1
|
Hernández AF, Lacasaña M, Garcia-Cortés H, Fernández MF, Gozález-Alzaga B. Identification and prioritisation of biomarkers of organophosphorus compounds-induced neurotoxicity. ENVIRONMENT INTERNATIONAL 2025; 199:109446. [PMID: 40253933 DOI: 10.1016/j.envint.2025.109446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/26/2025] [Accepted: 04/07/2025] [Indexed: 04/22/2025]
Abstract
Organophosphorus compounds (OPCs), a diverse group of chemicals widely utilised as pesticides and flame retardants, pose significant neurotoxic risks, even during neurodevelopment. While their primary molecular and cellular targets are well characterised, growing evidence suggest additional mechanisms, particularly in developmental neurotoxicity. Despite extensive research, predictive biomarkers of OPC-induced neurotoxicity beyond acetylcholinesterase remain underexplored. This study conducted a comprehensive review of epidemiological, in vivo, and in vitro evidence to identify and prioritise biomarkers associated with OPC-induced neurotoxicity. Findings highlight the critical roles of non-cholinergic mechanisms, including neuroinflammation, mitochondrial dysfunction, oxidative stress, and epigenetic modifications. Biomarkers were categorised based on their biological function, mechanistic relevance, and feasibility for early, non-invasive detection. Current research efforts focus on validating sensitive and reliable biomarkers capable of predicting and monitoring nervous system damage and severity. Growing attention is being directed toward non-invasive biomarkers that correlate with behavioural, neuropathological, and imaging outcomes. This review addresses two main aspects. The first provides an overview of established and emerging biomarkers for assessing neurotoxicity in the general population and in individuals occupationally exposed to OPC. The second evaluates molecular biomarkers prioritised based on scientific robustness, clinical relevance, and regulatory applicability. A structured ranking of biomarkers across different levels of biological organisation is proposed to enhance mechanistic understanding and improve risk assessment. This study underscores the need for a standardised biomarker framework for neurotoxicity risk assessment and regulatory decision-making. Implementing these biomarkers in biomonitoring for predictive purposes will facilitate early detection and prevention strategies, ultimately mitigating neurotoxic effects in exposed individuals.
Collapse
Affiliation(s)
- Antonio F Hernández
- Department of Legal Medicine and Toxicology, University of Granada School of Medicine, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Marina Lacasaña
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain; Andalusian School of Public Health (EASP), 18011 Granada, Spain; Andalusian Health and Environment Observatory (OSMAN), Granada, Spain.
| | - Helena Garcia-Cortés
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Andalusian School of Public Health (EASP), 18011 Granada, Spain
| | - Mariana F Fernández
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada 18016 Granada, Spain; Biomedical Research Centre (CIBM), University of Granada 18016 Granada, Spain
| | - Beatriz Gozález-Alzaga
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain; Andalusian School of Public Health (EASP), 18011 Granada, Spain
| |
Collapse
|
2
|
Perez-Fernandez C, Flores P, Sánchez-Santed F. A Systematic Review on the Influences of Neurotoxicological Xenobiotic Compounds on Inhibitory Control. Front Behav Neurosci 2019; 13:139. [PMID: 31333425 PMCID: PMC6620897 DOI: 10.3389/fnbeh.2019.00139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/06/2019] [Indexed: 01/24/2023] Open
Abstract
Background: Impulsive and compulsive traits represent a variety of maladaptive behaviors defined by the difficulties to stop an improper response and the control of a repeated behavioral pattern without sensitivity to changing contingencies, respectively. Otherwise, human beings are continuously exposed to plenty neurotoxicological agents which have been systematically linked to attentional, learning, and memory dysfunctions, both preclinical and clinical studies. Interestingly, the link between both impulsive and compulsive behaviors and the exposure to the most important xenobiotic compounds have been extensively developed; although the information has been rarely summarized. For this, the present systematic review schedule and analyze in depth the most important works relating different subtypes of the above-mentioned behaviors with 4 of the most important xenobiotic compounds: Lead (Pb), Methylmercury (MeHg), Polychlorinated biphenyls (PCB), and Organophosphates (OP) in both preclinical and clinical models. Methods: Systematic search strategy on PubMed databases was developed, and the most important information was structured both in text and in separate tables based on rigorous methodological quality assessment. Results: For Lead, Methylmercury, Polychlorinated biphenyls and organophosphates, a total of 44 (31 preclinical), 34 (21), 38 (23), and 30 (17) studies were accepted for systematic synthesis, respectively. All the compounds showed an important empirical support on their role in the modulation of impulsive and, in lesser degree, compulsive traits, stronger and more solid in animal models with inconclusive results in humans in some cases (i.e., MeHg). However, preclinical and clinical studies have systematically focused on different subtypes of the above-mentioned behaviors, as well as impulsive choice or habit conformations have been rarely studied. Discussion: The strong empirical support in preclinical studies contrasts with the lack of connection between preclinical and clinical models, as well as the different methodologies used. Further research should be focused on dissipate these differences as well as deeply study impulsive choice, decision making, risk taking, and cognitive flexibility, both in experimental animals and humans.
Collapse
Affiliation(s)
| | - Pilar Flores
- Department of Psychology and Health Research Center, University of Almería, Almería, Spain
| | | |
Collapse
|
3
|
Bhanu KU, Khandelwal N, Vyas S, Singh P, Prabhakar A, Mittal BR, Bhalla A. Evaluation of MR perfusion abnormalities in organophosphorus poisoning and its correlation with SPECT. Indian J Radiol Imaging 2017; 27:36-42. [PMID: 28515582 PMCID: PMC5385771 DOI: 10.4103/0971-3026.202961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
AIM Acute organophosphate (OP) pesticide poisoning causes substantial morbidity and mortality worldwide. Many imaging modalities, such as computerized tomography (CT), magnetic resonance imaging (MRI), and single photon emission computed tomography (SPECT) of the brain, have been used for quantitative assessment of the acute brain insult caused by acute OP poisoning. Perfusion defects on SPECT in acutely poisoned patients with OPs have been described, however, MR perfusion abnormalities have not been described in the literature. MR perfusion Imaging has the advantage of having higher spatial resolution, no radiation, and better availability. MATERIALS AND METHODS In this prospective study, 20 patients who ingested OP compounds were included. All the patients underwent brain SPECT on a dual head SPECT gamma camera and MRI brain on a 1.5T MR system. Neurocognitive tests were performed for all patients. RESULTS SPECT showed perfusion defects in 7 patients and total number of perfusion defects were 29. On MR perfusion, based on the cut-off values of normalized cerebral blood volume (nCBV) ratios and normalized cerebral blood flow (nCBF) ratios, the total number of patients showing perfusion defects were 6 and 8; and the total number of perfusion defects were 29 and 45, respectively. There was significant difference of the nCBV ratios and nCBF ratios between the control group (n = 20) and positive patients group (n = 6 and n = 8, respectively) (P > 0.05). All the defects seen on SPECT were well appreciated on nCBF maps (MRI perfusion) suggestive of 100% correlation. CONCLUSION MR perfusion imaging can be used as an effective modality for evaluation in acute OP poisoning.
Collapse
Affiliation(s)
- K Uday Bhanu
- Department of Radiodiagnosis and Imaging, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Niranjan Khandelwal
- Department of Radiodiagnosis and Imaging, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sameer Vyas
- Department of Radiodiagnosis and Imaging, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Paramjeet Singh
- Department of Radiodiagnosis and Imaging, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Anuj Prabhakar
- Department of Radiodiagnosis and Imaging, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - B R Mittal
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashish Bhalla
- Department of Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
4
|
Pereira EFR, Aracava Y, DeTolla LJ, Beecham EJ, Basinger GW, Wakayama EJ, Albuquerque EX. Animal models that best reproduce the clinical manifestations of human intoxication with organophosphorus compounds. J Pharmacol Exp Ther 2014; 350:313-21. [PMID: 24907067 PMCID: PMC4109493 DOI: 10.1124/jpet.114.214932] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 06/05/2014] [Indexed: 01/14/2023] Open
Abstract
The translational capacity of data generated in preclinical toxicological studies is contingent upon several factors, including the appropriateness of the animal model. The primary objectives of this article are: 1) to analyze the natural history of acute and delayed signs and symptoms that develop following an acute exposure of humans to organophosphorus (OP) compounds, with an emphasis on nerve agents; 2) to identify animal models of the clinical manifestations of human exposure to OPs; and 3) to review the mechanisms that contribute to the immediate and delayed OP neurotoxicity. As discussed in this study, clinical manifestations of an acute exposure of humans to OP compounds can be faithfully reproduced in rodents and nonhuman primates. These manifestations include an acute cholinergic crisis in addition to signs of neurotoxicity that develop long after the OP exposure, particularly chronic neurologic deficits consisting of anxiety-related behavior and cognitive deficits, structural brain damage, and increased slow electroencephalographic frequencies. Because guinea pigs and nonhuman primates, like humans, have low levels of circulating carboxylesterases-the enzymes that metabolize and inactivate OP compounds-they stand out as appropriate animal models for studies of OP intoxication. These are critical points for the development of safe and effective therapeutic interventions against OP poisoning because approval of such therapies by the Food and Drug Administration is likely to rely on the Animal Efficacy Rule, which allows exclusive use of animal data as evidence of the effectiveness of a drug against pathologic conditions that cannot be ethically or feasibly tested in humans.
Collapse
Affiliation(s)
- Edna F R Pereira
- Division of Translational Toxicology, Department of Epidemiology and Public Health (E.F.R.P., Y.A., E.X.A.), and Program of Comparative Medicine and Departments of Pathology, Medicine, and Epidemiology and Public Health (L.J.D.), University of Maryland School of Medicine, Baltimore, Maryland; Countervail Corporation, Charlotte, North Carolina (E.J.B., G.W.B.); and Biomedical Advanced Research and Development Authority and Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC (E.J.W.)
| | - Yasco Aracava
- Division of Translational Toxicology, Department of Epidemiology and Public Health (E.F.R.P., Y.A., E.X.A.), and Program of Comparative Medicine and Departments of Pathology, Medicine, and Epidemiology and Public Health (L.J.D.), University of Maryland School of Medicine, Baltimore, Maryland; Countervail Corporation, Charlotte, North Carolina (E.J.B., G.W.B.); and Biomedical Advanced Research and Development Authority and Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC (E.J.W.)
| | - Louis J DeTolla
- Division of Translational Toxicology, Department of Epidemiology and Public Health (E.F.R.P., Y.A., E.X.A.), and Program of Comparative Medicine and Departments of Pathology, Medicine, and Epidemiology and Public Health (L.J.D.), University of Maryland School of Medicine, Baltimore, Maryland; Countervail Corporation, Charlotte, North Carolina (E.J.B., G.W.B.); and Biomedical Advanced Research and Development Authority and Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC (E.J.W.)
| | - E Jeffrey Beecham
- Division of Translational Toxicology, Department of Epidemiology and Public Health (E.F.R.P., Y.A., E.X.A.), and Program of Comparative Medicine and Departments of Pathology, Medicine, and Epidemiology and Public Health (L.J.D.), University of Maryland School of Medicine, Baltimore, Maryland; Countervail Corporation, Charlotte, North Carolina (E.J.B., G.W.B.); and Biomedical Advanced Research and Development Authority and Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC (E.J.W.)
| | - G William Basinger
- Division of Translational Toxicology, Department of Epidemiology and Public Health (E.F.R.P., Y.A., E.X.A.), and Program of Comparative Medicine and Departments of Pathology, Medicine, and Epidemiology and Public Health (L.J.D.), University of Maryland School of Medicine, Baltimore, Maryland; Countervail Corporation, Charlotte, North Carolina (E.J.B., G.W.B.); and Biomedical Advanced Research and Development Authority and Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC (E.J.W.)
| | - Edgar J Wakayama
- Division of Translational Toxicology, Department of Epidemiology and Public Health (E.F.R.P., Y.A., E.X.A.), and Program of Comparative Medicine and Departments of Pathology, Medicine, and Epidemiology and Public Health (L.J.D.), University of Maryland School of Medicine, Baltimore, Maryland; Countervail Corporation, Charlotte, North Carolina (E.J.B., G.W.B.); and Biomedical Advanced Research and Development Authority and Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC (E.J.W.)
| | - Edson X Albuquerque
- Division of Translational Toxicology, Department of Epidemiology and Public Health (E.F.R.P., Y.A., E.X.A.), and Program of Comparative Medicine and Departments of Pathology, Medicine, and Epidemiology and Public Health (L.J.D.), University of Maryland School of Medicine, Baltimore, Maryland; Countervail Corporation, Charlotte, North Carolina (E.J.B., G.W.B.); and Biomedical Advanced Research and Development Authority and Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC (E.J.W.)
| |
Collapse
|
5
|
Galantamine prevents long-lasting suppression of excitatory synaptic transmission in CA1 pyramidal neurons of soman-challenged guinea pigs. Neurotoxicology 2014; 44:270-8. [PMID: 25064080 DOI: 10.1016/j.neuro.2014.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/08/2014] [Accepted: 07/15/2014] [Indexed: 12/27/2022]
Abstract
Galantamine, a drug currently approved for the treatment of Alzheimer's disease, has recently emerged as an effective pretreatment against the acute toxicity and delayed cognitive deficits induced by organophosphorus (OP) nerve agents, including soman. Since cognitive deficits can result from impaired glutamatergic transmission in the hippocampus, the present study was designed to test the hypothesis that hippocampal glutamatergic transmission declines following an acute exposure to soman and that this effect can be prevented by galantamine. To test this hypothesis, spontaneous excitatory postsynaptic currents (EPSCs) were recorded from CA1 pyramidal neurons in hippocampal slices obtained at 1h, 24h, or 6-9 days after guinea pigs were injected with: (i) 1×LD50 soman (26.3μg/kg, s.c.); (ii) galantamine (8mg/kg, i.m.) followed 30min later by 1×LD50 soman, (iii) galantamine (8mg/kg, i.m.), or (iv) saline (0.5ml/kg, i.m.). In soman-injected guinea pigs that were not pretreated with galantamine, the frequency of EPSCs was significantly lower than that recorded from saline-injected animals. There was no correlation between the severity of soman-induced acute toxicity and the magnitude of soman-induced reduction of EPSC frequency. Pretreatment with galantamine prevented the reduction of EPSC frequency observed at 6-9 days after the soman challenge. Prevention of soman-induced long-lasting reduction of hippocampal glutamatergic synaptic transmission may be an important determinant of the ability of galantamine to counter cognitive deficits that develop long after an acute exposure to the nerve agent.
Collapse
|