima, Perú
| | - David Campos
- Inst. de Biotecnología, Univ. Nacional Agraria La Molina, Av. La Molina s/n, Lima, Perú
| |
Collapse
|
32
|
Nescatelli R, Carradori S, Marini F, Caponigro V, Bucci R, De Monte C, Mollica A, Mannina L, Ceruso M, Supuran CT, Secci D. Geographical characterization by MAE-HPLC and NIR methodologies and carbonic anhydrase inhibition of Saffron components. Food Chem 2017; 221:855-863. [DOI: 10.1016/j.foodchem.2016.11.086] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/06/2016] [Accepted: 11/18/2016] [Indexed: 12/11/2022]
|
33
|
Liu M, Amini A, Ahmad Z. Safranal and its analogs inhibit Escherichia coli ATP synthase and cell growth. Int J Biol Macromol 2017; 95:145-152. [PMID: 27865956 PMCID: PMC5884629 DOI: 10.1016/j.ijbiomac.2016.11.038] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/09/2016] [Accepted: 11/09/2016] [Indexed: 10/20/2022]
Abstract
Safranal, a dominant component of saffron, is known to have antitumor, cytotoxic, and antibacterial properties. In this study, we examined safranal and its structural analogs-thymol, carvacrol, damascenone, cuminol, 2,6,6-trimethyl-2-cyclohexene-1,4-dione (TMCHD), 4-isopropylbenzyl bromide (IPBB), and 4-tert-butylphenol (TBP) induced inhibition of Escherichia coli membrane bound F1Fo ATP synthase. Safranal and its analogs inhibited wild-type enzyme to variable degrees. While safranal caused 100% inhibition of wild-type F1Fo ATP synthase, only about 50% inhibition occurred for αR283D mutant ATP synthase. Moreover, safranal, thymol, carvacrol, damascenone, cuminol, TMCHD, IPBB, and TBP all fully abrogated the growth of wild-type E. coli cells and had partial or no effect on the growth of null and mutant E. coli strains. Therefore, the antimicrobial properties of safranal, thymol, carvacrol, damascenone, cuminol, TMCHD, IPBB, and TBP can be linked to their binding and inhibition of ATP synthase. Total loss of growth in wild-type and partial or no growth loss in null or mutant E. coli strains demonstrates that ATP synthase is a molecular target for safranal and its structural analogs. Partial inhibition of the αArg-283 mutant enzyme establishes that αArg-283 residue is required in the polyphenol binding pocket of ATP synthase for the binding of safranal. Furthermore, partial growth loss for the null and mutant strains in the presence of inhibitors also suggests the role of other targets and residues in the process of inhibition.
Collapse
Affiliation(s)
- Mason Liu
- Department of Biochemistry, Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, MO 63501, United States
| | - Amon Amini
- Department of Biochemistry, Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, MO 63501, United States
| | - Zulfiqar Ahmad
- Department of Biochemistry, Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, MO 63501, United States.
| |
Collapse
|
34
|
Vermelho AB, Capaci GR, Rodrigues IA, Cardoso VS, Mazotto AM, Supuran CT. Carbonic anhydrases from Trypanosoma and Leishmania as anti-protozoan drug targets. Bioorg Med Chem 2017; 25:1543-1555. [PMID: 28161253 DOI: 10.1016/j.bmc.2017.01.034] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 01/24/2023]
Abstract
Trypanosoma cruzi and Leishmania spp. are protozoa of the Trypanosomatidae family, being the etiological agents of two widespread parasitic diseases, Chagas disease and leishmaniasis, respectively. Both parasites are the focus of worldwide research with the aim to find effective and less toxic drugs than the few ones available so far, and for controlling the spread of the diseases. Carbonic anhydrases (CAs, EC 4.2.1.1) belonging to the α- and β-class were recently identified in these protozoans and several studies suggested that they could be new targets for drug development. Sulfonamide, thiol and hydroxamate inhibitors effectively inhibited the α-CA from T. cruzi (TcCA) and the β-CA from L. donovani chagasi (LdccCA) in vitro, and some of them also showed in vivo efficacy in inhibiting the growth of the parasites in animal models of Chagas disease and leishmaniasis. As few therapeutic options are presently available for these orphan diseases, protozoan CA inhibition may represent a novel strategy to address this stringent health problem.
Collapse
Affiliation(s)
- Alane B Vermelho
- BIOINOVAR - Biotechnology Laboratories: Biocatalysis, Bioproducts and Bioenergy, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Giseli R Capaci
- School of Science and Technology and Graduate Studies in Science Education Program, University of Rio Grande, Duque de Caxias, RJ, Brazil
| | - Igor A Rodrigues
- Department of Natural Products and Food, School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Verônica S Cardoso
- BIOINOVAR - Biotechnology Laboratories: Biocatalysis, Bioproducts and Bioenergy, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Maria Mazotto
- BIOINOVAR - Biotechnology Laboratories: Biocatalysis, Bioproducts and Bioenergy, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudiu T Supuran
- Neurofarba Department and Laboratorio di Chimica Bioinorganica, Università degli Studi di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
35
|
Zengin G, Nithiyanantham S, Locatelli M, Ceylan R, Uysal S, Aktumsek A, Selvi PK, Maskovic P. Screening of in vitro antioxidant and enzyme inhibitory activities of different extracts from two uninvestigated wild plants: Centranthus longiflorus subsp. longiflorus and Cerinthe minor subsp. auriculata. Eur J Integr Med 2016. [DOI: 10.1016/j.eujim.2015.12.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
36
|
Baltas N, Karaoglu SA, Tarakci C, Kolayli S. Effect of propolis in gastric disorders: inhibition studies on the growth of Helicobacter pylori and production of its urease. J Enzyme Inhib Med Chem 2016; 31:46-50. [PMID: 27233102 DOI: 10.1080/14756366.2016.1186023] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
There is considerable interest in alternative approaches to inhibit Helicobacter pylori (H. pylori) and thus treat many stomach diseases. Propolis is a pharmaceutical mixture containing many natural bioactive substances. The aim of this study was to use propolis samples to treat H. pylori. The anti-H. pylori and anti-urease activities of 15 different ethanolic propolis extracts (EPEs) were tested. The total phenolic contents and total flavonoid contents of the EPE were also measured. The agar-well diffusion assay was carried out on H. pylori strain J99 and the inhibition zones were measured and compared with standards. All propolis extracts showed high inhibition of H. pylori J99, with inhibition diameters ranging from 31.0 to 47.0 mm. Helicobacter pylori urease inhibitory activity was measured using the phenol-hypochlorite assay; all EPEs showed significant inhibition against the enzyme, with inhibition concentrations (IC50; mg/mL) ranging from 0.260 to 1.525 mg/mL. The degree of inhibition was related to the phenolic content of the EPE. In conclusion, propolis extract was found to be a good inhibitor that can be used in H. pylori treatment to improve human health.
Collapse
Affiliation(s)
| | - Sengul Alpay Karaoglu
- b Department of Biology , Faculty of Arts and Science, Recep Tayyip Erdogan University , Rize , Turkey , and
| | - Cemre Tarakci
- b Department of Biology , Faculty of Arts and Science, Recep Tayyip Erdogan University , Rize , Turkey , and
| | - Sevgi Kolayli
- c Department of Chemistry , Faculty of Science, Karadeniz Technical University , Trabzon , Turkey
| |
Collapse
|
37
|
Carradori S, Chimenti P, Fazzari M, Granese A, Angiolella L. Antimicrobial activity, synergism and inhibition of germ tube formation by Crocus sativus-derived compounds against Candida spp. J Enzyme Inhib Med Chem 2016; 31:189-193. [PMID: 27160150 DOI: 10.1080/14756366.2016.1180596] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The limited arsenal of synthetic antifungal agents and the emergence of resistant Candida strains have prompted the researchers towards the investigation of naturally occurring compounds or their semisynthetic derivatives in order to propose new innovative hit compounds or new antifungal combinations endowed with reduced toxicity. We explored the anti-Candida effects, for the first time, of two bioactive compounds from Crocus sativus stigmas, namely crocin 1 and safranal, and some semisynthetic derivatives of safranal obtaining promising biological results in terms of minimum inhibitory concentration/minimum fungicidal concentration (MIC/MFC) values, synergism and reduction in the germ tube formation. Safranal and its thiosemicarbazone derivative 5 were shown to display good activity against Candida spp.
Collapse
Affiliation(s)
- Simone Carradori
- a Department of Pharmacy , "G. D'Annunzio" University of Chieti-Pescara , Chieti , Italy
| | | | - Marina Fazzari
- c Department of Public Health and Infectious Diseases , Sapienza University of Rome , Rome , Italy
| | | | - Letizia Angiolella
- c Department of Public Health and Infectious Diseases , Sapienza University of Rome , Rome , Italy
| |
Collapse
|
38
|
Novel 1,3-thiazolidin-4-one derivatives as promising anti-Candida agents endowed with anti-oxidant and chelating properties. Eur J Med Chem 2016; 117:144-56. [PMID: 27100030 DOI: 10.1016/j.ejmech.2016.04.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/23/2016] [Accepted: 04/05/2016] [Indexed: 11/20/2022]
Abstract
Pursuing our recent outcomes regarding the antifungal activity of N-substituted 1,3-thiazolidin-4-ones, we synthesized thirty-six new derivatives introducing aliphatic, cycloaliphatic and heteroaromatic moieties at N1-hydrazine connected with C2 position of the thiazolidinone nucleus and functionalizing the lactam nitrogen with differently substituted (NO2, NH2, Cl and F) benzyl groups. These compounds were tested to evaluate their minimum inhibitory concentration (MIC) against several clinical Candida spp. with respect to topical and systemic reference drugs (clotrimazole, fluconazole, ketoconazole, miconazole, tioconazole, amphotericin B). Moreover, anti-oxidant properties were also evaluated by using different protocols including free radical scavenging (DPPH and ABTS), reducing power (CUPRAC and FRAP), metal chelating and phosphomolybdenum assays. Moreover, for the most active derivatives we assessed the toxicity (CC50) against Hep2 human cells in order to characterize them as multi-target agents for fungal infections.
Collapse
|
39
|
Gidaro MC, Alcaro S, Secci D, Rivanera D, Mollica A, Agamennone M, Giampietro L, Carradori S. Identification of new anti-Candida compounds by ligand-based pharmacophore virtual screening. J Enzyme Inhib Med Chem 2016; 31:1703-6. [DOI: 10.3109/14756366.2016.1156103] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Maria Concetta Gidaro
- Dipartimento Di Scienze Della Salute, Università “Magna Graecia” Di Catanzaro, Campus Universitario “S. Venuta”, Catanzaro, Italy,
| | - Stefano Alcaro
- Dipartimento Di Scienze Della Salute, Università “Magna Graecia” Di Catanzaro, Campus Universitario “S. Venuta”, Catanzaro, Italy,
| | - Daniela Secci
- Dipartimento Di Chimica E Tecnologie Del Farmaco, Sapienza Università Di Roma, Rome, Italy,
| | - Daniela Rivanera
- Dipartimento Di Sanità Pubblica E Malattie Infettive, Sapienza University of Rome, Rome, Italy, and
| | - Adriano Mollica
- Department of Pharmacy, “G. D’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | | | - Letizia Giampietro
- Department of Pharmacy, “G. D’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Simone Carradori
- Department of Pharmacy, “G. D’Annunzio” University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
40
|
Anti-Candida activity and cytotoxicity of a large library of new N-substituted-1,3-thiazolidin-4-one derivatives. Eur J Med Chem 2015; 107:82-96. [PMID: 26562544 DOI: 10.1016/j.ejmech.2015.10.048] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 10/22/2015] [Accepted: 10/28/2015] [Indexed: 12/11/2022]
Abstract
On the basis of the recent findings about the biological properties of thiazolidinones and taking into account the encouraging results about the antifungal activity of some (thiazol-2-yl)hydrazines, new N-substituted heterocyclic derivatives were designed combining the thiazolidinone nucleus with the hydrazonic portion. In details, 1,3-thiazolidin-4-ones bearing (cyclo)aliphatic or (hetero)aromatic moieties linked to the N1-hydrazine at C2 were synthesized and classified into three series according to the aromatic or bicyclic rings connected to the lactam nitrogen of the thiazolidinone. These molecules were assayed for their anti-Candida effects in reference to the biological activity of the conventional topic (clotrimazole, miconazole, tioconazole) and systemic drugs (fluconazole, ketoconazole, amphotericin B). Finally, we investigated the selectivity against fungal cells by testing the compounds endowed with the best MICs on Hep2 cells in order to assess their cell toxicity (CC50) and we noticed that two derivatives were less cytotoxic than the reference drug clotrimazole. Moreover, a preliminary molecular modelling approach has been performed against lanosterol 14-α demethylase (CYP51A1) to rationalize the activity of the tested compounds and to specify the target protein or enzyme.
Collapse
|