1
|
Farahani S, Kadivar F, Khajeh F, Shojaeifard MB. Effect of Non-Ionizing Radiations on Liver and Kidney Function Tests in an Animal Model. J Biomed Phys Eng 2025; 15:125-136. [PMID: 40259937 PMCID: PMC12009467 DOI: 10.31661/jbpe.v0i0.2407-1793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 01/20/2025] [Indexed: 04/23/2025]
Abstract
Background Nowadays, the growing use of non-ionizing electromagnetic radiation has raised concerns about its potential health effects. Objective In this work, an animal model exposed to Wi-Fi and jammer signals was used to examine the effects of non-ionizing electromagnetic radiation on kidney and liver function. Material and Methods In this experimental study, twenty-one male Wistar Albino rats were separated into three groups: Wi-Fi, jammer, and sham groups. The animals were exposed to electromagnetic radiation for two hours per day for two weeks. Blood samples and kidney and liver tissues were collected and analyzed for various biochemical parameters. Results The findings of this study showed a mild inflammatory response in both tissues after exposure to the fields. However, no notable or serious alterations were noted in the groups under study. The Wi-Fi and jammer signals had no significant impact on creatinine, albumin, blood urea nitrogen, cholesterol, high-density lipoprotein, triglycerides, albumin/globulin ratio, total bilirubin, direct bilirubin, and alkaline phosphatase levels. However, the jammer group revealed a notable decline in low-density lipoprotein compared to the sham group. Significant differences were observed in the levels of aspartate aminotransferase and alanine aminotransferase between the Wi-Fi and sham groups but not between the other groups. Conclusion This work emphasizes the importance of considering individual organ characteristics in response to electromagnetic radiation exposure. Prolonged or closer exposure to the radiation source may significantly affect the organ function.
Collapse
Affiliation(s)
- Somayeh Farahani
- Ionizing and Non-ionizing Radiation Protection Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Kadivar
- Ionizing and Non-ionizing Radiation Protection Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Khajeh
- Department of Physiology, Fasa University of Medical Sciences, Fasa, Iran
| | - Manzar Banoo Shojaeifard
- Department of Physiology, Fasa University of Medical Sciences, Fasa, Iran
- Ionizing and Non-ionizing Radiation Protection Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Gupta V, Srivastava R. Amelioration and Immuno-modulation by Ashwagandha on Wi-fi Induced Oxidative Stress in Regulating Reproduction Via Estrogen Receptor Alpha in Male Japanese Quail. Reprod Sci 2025; 32:455-466. [PMID: 39806168 DOI: 10.1007/s43032-024-01774-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025]
Abstract
As global change threatens avian biodiversity, understanding species responses to environmental perturbations due to radiation emitted by enormous increase in the application of wireless communication is very urgent. The study investigates the effect of MW radiation on redox balance, stress level, male fertility and the efficacy of Withania somnifera (WS) root extract (100 mg/kg body weight) orally administered in 8 weeks old mature male Japanese quail exposed to 2.4 GHz MW radiation for 2 h/day for 30 days with power density = 0.1264 mw/cm2 and SAR = 0.9978 W/Kg. Wi-fi exposure induces a decrease in testicular weight, volume, density and gonado-somatic index (GSI) while Ashwagandha increases them. Oxidative stress parameters increased and activity of SOD, catalase, GSH was reduced in testes of exposed quail while Ashwagandha treatment reinstates the redox balance. Exposure to Wi-fi alters quail reproduction by increase in corticosterone and decreased testosterone with reduced expression of estrogen receptor alpha (ERα) in testis. Wi-fi exposure increases IL1β and reduces IL10 in testis. IL-1β inhibits testicular cell function and promotes apoptosis by increasing NF-κB and decreasing sperm count in exposed quails. Ashwagandha increases expression of ERα, sperm count and immunity in quail testis. Further, decrease in IL1β, NF-κB and increase in IL-10 after administration of Ashwagandha in Wi-fi exposed quail prevents inflammatory damages and enhances gonadal function. Thus, exposure to Wi-fi increases oxidative stress, activates apoptosis, modulates immunity in testis while Ashwagandha reverses them via enhanced ERα expression, increase in sperm count thereby enhancing fertility in male Japanese quail.
Collapse
Affiliation(s)
- Vaibhav Gupta
- Avian Reproductive and Endocrinology Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India
| | - Rashmi Srivastava
- Department of Zoology, Faculty of Science, University of Allahabad, Prayagraj, 211002, UP, India.
| |
Collapse
|
3
|
Deena K, Maadurshni GB, Manivannan J, Sivasamy R. Short-term exposure of 2.4 GHz electromagnetic radiation on cellular ROS generation and apoptosis in SH-SY5Y cell line and impact on developing chick embryo brain tissue. Mol Biol Rep 2025; 52:144. [PMID: 39836269 DOI: 10.1007/s11033-025-10217-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Electromagnetic radiation (EMR) from wireless technology and mobile phones, operates at various frequencies. The present study analyses the major impact of short-term exposure to 2.4 GHz frequency EMR, using the two model systems chick embryos and SH-SY5Y cell lines. We hypothesized that exposure to this frequency would induce oxidative stress and apoptosis in neurons. METHODS AND RESULTS Chick embryos were exposed continuously to 2.4 GHz EMR for 4 h each day over a 5-day period, and comparisons were made with a control group. At the end of the exposure, brain tissues were dissected for histopathological analysis, antioxidant assays, and reactive oxygen species (ROS) detection. Additionally, SH-SY5Y cells were exposed to 2.4 GHz EMR to assess cell viability, DNA damage, and apoptosis. Our results showed that exposure to 2.4 GHz EMR induces oxidative stress in both chick embryos and the SH-SY5Y cells, though no significant tissue-level impact was observed. In SH-SY5Y cells, ROS production increased after 4 h of exposure, accompanied by moderate DNA damage and early markers of apoptosis, such as upregulation of the Bax gene. Furthermore, we observed that antioxidants, such as NAC and Mito-TEMPO, helped mitigate the cytotoxic effects of EMR in both the study models. CONCLUSION In conclusion, short-term exposure (4 h) to 2.4 GHz EMR induced moderate cellular and molecular changes, primarily oxidative stress. The oxidative stress was reduced by antioxidants, which suggests potential benefits in preventing EMR-induced cytotoxicity. Extended exposure to EMR beyond 4 h may pose adverse health risks to humans, endorsing further investigation.
Collapse
Affiliation(s)
- Krishnan Deena
- Molecular Genetics and Cancer Biology Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore-46, Tamil Nadu, India
| | | | - Jeganathan Manivannan
- Environmental Health and Toxicology Laboratory, Department of Environmental Science, Bharathiar University, Coimbatore-46, Tamil Nadu, India
| | - Ramasamy Sivasamy
- Molecular Genetics and Cancer Biology Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore-46, Tamil Nadu, India.
| |
Collapse
|
4
|
Assefa EM, Abdu SM. Histopathologic effects of mobile phone radiation exposure on the testes and sperm parameters: a systematic literature review of animal studies. FRONTIERS IN REPRODUCTIVE HEALTH 2025; 6:1515166. [PMID: 39896841 PMCID: PMC11782230 DOI: 10.3389/frph.2024.1515166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025] Open
Abstract
Introduction Male infertility, often attributed to insufficient production of healthy and active sperm, can be exacerbated by electromagnetic radiation emitted from mobile phones, which disrupts normal spermatogenesis and leads to a notable decline in sperm quality. The main targets of mobile phone-induced damage in the testes are Leydig cells, seminiferous tubules, and sperm cells. The aim of this systematic literature review is to identify histopathological changes in the testes due to mobile phone radiation exposure and to examine its effects on sperm parameters in experimental animals. Methods In this systematic review, an extensive literature search was conducted across databases such as PubMed, ScienceDirect, Hinari, and Google scholar. Results A total of 752 studies were identified for screening, and 18 studies were deemed eligible for data extraction. Studies have identified histopathological alterations in testicular tissue caused by mobile phone radiation, such as reduced seminiferous tubule diameter, tunica albuginea and germinal epithelial thickness, Leydig cell hypoplasia, and increased intertubular space. Consistent exposure to mobile phone radiation has been shown to significantly reduce sperm count, motility, and viability, while also increasing abnormal sperm morphology in male rats, mice, and rabbits. Conclusion Animal studies indicate that electromagnetic radiation from mobile phones can negatively impact testicular tissue and sperm parameters, including sperm count, motility, viability, and morphology. As a precaution, preventive measures are recommended to minimize potential risks from mobile phone exposure, and further research is needed to fully understand its effects on human reproductive health.
Collapse
Affiliation(s)
- Ebrahim Msaye Assefa
- Department of Biomedical Sciences (Clinical Anatomy), School of Medicine, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | | |
Collapse
|
5
|
Zhao C, Ma Y, Hou D, Wang L, Hong T, Tang Z, Huang K, Gou D. Experimental Investigation on Electrical Conductivity Variation of Carnosine and Zinc Chloride Aqueous Solutions under Microwave Irradiation. J Phys Chem B 2024; 128:8494-8503. [PMID: 39178416 DOI: 10.1021/acs.jpcb.4c02791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
The mechanism of biological effects of environmental electromagnetic radiation is still not completely clear. The chelation of biological small molecule peptides with metal ions plays a very important role in human metabolism. In this paper, a special experimental system was designed to measure the conductivity of carnosine and zinc chloride mixed aqueous solutions under different concentration ratios, microwave powers, and temperatures. The experimental results show that, first, different concentration ratios can alter the conductivity change rate of the mixed aqueous solution. The conductivity of the solution always increases under microwave irradiation at a concentration ratio of 1:1. However, the conductivity is reduced by -0.04% with a 1:5 concentration ratio and 6 W microwave power at 10 °C. Second, temperature can alter the conductivity change rate of the aqueous mixture. The higher the temperature, the smaller the conductivity change rate. Third, different microwave powers can alter the conductivity change rate of the mixed aqueous solution. In general, the conductivity change rate increases with an increase in microwave power. Experimentally observed reduction of the conductivity change rate in carnosine and zinc chloride aqueous solution under low microwave power and low temperature indicates that microwaves do affect the chelation of carnosine with zinc chloride. This work provides a new perspective for the mechanism of explanation of microwave biological effects.
Collapse
Affiliation(s)
- Chenxi Zhao
- School of Electronic and Information Engineering, China West Normal University, Nanchong 637000, China
| | - Yun Ma
- School of Electronic and Information Engineering, China West Normal University, Nanchong 637000, China
| | - Desheng Hou
- School of Electronic and Information Engineering, China West Normal University, Nanchong 637000, China
| | - Lin Wang
- School of Electronic and Information Engineering, China West Normal University, Nanchong 637000, China
| | - Tao Hong
- School of Electronic and Information Engineering, China West Normal University, Nanchong 637000, China
| | - Zhengming Tang
- School of Electronic and Information Engineering, China West Normal University, Nanchong 637000, China
| | - Kama Huang
- School of Electronic and Information Engineering, China West Normal University, Nanchong 637000, China
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
| | - Dezhi Gou
- School of Electronic and Information Engineering, China West Normal University, Nanchong 637000, China
| |
Collapse
|
6
|
Wi-Fi technology and human health impact: a brief review of current knowledge. ARHIV ZA HIGIJENU RADA I TOKSIKOLOGIJU 2022; 73:94-106. [PMID: 35792772 PMCID: PMC9287836 DOI: 10.2478/aiht-2022-73-3402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 06/01/2022] [Indexed: 01/05/2023]
Abstract
An enormous increase in the application of wireless communication in recent decades has intensified research into consequent increase in human exposure to electromagnetic (EM) radiofrequency (RF) radiation fields and potential health effects, especially in school children and teenagers, and this paper gives a snap overview of current findings and recommendations of international expert bodies, with the emphasis on exposure from Wi-Fi technology indoor devices. Our analysis includes over 100 in vitro, animal, epidemiological, and exposure assessment studies (of which 37 in vivo and 30 covering Wi-Fi technologies). Only a small portion of published research papers refers to the “real” health impact of Wi-Fi technologies on children, because they are simply not available. Results from animal studies are rarely fully transferable to humans. As highly controlled laboratory exposure experiments do not reflect real physical interaction between RF radiation fields with biological tissue, dosimetry methods, protocols, and instrumentation need constant improvement. Several studies repeatedly confirmed thermal effect of RF field interaction with human tissue, but non-thermal effects remain dubious and unconfirmed.
Collapse
|
7
|
Abnormal Expression of Connexin43 in Cardiac Injury Induced by S-Band and X-Band Microwave Exposure in Rats. J Immunol Res 2021; 2021:3985697. [PMID: 34957312 PMCID: PMC8709747 DOI: 10.1155/2021/3985697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/06/2021] [Indexed: 12/17/2022] Open
Abstract
Although the effects of microwave exposure on the heart have gradually become the focus of domestic and foreign scholars, the biological effects caused by different doses and different frequency bands of exposure are still unclear. In this study, we will investigate the damaging effect of S-band and X-band microwave composite exposure on cardiac structure and function, as well as the pathophysiological significance of Cx43 in cardiac conduction dysfunction after exposure. We used S- and X-band radiation sources with the average power density of 5 and 10 mW/cm2 to expose Wistar rats to single or composite exposure. At the 6th hour, on the 7th, 14th, and 28th days after exposure, ECG was used to detect the electrical conduction of the heart, and the myocardial enzyme was measured by the automatic biochemical analyzer. We selected the observation time points and groups with severe damage to observe the changes of myocardial structure and ultrastructure with an optical microscope and TEM; and to detect the expression and distribution of Cx43 by western blotting and immunohistochemistry. After exposure, the heart rate increased, the P wave amplitude decreased, and the R wave amplitude increased; the content of the myocardial enzyme in serum increased; the structure and ultrastructure of cardiac tissue were damaged. The damage was dose-dependent and frequency-dependent. The expression of Cx43 in myocardial tissue decreased, and distribution was abnormal. Taken together, these findings suggested that the mechanism of abnormal electrical conduction in the heart of rats by S- and X-band microwave exposure might be related to the decreased expression and disordered distribution of Cx43 after microwave exposure.
Collapse
|
8
|
Verma S, Keshri GK, Karmakar S, Mani KV, Chauhan S, Yadav A, Sharma M, Gupta A. Effects of Microwave 10 GHz Radiation Exposure in the Skin of Rats: An Insight on Molecular Responses. Radiat Res 2021; 196:404-416. [PMID: 34407201 DOI: 10.1667/rade-20-00155.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/06/2021] [Indexed: 11/03/2022]
Abstract
Microwave (MW) radiation poses the risk of potential hazards on human health. The present study investigated the effects of MW 10 GHz exposure for 3 h/day for 30 days at power densities of 5.23 ± 0.25 and 10.01 ± 0.15 mW/cm2 in the skin of rats. The animals exposed to 10 mW/cm2 (corresponded to twice the ICNIRP-2020 occupational reference level of MW exposure for humans) exhibited significant biophysical, biochemical, molecular and histological alterations compared to sham-irradiated animals. Infrared thermography revealed an increase in average skin surface temperature by 1.8°C and standard deviation of 0.3°C after 30 days of 10 mW/cm2 MW exposure compared to the sham-irradiated animals. MW exposure also led to oxidative stress (ROS, 4-HNE, LPO, AOPP), inflammatory responses (NFkB, iNOS/NOS2, COX-2) and metabolic alterations [hexokinase (HK), lactate dehydrogenase (LDH), citrate synthase (CS) and glucose-6-phospahte dehydrogenase (G6PD)] in 10 mW/cm2 irradiated rat skin. A significant alteration in expression of markers associated with cell survival (Akt/PKB) and HSP27/p38MAPK-related stress-response signaling cascade was observed in 10 mW/cm2 irradiated rat skin compared to sham-irradiated rat skin. However, MW-irradiated groups did not show apoptosis, evident by unchanged caspase-3 levels. Histopathological analysis revealed a mild cytoarchitectural alteration in epidermal layer and slight aggregation of leukocytes in 10 mW/cm2 irradiated rat skin. Altogether, the present findings demonstrated that 10 GHz exposure in continuous-wave mode at 10 mW/cm2 (3 h/day, 30 days) led to significant alterations in molecular markers associated with adaptive stress-response in rat skin. Furthermore, systematic scientific studies on more prevalent pulsed-mode of MW-radiation exposure for prolonged duration are warranted.
Collapse
Affiliation(s)
- Saurabh Verma
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - Gaurav K Keshri
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - Santanu Karmakar
- Microwave Tube Research and Development Centre (MTRDC), DRDO, Bangalore, India
| | - Kumar Vyonkesh Mani
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - Satish Chauhan
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - Anju Yadav
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - Manish Sharma
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - Asheesh Gupta
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| |
Collapse
|
9
|
Schuermann D, Mevissen M. Manmade Electromagnetic Fields and Oxidative Stress-Biological Effects and Consequences for Health. Int J Mol Sci 2021; 22:ijms22073772. [PMID: 33917298 PMCID: PMC8038719 DOI: 10.3390/ijms22073772] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/19/2021] [Accepted: 03/30/2021] [Indexed: 12/15/2022] Open
Abstract
Concomitant with the ever-expanding use of electrical appliances and mobile communication systems, public and occupational exposure to electromagnetic fields (EMF) in the extremely-low-frequency and radiofrequency range has become a widely debated environmental risk factor for health. Radiofrequency (RF) EMF and extremely-low-frequency (ELF) MF have been classified as possibly carcinogenic to humans (Group 2B) by the International Agency for Research on Cancer (IARC). The production of reactive oxygen species (ROS), potentially leading to cellular or systemic oxidative stress, was frequently found to be influenced by EMF exposure in animals and cells. In this review, we summarize key experimental findings on oxidative stress related to EMF exposure from animal and cell studies of the last decade. The observations are discussed in the context of molecular mechanisms and functionalities relevant to health such as neurological function, genome stability, immune response, and reproduction. Most animal and many cell studies showed increased oxidative stress caused by RF-EMF and ELF-MF. In order to estimate the risk for human health by manmade exposure, experimental studies in humans and epidemiological studies need to be considered as well.
Collapse
Affiliation(s)
- David Schuermann
- Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland
- Correspondence: (D.S.); (M.M.)
| | - Meike Mevissen
- Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, Laenggassstrasse 124, CH-3012 Bern, Switzerland
- Correspondence: (D.S.); (M.M.)
| |
Collapse
|
10
|
Shabani Z, Mohammad Nejad D, Ghadiri T, Karimipour M. Evaluation of the neuroprotective effects of Vitamin E on the rat substantia nigra neural cells exposed to electromagnetic field: An ultrastructural study. Electromagn Biol Med 2021; 40:428-437. [PMID: 33794719 DOI: 10.1080/15368378.2021.1907404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Electromagnetic fields (EMFs) could induce oxidative stress (OS) in human tissues. Lipid peroxidation (LPO) is the main hallmark of OS that harms neural cell components, primarily lipids in the myelin sheaths and membranes. Vitamin E is a lipophilic antioxidant that protects cells from OS-related damages and inhibits the LPO process. In this study, male rats were assigned into three groups of Control, EMF, and EMF+ Vitamin E. The EMF producer equipment produced an alternate current of 50 Hz, 3 Mili Tesla (mT). At the end of the experiment, half of the substantia nigra in every sample was used for measurement of the malondialdehyde (MDA) level as the end-product of the LPO and activity of superoxide dismutase (SOD) enzyme. The next half of the tissue was prepared for transmission electron microscopy (TEM). In the EMF group, MDA level was enhanced and SOD value decreased significantly compared to the control group, but Vitamin E could restore these changes. In rats undergone EMF, heterochromatic nucleus and destruction in some portions of the nuclear membrane were detected. The segmental separation or destruction of myelin sheath lamellae was observed in nerve fibers. In treated animals, the nucleus was round, less heterochromatic, with a regular membrane. Separation of myelin sheath lamellae in some nerve fibers was slighter than the radiation group. Considering the results, EMF exposure induces LPO and triggers ultrastructural changes in the cell membranes, nucleus, and myelin sheath of substantia nigra cells, but Vitamin E consumption weakens these neuropathological alterations.
Collapse
Affiliation(s)
- Zahra Shabani
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Daryoush Mohammad Nejad
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tahereh Ghadiri
- Department of Neurosciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Karimipour
- Department of Anatomical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Neurosciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Dong G, Zhou H, Gao Y, Zhao X, Liu Q, Li Z, Zhao X, Yin J, Wang C. Effects of 1.5-GHz high-power microwave exposure on the reproductive systems of male mice. Electromagn Biol Med 2021; 40:311-320. [PMID: 33688776 DOI: 10.1080/15368378.2021.1891091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
High-power microwaves (HPMs) have been reported to have hazardous effects on multiple human and animal organs. However, the biological effects of 1.5-GHz HPMs on the reproductive system are not clear. Here, we studied the effects of 1.5 -GHz HPM whole-body exposure on the pathological structure of the testicles and changes in spermatozoa mobility. C57BL/6 mice of groups L, M, and H were exposed to 1.5-GHz HPM fields for two 15-min intervals at the average specific absorption rates of 3, 6, and 12 W/Kg, respectively. The pathological structure of the testicles and spermatozoa, as well as serum testosterone and sperm motility parameters, were evaluated at 6 h, 1 d, 3 d, and 7 d after exposure. As a result, there were no significant pathological or ultrastructural changes in the testicles or spermatozoa and serum testosterone levels. The number of progressively motile spermatozoa, curvilinear velocity, linear velocity, and average path velocity of the exposure group increased at 6 h, decreased at 1 d, and recovered at 3 d. The opposite results were considered a stress response to the thermal effect of the microwaves. Our results indicated that 1.5-GHz HPM whole-body exposure in mice at SARs of 3, 6, and 12 W/Kg for 30 min did not cause obvious damage to the reproductive system.
Collapse
Affiliation(s)
- Guofu Dong
- Institute of Radiation and Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, PR China
| | - Hongmei Zhou
- Institute of Radiation and Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, PR China
| | - Yan Gao
- Institute of Radiation and Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, PR China
| | - Xuelong Zhao
- Institute of Radiation and Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, PR China
| | - Qi Liu
- Institute of Radiation and Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, PR China
| | - Zhihui Li
- Institute of Radiation and Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, PR China
| | - Xi Zhao
- Institute of Radiation and Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, PR China
| | - Jiye Yin
- National Beijing Center for Drug Safety Evaluation and Research, State Key Laboratory of Medical Countermeasures and Toxicology, Institute of Pharmacology and Toxicology, Beijing, PR China
| | - Changzhen Wang
- Institute of Radiation and Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, PR China
| |
Collapse
|
12
|
Zosangzuali M, Lalremruati M, Lalmuansangi C, Nghakliana F, Pachuau L, Bandara P, Zothan Siama. Effects of radiofrequency electromagnetic radiation emitted from a mobile phone base station on the redox homeostasis in different organs of Swiss albino mice. Electromagn Biol Med 2021; 40:393-407. [PMID: 33687298 DOI: 10.1080/15368378.2021.1895207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This study was designed to investigate the possible effects of exposure to mobile phone base station (MPBS) emits 1800-MHz RF-EMR on some oxidative stress parameters in the brain, heart, kidney and liver of Swiss albino mice under exposures below thermal levels. Mice were randomly assigned to three experimental groups which were exposed to RF-EMR for 6 hr/day, 12 hr/day and 24 hr/day for 45 consecutive days, respectively, and a control group. The glutathione (GSH) levels and activities of glutathione-s-transferase (GST) and superoxide dismutase (SOD) were significantly reduced in mice brain after exposure to RF-EMR for 12 hr and 24 hr per day. Exposure of mice to RF-EMR for 12 hr and 24 hr per day also led to a significant increase in malondialdehyde (an index of lipid peroxidation) levels in mice brain. On the contrary, exposures used in this study did not induce any significant change in various oxidative stress-related parameters in the heart, kidney and liver of mice. Our findings showed no significant variations in the activities of aspartate amino-transferase (AST), alanine amino-transferase (ALT), and on the level of creatinine (CRE) in the exposed mice. This study also revealed a decrease in RBC count with an increase in WBC count in mice subjected to 12 hr/day and 24 hr/day exposures. Exposure to RF-EMR from MPBS may cause adverse effects in mice brain by inducing oxidative stress arising from the generation of reactive oxygen species (ROS) as indicated by enhanced lipid peroxidation, and reduced levels and activities of antioxidants.
Collapse
Affiliation(s)
| | | | - C Lalmuansangi
- Department of Zoology, Mizoram University, Aizawl, India
| | - F Nghakliana
- Department of Zoology, Mizoram University, Aizawl, India
| | - Lalrinthara Pachuau
- Department of Physics, Pachhunga University College, Mizoram University, Aizawl, India
| | - Priyanka Bandara
- Executive Board, Oceania Radiofrequency Scientific Advisory Association (ORSAA), Brisbane, Australia
| | - Zothan Siama
- Department of Zoology, Mizoram University, Aizawl, India
| |
Collapse
|
13
|
Tirpák F, Greifová H, Lukáč N, Stawarz R, Massányi P. Exogenous Factors Affecting the Functional Integrity of Male Reproduction. Life (Basel) 2021; 11:213. [PMID: 33803103 PMCID: PMC8001766 DOI: 10.3390/life11030213] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/04/2021] [Accepted: 03/07/2021] [Indexed: 12/16/2022] Open
Abstract
Natural processes along with increased industrial production and the irresponsible behavior of mankind have resulted in environmental pollution. Environmental pollutants can be categorized based on their characteristics and appearance into the following groups: physical, biological, and chemical. Every single one of them represents a serious threat to the male reproductive tract despite the different modes of action. Male gonads and gametes are especially vulnerable to the effect of exogenous factors; therefore, they are considered a reliable indicator of environmental pollution. The impact of xenobiotics or radiation leads to an irreversible impairment of fertility displayed by histological changes, modulated androgen production, or compromised spermatozoa (or germ cells) quality. The present article reviews the exogenous threats, male reproductive system, the mode of action, and overall impact on the reproductive health of humans and animals.
Collapse
Affiliation(s)
- Filip Tirpák
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Hana Greifová
- Department of Animal Physiology, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (H.G.); (N.L.)
| | - Norbert Lukáč
- Department of Animal Physiology, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (H.G.); (N.L.)
| | - Robert Stawarz
- Institute of Biology, Pedagogical University of Krakow, Podchorazych 2, 30-084 Krakow, Poland;
| | - Peter Massányi
- Department of Animal Physiology, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (H.G.); (N.L.)
- Institute of Biology, Pedagogical University of Krakow, Podchorazych 2, 30-084 Krakow, Poland;
| |
Collapse
|
14
|
Hasan I, Amin T, Alam MR, Islam MR. Hematobiochemical and histopathological alterations of kidney and testis due to exposure of 4G cell phone radiation in mice. Saudi J Biol Sci 2021; 28:2933-2942. [PMID: 34012329 PMCID: PMC8117002 DOI: 10.1016/j.sjbs.2021.02.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/06/2021] [Accepted: 02/07/2021] [Indexed: 11/17/2022] Open
Abstract
The radiofrequency electromagnetic radiation emitted by smart phones on biological systems has wide media coverage and public concern in recent years. The aim of this study was to explore the effects of fourth-generation cell phone radiation exposure on hematological (Total leukocyte count, Total erythrocyte count, and hemoglobin %), biochemical (Serum creatinine) parameters, and histopathological changes in the kidney and testis of Swiss albino mice. A total of 30 male Swiss albino mice weighing 45–65 g was randomly divided into three groups (n = 10). The first group A was the control group, the second group B, was exposed to 40 minutes of mobile phone radiation daily, the third group C was exposed to 60 minutes of radiation daily from two 2400 Megahertz fourth-generation connected mobile phones for 60 days, respectively. The electromagnetic radiation frequency radiometer measured the frequency of electromagnetic radiation emitted from cell phones. The specific absorption rate was calculated as 0.087 W/kg. The control group was kept under similar conditions, but the electromagnetic field was not given for the same period. All the mice were sacrificed at the end of the experiment. The blood samples were collected for hematobiochemical study, and then kidney and testis tissues were collected for histopathological study. Results of the study showed that the body weight and total erythrocyte count values were significantly (p < 0.05) decreased while total leukocyte count, hemoglobin %, and serum creatinine values were significantly (p < 0.05) increased in both the radiation exposure groups relative to the control group. Histopathological observation showed the kidney of 60 minutes exposed mice interstitial inflammation that causes marked mononuclear cellular infiltration compared to the 40 minutes and control mice. Compared to control mice, histopathological examinations of testicular tissue from the exposed mice, showed irregular in shapes and non-uniform sizes and fewer spermatogenic cells layer that leads to the larger lumen in the seminiferous tubules. It is concluded that fourth-generation cell phone radiation exposure may affect blood hemostasis and inflammation of mice's kidney and testis tissue. Based on these studies, it is important to increase public consciousness of potential adverse effects of mobile phone radiofrequency electromagnetic radiation exposure.
Collapse
Affiliation(s)
- Imam Hasan
- Department of Anatomy and Histology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Tanjina Amin
- Department of Anatomy and Histology, Faculty of Veterinary Medicine & Animal Science, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Md Rafiqul Alam
- Department of Surgery and Obstetrics, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mohammad Rafiqul Islam
- Department of Anatomy and Histology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| |
Collapse
|
15
|
Toffa DH, Sow AD. The enigma of headaches associated with electromagnetic hyperfrequencies: Hypotheses supporting non-psychogenic algogenic processes. Electromagn Biol Med 2020; 39:196-205. [PMID: 32401641 DOI: 10.1080/15368378.2020.1762638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Although an electrohypersensitivity (EHS) is reported in numerous studies, some authors associate hyperfrequencies (HF)-related pains with a nocebo effect while others suggest a biological effect. Therefore, we aimed to suggest hypotheses about the complex mechanisms of headaches related to HF-exposure. We crossed basic features of headaches with relevant studies (from the year 2000 up to 2018) emphasizing on the HF effects that may lead to pain genesis: neuroglial dysmetabolism, neuroinflammation, changes in cerebral blood perfusion, blood-brain barrier dysfunction and electrophysiological evidences of hyperexcitability. We privileged studies implying a sham exposure (for in vivo studies) and a specific absorption rate lower than 4 W/Kg. HF-induced headaches may involve an indirect inflammatory process (neurogenic, magnetogenic or thermogenic) as well as a direct biophysical effect (thermogenic or magnetogenic). We linked inflammatory processes to meningeal dysperfusion or primary neuroglial dysfunction triggered by non-thermal irradiation or HF-induced heating at thermal powers. In the latter case, HF-induced excitoxicity and oxidative stress probably play a crucial role. Such disorders may lead to vascular-trigeminal activation in predisposed people. Interestingly, an abnormal oxidative stress predisposition had been demonstrated in overall 80% of EHS self-reporting patients. In the case of direct effects, pain pathways' activation may be directly triggered by HF-irradiation (heating and/or transcranial HF-induced ectopic action potentials). Further research on HF-related headaches is needed.
Collapse
Affiliation(s)
- D H Toffa
- Division of Neurosciences, Centre de Recherche du Centre Hospitalier de l'Université de Montréal , Montreal, Canada
| | - A D Sow
- Division of Neurology, CHUN Fann, Université Cheikh Anta Diop , Dakar, Senegal
| |
Collapse
|
16
|
Wang Z, Jiao B, Qing Y, Nan H, Huang L, Wei W, Peng Y, Yuan F, Dong H, Hou X, Wu Z. Flexible and Transparent Ferroferric Oxide-Modified Silver Nanowire Film for Efficient Electromagnetic Interference Shielding. ACS APPLIED MATERIALS & INTERFACES 2020; 12:2826-2834. [PMID: 31852186 DOI: 10.1021/acsami.9b17513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Transparent and flexible electromagnetic interference (EMI) shielding film is highly desirable due to the fast-growing flexible electronics. A silver nanowire (Ag NW) film is considered to be an ideal candidate for a transparent and flexible EMI shielding film but suffers low EMI shielding effectiveness (SE) at high transparency and poor bending durability. Herein, we introduce ferroferric oxide (Fe3O4) into a Ag NW film and demonstrate a robust EMI shielding film, which exhibits SE of 24.9 dB at 8.2 GHz and optical transparency of 90%. Fe3O4 exhibits roles of the improved absorption loss for electromagnetic radiation due to its high permeability, the enhanced reflection loss for electromagnetic radiation by increasing the conductivity of Ag NWs film, and the improved stability for the enhanced adhesion of the Ag NW EMI shielding film. Our work provides a facile method for high-performance transparent EMI shielding film, which exhibits great potential for protection for electronic devices.
Collapse
Affiliation(s)
- Zhenxiao Wang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering , Xi'an Jiaotong University , No.28, Xianning West Road , Xi'an 710049 , China
| | - Bo Jiao
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering , Xi'an Jiaotong University , No.28, Xianning West Road , Xi'an 710049 , China
| | - Yuchang Qing
- State Key Laboratory of Solidification Processing , Northwestern Polytechnical University , Xi'an 710072 , China
| | - Hanyi Nan
- State Key Laboratory of Solidification Processing , Northwestern Polytechnical University , Xi'an 710072 , China
| | - Linquan Huang
- Shaanxi Coal Chemical Industry Technology Research Institute Co., Ltd. , Xi'an 710065 , China
| | - Wei Wei
- Shaanxi Coal Chemical Industry Technology Research Institute Co., Ltd. , Xi'an 710065 , China
| | - Yao Peng
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering , Xi'an Jiaotong University , No.28, Xianning West Road , Xi'an 710049 , China
| | - Fang Yuan
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering , Xi'an Jiaotong University , No.28, Xianning West Road , Xi'an 710049 , China
| | - Hua Dong
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering , Xi'an Jiaotong University , No.28, Xianning West Road , Xi'an 710049 , China
| | - Xun Hou
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering , Xi'an Jiaotong University , No.28, Xianning West Road , Xi'an 710049 , China
| | - Zhaoxin Wu
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering , Xi'an Jiaotong University , No.28, Xianning West Road , Xi'an 710049 , China
| |
Collapse
|
17
|
Qi XY, Qiu XS, Jiang JY, Chen YX, Tang LM, Shi HF. Microwaves increase the effectiveness of systemic antibiotic treatment in acute bone infection: experimental study in a rat model. J Orthop Surg Res 2019; 14:286. [PMID: 31488167 PMCID: PMC6729059 DOI: 10.1186/s13018-019-1342-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/21/2019] [Indexed: 12/28/2022] Open
Abstract
Background Osteomyelitis is a challenge for orthopedic surgeons due to its protracted treatment process. Microwaves (MWs) can increase blood perfusion due to their thermal effect. Furthermore, MWs demonstrated significant bactericidal effects in vitro. In the present study, we assumed that the application of a 2450-MHz-frequency MW together with systemic antibiotic treatment would provide synergy for the treatment of acute osteomyelitis. Methods The medullary cavity of the right tibia was inoculated with 107 CFU of methicillin-sensitive Staphylococcus aureus (MSSA-ATCC 29213) in 40 rats, and the rats were randomly divided into four groups according to treatment: group I, saline (control); group II, saline + MW therapy; group III, systemic cefuroxime; and group IV, systemic cefuroxime + MW therapy. MWs were applied for 20 min per day to the infected limbs, and all rats were sacrificed on the 7th day. The severity of tibial osteomyelitis was assessed by quantitative culture analysis. Results Bacterial counts in groups III and IV were significantly reduced compared with those in the control (p = 0.001 and < 0.001, respectively). Furthermore, significant differences were detected between groups III and IV (p = 0.033). However, the difference between groups I and II was nonsignificant (p = 0.287). Conclusion Our experimental model suggests that MW therapy provides a significant synergy for systemic antibiotic treatment. However, further clinical trials are required to safely use this treatment modality in patients.
Collapse
Affiliation(s)
- Xiao-Yang Qi
- Department of Orthopaedics, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing, China.,Department of Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, 68 Gehu Road, Changzhou, China
| | - Xu-Sheng Qiu
- Department of Orthopaedics, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing, China. .,Department of Orthopaedics, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, China.
| | - Jiang-Yun Jiang
- Department of Orthopaedics, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing, China
| | - Yi-Xin Chen
- Department of Orthopaedics, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing, China. .,Department of Orthopaedics, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, China.
| | - Li-Ming Tang
- Department of Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, 68 Gehu Road, Changzhou, China
| | - Hong-Fei Shi
- Department of Orthopaedics, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing, China.,Department of Orthopaedics, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, China
| |
Collapse
|
18
|
Okatan DÖ, Kulaber A, Kerimoglu G, Odacı E. Altered morphology and biochemistry of the female rat liver following 900 megahertz electromagnetic field exposure during mid to late adolescence. Biotech Histochem 2019; 94:420-428. [PMID: 31017002 DOI: 10.1080/10520295.2019.1580767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Despite their benefits, technological devices such as cell phones may also have deleterious effects on human health. Considerable debate continues concerning the effects of the electromagnetic field (EMF) emitted during cell phone use on human health. We investigated the effects of exposure to 900 megahertz (MHz) EMF during mid to late adolescence on the rat liver. Control (ContGr), sham (ShmGr) and EMF (EMFGr) groups of female rats were established. We exposed the EMFGr rats daily to 900 MHz EMF on postnatal days 35-59. ShmGr rats underwent sham procedures. No procedure was performed on ContGr rats. Rats were sacrificed on postnatal day 60 and the livers were extracted. One part of the liver was stained with Masson's trichrome or hematoxylin and eosin. The remaining tissue was used to measure oxidative stress markers including malondialdehyde, glutathione, catalase, superoxide dismutase, 8-hydroxydeoxyguanosine (8-OHdG) and nitrotyrosine. Total antioxidant status and total oxidant status were used to calculate the oxidative stress index. We found normal hepatic morphology in the ContGr and ShmGr groups. The EMFGr group exhibited occasional irregularities in the radial arrangement of hepatocytes, cytoplasmic vacuolization, hemorrhage, sinusoid expansion, hepatocyte morphology and edema. Biochemical analysis revealed that 8-OHdG and SOD levels in EMFGr decreased significantly compared to the ContGr and ShmGr groups. Exposure to a continuous 900 MHz EMF for 1 h daily during mid to late adolescence may cause histopathological and biochemical alterations in hepatic tissue.
Collapse
Affiliation(s)
- D Ö Okatan
- Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University , Trabzon , Turkey
| | - A Kulaber
- Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University , Trabzon , Turkey
| | - G Kerimoglu
- Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University , Trabzon , Turkey
| | - E Odacı
- Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University , Trabzon , Turkey
| |
Collapse
|
19
|
Kim DG, Choi JH, Choi DK, Kim SW. Highly Bendable and Durable Transparent Electromagnetic Interference Shielding Film Prepared by Wet Sintering of Silver Nanowires. ACS APPLIED MATERIALS & INTERFACES 2018; 10:29730-29740. [PMID: 30106270 DOI: 10.1021/acsami.8b07054] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Electromagnetic (EM) wave emissions from wearable or flexible smart display devices can cause product malfunction and have a detrimental effect on human health. Therefore, EM shielding strategies are becoming increasingly necessary. Consequently, herein, we prepared a transparent acrylic polymer-coated/reduced graphene oxide/silver nanowire (Ag NW) (A/RGO/SANW) EM interference (EMI) shielding film via liquid-to-vapor pressure-assisted wet sintering. The film exhibited enhanced Ag NW network formation and antireflection (AR) effects. The wet-sintered Ag NW shielding film had a threshold radius of curvature (ROC) of 0.31 mm at a film thickness of 100 μm, demonstrating its high flexibility, whereas the conventional indium tin oxide (ITO) shielding film had a threshold ROC of ∼5 mm. The EMI shielding effectiveness (SE) of the A/RGO/SANW multilayer film was approximately twice that of the ITO film at a similar relative transmittance (84-85%). The optical relative reflectance of the Ag NW layer was reduced due to the AR effect, and the visible-light transmittance was considerably improved owing to the different refractive indices in the multilayer shielding film. Because the acrylic coating layer had a high contact angle, the multilayer film exhibited high temperature and humidity durability with little change in the SE over 500 h at 85 °C and 85% relative humidity. The multilayer film comprising wet-sintered Ag NW exhibited high flexibility and humidity durability, high shielding performance (more than 24 dB at a relative transmittance of 85% or more), and high mass productivity, making it highly applicable for use as a transparent shielding material for future flexible devices.
Collapse
Affiliation(s)
- Dong Gyu Kim
- Clean Energy Research Center , Korea Institute of Science and Technology (KIST) , Seoul 02792 , Republic of Korea
- Division of Materials Science and Engineering , Hanyang University , Seoul 04763 , Republic of Korea
| | - Jong Han Choi
- Clean Energy Research Center , Korea Institute of Science and Technology (KIST) , Seoul 02792 , Republic of Korea
- Department of Chemical and Biological Engineering , Korea University , Seoul 02841 , Republic of Korea
| | - Duck-Kyun Choi
- Division of Materials Science and Engineering , Hanyang University , Seoul 04763 , Republic of Korea
| | - Sang Woo Kim
- Clean Energy Research Center , Korea Institute of Science and Technology (KIST) , Seoul 02792 , Republic of Korea
- Division of Energy Environment Technology, KIST School , University of Science and Technology (UST) , Seoul 02792 , Republic of Korea
| |
Collapse
|
20
|
Shahin S, Singh SP, Chaturvedi CM. 2.45 GHz microwave radiation induced oxidative and nitrosative stress mediated testicular apoptosis: Involvement of a p53 dependent bax-caspase-3 mediated pathway. ENVIRONMENTAL TOXICOLOGY 2018; 33:931-945. [PMID: 29968967 DOI: 10.1002/tox.22578] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 05/03/2018] [Accepted: 05/06/2018] [Indexed: 06/08/2023]
Abstract
Deleterious effects of MW radiation on the male reproduction are well studied. Previous reports although suggest that 2.45 GHz MW irradiation induced oxidative and nitrosative stress adversely affects the male reproductive function but the detailed molecular mechanism occurring behind it has yet to be elucidated. The aim of present study was to investigate the underlying detailed pathway of the testicular apoptosis induced by free radical load and redox imbalance due to 2.45 GHz MW radiation exposure and the degree of severity along with the increased exposure duration. Twelve-week old male mice were exposed to 2.45 GHz MW radiation [continuous-wave (CW) with overall average Power density of 0.0248 mW/cm2 and overall average whole body SAR value of 0.0146 W/kg] for 2 hr/day over a period of 15, 30, and 60 days. Testicular histology, serum testosterone, ROS, NO, MDA level, activity of antioxidant enzymes, expression of pro-apoptotic proteins (p53 and Bax), anti-apoptotic proteins (Bcl-2 and Bcl-xL ), cytochrome-c, inactive/active caspase-3, and uncleaved PARP-1 were evaluated. Findings suggest that 2.45 GHz MW radiation exposure induced testicular redox imbalance not only leads to enhanced testicular apoptosis via p53 dependent Bax-caspase-3 mediated pathway, but also increases the degree of apoptotic severity in a duration dependent manner.
Collapse
Affiliation(s)
- Saba Shahin
- Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| | - Surya Pal Singh
- Department of Electronics Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, 221005, India
| | | |
Collapse
|
21
|
DastAmooz S, Tahmasebi Boroujeni S, Shahbazi M, Vali Y. Physical activity as an option to reduce adverse effect of EMF exposure during pregnancy. Int J Dev Neurosci 2018; 71:10-17. [DOI: 10.1016/j.ijdevneu.2018.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 07/21/2018] [Accepted: 07/23/2018] [Indexed: 12/13/2022] Open
Affiliation(s)
- Sima DastAmooz
- Department of Motor Behavior, Faculty of Physical Education and Sport SciencesUniversity of TehranTehranIran
| | - Shahzad Tahmasebi Boroujeni
- Department of Motor Behavior, Faculty of Physical Education and Sport SciencesUniversity of TehranTehranIran
| | - Mehdi Shahbazi
- Department of Motor Behavior, Faculty of Physical Education and Sport SciencesUniversity of TehranTehranIran
| | - Yasamin Vali
- Department of Radiology and Surgery, Faculty of Veterinary MedicineUniversity of TehranTehranIran
| |
Collapse
|
22
|
Othman H, Ammari M, Sakly M, Abdelmelek H. Effects of repeated restraint stress and WiFi signal exposure on behavior and oxidative stress in rats. Metab Brain Dis 2017; 32:1459-1469. [PMID: 28451780 DOI: 10.1007/s11011-017-0016-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/17/2017] [Indexed: 12/14/2022]
Abstract
Today, due to technology development and aversive events of daily life, Human exposure to both radiofrequency and stress is unavoidable. This study investigated the co-exposure to repeated restraint stress and WiFi signal on cognitive function and oxidative stress in brain of male rats. Animals were divided into four groups: Control, WiFi-exposed, restrained and both WiFi-exposed and restrained groups. Each of WiFi exposure and restraint stress occurred 2 h (h)/day during 20 days. Subsequently, various tests were carried out for each group, such as anxiety in elevated plus maze, spatial learning abilities in the water maze, cerebral oxidative stress response and cholinesterase activity in brain and serum. Results showed that WiFi exposure and restraint stress, alone and especially if combined, induced an anxiety-like behavior without impairing spatial learning and memory abilities in rats. At cerebral level, we found an oxidative stress response triggered by WiFi and restraint, per se and especially when combined as well as WiFi-induced increase in acetylcholinesterase activity. Our results reveal that there is an impact of WiFi signal and restraint stress on the brain and cognitive processes especially in elevated plus maze task. In contrast, there are no synergistic effects between WiFi signal and restraint stress on the brain.
Collapse
Affiliation(s)
- Haifa Othman
- Faculty of Sciences of Bizerte, Laboratory of Integrative Physiology, University of Carthage, 7021, Jarzouna, Tunisia
| | - Mohamed Ammari
- Faculty of Sciences of Bizerte, Laboratory of Integrative Physiology, University of Carthage, 7021, Jarzouna, Tunisia.
- Higher Institute of Applied Biological Sciences of Tunis, University of Tunis El Manar, 9, Rue Zouhair Essafi, 1006, Tunis, Tunisia.
| | - Mohsen Sakly
- Faculty of Sciences of Bizerte, Laboratory of Integrative Physiology, University of Carthage, 7021, Jarzouna, Tunisia
| | - Hafedh Abdelmelek
- Faculty of Sciences of Bizerte, Laboratory of Integrative Physiology, University of Carthage, 7021, Jarzouna, Tunisia
| |
Collapse
|
23
|
Sharma A, Kesari KK, Saxena VK, Sisodia R. Ten gigahertz microwave radiation impairs spatial memory, enzymes activity, and histopathology of developing mice brain. Mol Cell Biochem 2017; 435:1-13. [DOI: 10.1007/s11010-017-3051-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/27/2017] [Indexed: 12/13/2022]
|