1
|
Spina E, Simundza J, Incassati A, Chandramouli A, Kugler MC, Lin Z, Khodadadi-Jamayran A, Watson CJ, Cowin P. Gpr125 is a unifying hallmark of multiple mammary progenitors coupled to tumor latency. Nat Commun 2022; 13:1421. [PMID: 35302059 PMCID: PMC8931046 DOI: 10.1038/s41467-022-28937-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/16/2022] [Indexed: 12/15/2022] Open
Abstract
Gpr125 is an orphan G-protein coupled receptor, with homology to cell adhesion and axonal guidance factors, that is implicated in planar polarity and control of cell movements. By lineage tracing we demonstrate that Gpr125 is a highly specific marker of bipotent mammary stem cells in the embryo and of multiple long-lived unipotent basal mammary progenitors in perinatal and postnatal glands. Nipple-proximal Gpr125+ cells express a transcriptomic profile indicative of chemo-repulsion and cell movement, whereas Gpr125+ cells concentrated at invasive ductal tips display a hybrid epithelial-mesenchymal phenotype and are equipped to bind chemokine and growth factors and secrete a promigratory matrix. Gpr125 progenitors acquire bipotency in the context of transplantation and cancer and are greatly expanded and massed at the pushing margins of short latency MMTV-Wnt1 tumors. High Gpr125 expression identifies patients with particularly poor outcome within the basal breast cancer subtype highlighting its potential utility as a factor to stratify risk. Gpr125 has emerged as a specific marker of mammary stem cells and basal progenitors. Here they show that Gpr125 cells congregate at ductal tips during morphogenesis and amass at tumor margins, and that high Gpr125 predicts early tumor onset and poor outcome in basal breast cancer.
Collapse
Affiliation(s)
- Elena Spina
- Department of Cell Biology, New York University School of Medicine, New York, USA.
| | - Julia Simundza
- Department of Cell Biology, New York University School of Medicine, New York, USA
| | - Angela Incassati
- Department of Cell Biology, New York University School of Medicine, New York, USA
| | - Anupama Chandramouli
- Department of Cell Biology, New York University School of Medicine, New York, USA.,Department of Dermatology, New York University School of Medicine, New York, USA
| | - Matthias C Kugler
- Division of Pulmonary and Critical Care Medicine, New York University School of Medicine, New York, USA
| | - Ziyan Lin
- Department of Applied Bioinformatics, New York University School of Medicine, New York, USA
| | | | | | - Pamela Cowin
- Department of Cell Biology, New York University School of Medicine, New York, USA. .,Department of Dermatology, New York University School of Medicine, New York, USA.
| |
Collapse
|
2
|
Sheldon H, Alexander J, Bridges E, Moreira L, Reilly S, Ang KH, Wang D, Lin S, Haider S, Banham AH, Harris AL. ELTD1 Activation Induces an Endothelial-EMT Transition to a Myofibroblast Phenotype. Int J Mol Sci 2021; 22:11293. [PMID: 34681953 PMCID: PMC8539764 DOI: 10.3390/ijms222011293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/13/2022] Open
Abstract
ELTD1 is expressed in endothelial and vascular smooth muscle cells and has a role in angiogenesis. It has been classified as an adhesion GPCR, but as yet, no ligand has been identified and its function remains unknown. To establish its role, ELTD1 was overexpressed in endothelial cells. Expression and consequently ligand independent activation of ELTD1 results in endothelial-mesenchymal transistion (EndMT) with a loss of cell-cell contact, formation of stress fibres and mature focal adhesions and an increased expression of smooth muscle actin. The effect was pro-angiogenic, increasing Matrigel network formation and endothelial sprouting. RNA-Seq analysis after the cells had undergone EndMT revealed large increases in chemokines and cytokines involved in regulating immune response. Gene set enrichment analysis of the data identified a number of pathways involved in myofibroblast biology suggesting that the endothelial cells had undergone a type II EMT. This type of EMT is involved in wound repair and is closely associated with inflammation implicating ELTD1 in these processes.
Collapse
Affiliation(s)
- Helen Sheldon
- Cancer Research UK Molecular Oncology Laboratories, University of Oxford, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DU, UK; (E.B.); (K.H.A.); (S.L.)
| | - John Alexander
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer Research, The Institute of Cancer Research, London SM2 5NG, UK; (J.A.); (S.H.)
| | - Esther Bridges
- Cancer Research UK Molecular Oncology Laboratories, University of Oxford, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DU, UK; (E.B.); (K.H.A.); (S.L.)
| | - Lucia Moreira
- Cardiovascular Medicine, RDM John Radcliffe Hospital, Oxford OX3 9DU, UK; (L.M.); (S.R.)
| | - Svetlana Reilly
- Cardiovascular Medicine, RDM John Radcliffe Hospital, Oxford OX3 9DU, UK; (L.M.); (S.R.)
| | - Koon Hwee Ang
- Cancer Research UK Molecular Oncology Laboratories, University of Oxford, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DU, UK; (E.B.); (K.H.A.); (S.L.)
| | - Dian Wang
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, John Radcliffe Hospital, Oxford OX3 9DU, UK; (D.W.); (A.H.B.)
| | - Salwa Lin
- Cancer Research UK Molecular Oncology Laboratories, University of Oxford, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DU, UK; (E.B.); (K.H.A.); (S.L.)
| | - Syed Haider
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer Research, The Institute of Cancer Research, London SM2 5NG, UK; (J.A.); (S.H.)
| | - Alison H. Banham
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, John Radcliffe Hospital, Oxford OX3 9DU, UK; (D.W.); (A.H.B.)
| | - Adrian L. Harris
- Cancer Research UK Molecular Oncology Laboratories, University of Oxford, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DU, UK; (E.B.); (K.H.A.); (S.L.)
| |
Collapse
|
3
|
Rosa M, Noel T, Harris M, Ladds G. Emerging roles of adhesion G protein-coupled receptors. Biochem Soc Trans 2021; 49:1695-1709. [PMID: 34282836 PMCID: PMC8421042 DOI: 10.1042/bst20201144] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/24/2022]
Abstract
Adhesion G protein-coupled receptors (aGPCRs) form a sub-group within the GPCR superfamily. Their distinctive structure contains an abnormally large N-terminal, extracellular region with a GPCR autoproteolysis-inducing (GAIN) domain. In most aGPCRs, the GAIN domain constitutively cleaves the receptor into two fragments. This process is often required for aGPCR signalling. Over the last two decades, much research has focussed on aGPCR-ligand interactions, in an attempt to deorphanize the family. Most ligands have been found to bind to regions N-terminal to the GAIN domain. These receptors may bind a variety of ligands, ranging across membrane-bound proteins and extracellular matrix components. Recent advancements have revealed a conserved method of aGPCR activation involving a tethered ligand within the GAIN domain. Evidence for this comes from increased activity in receptor mutants exposing the tethered ligand. As a result, G protein-coupling partners of aGPCRs have been more extensively characterised, making use of their tethered ligand to create constitutively active mutants. This has led to demonstrations of aGPCR function in, for example, neurodevelopment and tumour growth. However, questions remain around the ligands that may bind many aGPCRs, how this binding is translated into changes in the GAIN domain, and the exact mechanism of aGPCR activation following GAIN domain conformational changes. This review aims to examine the current knowledge around aGPCR activation, including ligand binding sites, the mechanism of GAIN domain-mediated receptor activation and how aGPCR transmembrane domains may relate to activation. Other aspects of aGPCR signalling will be touched upon, such as downstream effectors and physiological roles.
Collapse
Affiliation(s)
- Matthew Rosa
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| | - Timothy Noel
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| | - Matthew Harris
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| | - Graham Ladds
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| |
Collapse
|
4
|
Several genotypes, one phenotype: PIK3CA/AKT1 mutation-negative hidradenoma papilliferum show genetic lesions in other components of the signalling network. Pathology 2019; 51:362-368. [PMID: 31010589 DOI: 10.1016/j.pathol.2019.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/06/2018] [Accepted: 01/23/2019] [Indexed: 12/24/2022]
Abstract
About 60-70% of hidradenoma papilliferum (HP), a benign tumour of the anogenital region, were recently described to harbour mutations in major driver genes of the PI3K/AKT/MAPK-signalling pathways. However, the underlying genetic defects of the non-mutant cases are still unknown. Using a 409 gene panel, we employed targeted next generation sequencing to investigate the mutational landscape in a cohort of seven PI3K/AKT-negative cases and five cases with known hotspot mutations in either PIK3CA or AKT1. In total, we identified 29 mutations in 22 of 409 genes. The four cases with PIK3CA hotspot mutations carried no or only few additional mutations. The AKT1 hotspot mutated case harboured additional mutations in four genes (SYNE1, ADAMTS20, EP400 and CASC5). At least two of these genes are involved in or contribute to the PI3K/AKT-pathway. In the seven non-hotspot mutated cases we observed 18 mutations. Each case carried at least one mutation in a gene contributing to or involved in PI3K/AKT-signalling. Affected genes were PIK3CA (n=1, non-hotspot mutation), PIK3R1 (n=3), SYNE1, AR, IL6ST, PDGFRB, KMT2C, AR, BTK, DST, KAT6A, BRD3, RNF213, USP9X, ADGRB3, MAGI1, and IL7R (each gene mutated once). The identified PIK3CA and PIK3R1 mutations lead to constitutive activated PI3K/AKT-signalling. In conclusion, we demonstrate the genetic basis of HP in all cases. Our data suggest that tumourigenic alterations in the PI3K/AKT-pathway are indispensable in HP and establish a homogenous morphomolecular entity with a functionally converging and selecting tumourigenic mechanism.
Collapse
|
5
|
Olaniru OE, Persaud SJ. Adhesion G-protein coupled receptors: Implications for metabolic function. Pharmacol Ther 2019; 198:123-134. [PMID: 30825474 DOI: 10.1016/j.pharmthera.2019.02.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Adhesion G-protein coupled receptors (aGPCRs) are emerging as important actors in energy homeostasis. Recent biochemical and functional studies using transgenic mice indicate that aGPCRs play important roles in endocrine and metabolic functions including β-cell differentiation, insulin secretion, adipogenesis and whole body fuel homeostasis. Most aGPCRs are orphans, for which endogenous ligands have not yet been identified, and many of the endogenous ligands of the already de-orphanised aGPCRs are components of the extracellular matrix (ECM). In this review we focus on aGPCR expression in metabolically active tissues, their activation by ECM proteins, and current knowledge of their potential roles in islet development, insulin secretion, adipogenesis and muscle function.
Collapse
Affiliation(s)
- Oladapo E Olaniru
- Diabetes Research Group, Department of Diabetes, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Shanta J Persaud
- Diabetes Research Group, Department of Diabetes, King's College London, Guy's Campus, London SE1 1UL, UK.
| |
Collapse
|
6
|
Schejter ED. Myoblast fusion: Experimental systems and cellular mechanisms. Semin Cell Dev Biol 2016; 60:112-120. [DOI: 10.1016/j.semcdb.2016.07.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 12/18/2022]
|