1
|
Amayreh M, Esaifan M, Hourani MK. A sensitive and selective voltammetric method for the detection of pyrogallol in tomato and water samples using platinum electrode modified with alizarin red S film. ANAL SCI 2024; 40:1671-1681. [PMID: 38811524 DOI: 10.1007/s44211-024-00606-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024]
Abstract
In contrast to the hyperactive platinum electrode, ARS modified platinum electrode presents a remarkable inertness toward adsorption and surface processes and lends it for further voltammetric applications. Measuring pyrogallol levels in samples is significant for assessing their antioxidant activity, which is crucial for understanding their potential health benefits and ability to combat oxidative stress. In addition, the excess consumption of pyrogallol can have significant negative effects on human health. A voltammetric sensor has been developed for the determination of pyrogallol using ARS modified platinum electrode. The electrode was prepared by electrodeposition of alizarin red S on a platinum electrode using cyclic voltammetry with a potential scan range of - 0.4 to 1.2 V against an Ag/AgCl quasi reference electrode for 60 cycles as optimum number of cycles. The modified electrode was characterized by CV and SEM techniques. This modified alizarin red S platinum electrode showed remarkable electrocatalytic performance and stability, resulting in a significant increase in pyrogallol oxidation current by 11.05% compared to the pyrogallol oxidative current at the unmodified platinum electrode. A well-defined oxidation peak was observed at ~ 0.40 V. The sensor exhibited a low limit of detection (LOD) of 0.28 µM and a linear standard curve covering the ranges of 1.0-40 µM and 0.01-10.0 mM pyrogallol. Extensive studies were performed to evaluate possible interferences from various organic and inorganic compounds and yielded satisfactory results that confirm the selectivity of the developed sensor for pyrogallol determination. In addition, the ARS-Pt electrode provided consistently reliable results for the accurate detection of pyrogallol in water and tomato samples.
Collapse
Affiliation(s)
- Mohammad Amayreh
- Department of Chemistry, Faculty of Science, Al-Balqa Applied University, P.O. Box 19117, Al-Salt, Jordan.
| | - Muayad Esaifan
- Department of Chemistry, Faculty of Arts and Sciences, University of Petra, Amman, 11196, Jordan
| | - Mohammed Khair Hourani
- Electrochemistry Research Laboratory, Department of Chemistry, The University of Jordan, Amman, 11942, Jordan
| |
Collapse
|
2
|
Roese KHC, Torlone C, Cooper LA, Esposito L, Deveau AM, Röse USR, Burkholder KM. Pyrogallol impairs staphylococcal biofilm formation via induction of bacterial oxidative stress. J Appl Microbiol 2023; 134:lxad270. [PMID: 37974055 DOI: 10.1093/jambio/lxad270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/13/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
AIMS To examine the effect of the phenolic compound pyrogallol on staphylococcal biofilm formation. METHODS AND RESULTS In crystal violet biofilm assays, pyrogallol-reduced biofilm formation in Staphylococcus epidermidis ATCC 35984, Staph. epidermidis NRRL-B41021, Staphylococcus aureus USA300, and Staph. aureus Newman, without significantly impairing bacterial viability. Pyrogallol-mediated impairment of biofilm formation was likely due to induction of bacterial oxidative stress, as its effect was greater in catalase-deficient versus WT Staph. aureus, and biofilm production was rescued by exogenous catalase. The effect of pyrogallol on staphylococcal biofilm formation mirrored that of the known oxidant hydrogen peroxide, which also reduced biofilm formation in a dose-dependent manner. CONCLUSIONS Pyrogallol reduces biofilm formation in S. aureus and Staph. epidermidis in a mechanism involving induction of bacterial oxidative stress.
Collapse
Affiliation(s)
- Katharina H C Roese
- School of Biological Sciences, University of New England, Biddeford, ME 04005, USA
| | - Christina Torlone
- School of Biological Sciences, University of New England, Biddeford, ME 04005, USA
| | - Lauren A Cooper
- School of Biological Sciences, University of New England, Biddeford, ME 04005, USA
| | - Lee Esposito
- School of Biological Sciences, University of New England, Biddeford, ME 04005, USA
| | - Amy M Deveau
- School of Mathematical and Physical Sciences, University of New England, Biddeford, ME 04005, USA
| | - Ursula S R Röse
- School of Biological Sciences, University of New England, Biddeford, ME 04005, USA
| | - Kristin M Burkholder
- School of Biological Sciences, University of New England, Biddeford, ME 04005, USA
| |
Collapse
|
3
|
Hamed M, Martyniuk CJ, Said REM, Soliman HAM, Badrey AEA, Hassan EA, Abdelhamid HN, Osman AGM, Sayed AEDH. Exposure to pyrogallol impacts the hemato-biochemical endpoints in catfish (Clarias gariepinus). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122074. [PMID: 37331582 DOI: 10.1016/j.envpol.2023.122074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/20/2023]
Abstract
Pyrogallol is widely used in several industrial applications and can subsequently contaminate aquatic ecosystems. Here, we report for the first time the presence of pyrogallol in wastewater in Egypt. Currently, there is a complete lack of toxicity and carcinogenicity data for pyrogallol exposure in fish. To address this gap, both acute and sub-acute toxicity experiments were conducted to determine the toxicity of pyrogallol in catfish (Clarias gariepinus). Behavioral and morphological endpoints were evaluated, in addition to blood hematological endpoints, biochemical indices, electrolyte balance, and the erythron profile (poikilocytosis and nuclear abnormalities). In the acute toxicity assay, it was determined that the 96 h median-lethal concentration (96 h-LC50) of pyrogallol for catfish was 40 mg/L. In sub-acute toxicity experiment, fish divided into four groups; Group 1 was the control group. Group 2 was exposed to 1 mg/L of pyrogallol, Group 3 was exposed to 5 mg/L of pyrogallol, and Group 4 was exposed to 10 mg/L of pyrogallol. Fish showed morphological changes such as erosion of the dorsal and caudal fins, skin ulcers, and discoloration following exposure to pyrogallol for 96 h. Exposure to 1, 5, or 10 mg/L pyrogallol caused a significant decrease in hematological indices, including red blood cells (RBCs), hemoglobin, hematocrit, white blood cells (WBC), thrombocytes, and large and small lymphocytes in a dose-dependent manner. Several biochemical parameters (creatinine, uric acid, liver enzymes, lactate dehydrogenase, and glucose) were altered in a concentration dependent manner with short term exposures to pyrogallol. Pyrogallol exposure also caused a significant concentration-dependent rise in the percentage of poikilocytosis and nuclear abnormalities of RBCs in catfish. In conclusion, our data suggest that pyrogallol should be considered further in environmental risk assessments of aquatic species.
Collapse
Affiliation(s)
- Mohamed Hamed
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut Branch), Assiut, 71524, Egypt
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Rashad E M Said
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut Branch), Assiut, 71524, Egypt
| | - Hamdy A M Soliman
- Department of Zoology, Faculty of Science, Sohag University, Sohag, 8562, Egypt
| | - Ahmed E A Badrey
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut Branch), Assiut, 71524, Egypt
| | - Elhagag A Hassan
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Hani N Abdelhamid
- Advanced Multifunctional Materials Laboratory, Department of Chemistry, Assuit University, Assuit, 71515, Egypt; Nanotechnology Research Centre (NTRC), The British University in Egypt, El-Shorouk City, Suez Desert Road, P.O. Box 43, Cairo 11837, Egypt
| | - Alaa G M Osman
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut Branch), Assiut, 71524, Egypt
| | - Alaa El-Din H Sayed
- Department of Zoology, Faculty of Science, Assiut University, Assiut, 71516, Egypt; Molecular Biology Research & Studies Institute, Assiut University, 71516 Assiut, Egypt.
| |
Collapse
|
4
|
Kim YJ, Kim HY, Lee JD, Kim HY, Im JE, Kim KB. Analytical Method Development and Dermal Absorption of Pyrogallol, a Hair Dye Ingredient. TOXICS 2022; 10:570. [PMID: 36287850 PMCID: PMC9609326 DOI: 10.3390/toxics10100570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/13/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Pyrogallol is an ingredient in hair dye. Its concentration in hair dye is managed at less than 2.0% in Korea. There have been no reports on the dermal absorption rate of pyrogallol. The two purposes of this study were to develop an analytical method and determine the dermal absorption rate of pyrogallol. An analytical method was developed and validated by high-performance liquid chromatography (HPLC) analysis of various matrices including swabs (SWAB), skin (SKIN, dermis + epidermis), stratum corneum (SC), and receptor fluid (RF). Linearity (r2 = 0.9993-0.9998), accuracy (92.1-108.2%), and precision (0.5-9.5%) met the validation criteria in guidelines. A Franz diffusion cell was used to determine the dermal absorption of pyrogallol using the skin of mini pigs. Pyrogallol (2.0%) was applied to the skin (10 μL/cm2). For the actual hair dye conditions, the skin was wiped with a swab 30 min after application. Twenty-four hours later, it was wiped with a swab again and the SC was collected using tape stripping. All samples were extracted with water and analyzed. RF was recovered at 0, 1, 2, 4, 8, 12, and 24 h. The total dermal absorption rate of pyrogallol was determined to be 26.0 ± 3.9%.
Collapse
Affiliation(s)
- Yu-Jin Kim
- College of Pharmacy, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungnam, Korea
- Center for Human Risk Assessment, Dankook University, Cheonan 31116, Chungnam, Korea
| | - Hyang-Yeon Kim
- College of Pharmacy, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungnam, Korea
- Center for Human Risk Assessment, Dankook University, Cheonan 31116, Chungnam, Korea
| | - Jung-Dae Lee
- College of Pharmacy, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungnam, Korea
- Center for Human Risk Assessment, Dankook University, Cheonan 31116, Chungnam, Korea
| | - Hong-Yoon Kim
- College of Pharmacy, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungnam, Korea
- Center for Human Risk Assessment, Dankook University, Cheonan 31116, Chungnam, Korea
| | - Jueng-Eun Im
- College of Pharmacy, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungnam, Korea
- Medical AI Research Team, Chungbuk National University Hospital, Cheongju 28644, Chungbuk, Korea
| | - Kyu-Bong Kim
- College of Pharmacy, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungnam, Korea
- Center for Human Risk Assessment, Dankook University, Cheonan 31116, Chungnam, Korea
| |
Collapse
|
5
|
Drygalski K, Fereniec E, Zalewska A, Krętowski A, Żendzian-Piotrowska M, Maciejczyk M. Phloroglucinol prevents albumin glycation as well as diminishes ROS production, glycooxidative damage, nitrosative stress and inflammation in hepatocytes treated with high glucose. Biomed Pharmacother 2021; 142:111958. [PMID: 34333287 DOI: 10.1016/j.biopha.2021.111958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/18/2022] Open
Abstract
The treatment of diabetes mellitus aftermaths became one of medicine's most significant therapeutical and financial issues in the XXI century. Most of which are related to protein glycation and oxidative stress caused by long lasting periods of hyperglycemia. Thus, even within a venerable one, searching for new drugs, displaying anti-glycation and anti-oxidative properties seem useful as an additive therapy of diabetes. In this paper, we assessed the anti-glycating properties of phloroglucinol, a drug discovered in the XIX century and still used in many countries for its antispasmodic action. Herewith, we present its effect on protein glycation, glycoxidation, and oxidative damage in an albumin glycation/oxidation model and HepG2 cells treated with high glucose concentrations. The phloroglucinol showed the strongest and the widest protective effect within all analyzed antiglycating (aminoguanidine, pioglitazone) and anti-oxidative (vitamin C, GSH) agents. To the very best of our knowledge, this is the first study showing the properties of phloroglucinol in vitro what once is proven in other models might deepen its clinical applications.
Collapse
Affiliation(s)
- Krzysztof Drygalski
- Clinical Research Center, Medical University of Bialystok, Poland; Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Poland.
| | | | - Anna Zalewska
- Experimental Dentistry Laboratory, Medical University of Bialystok, Poland
| | - Adam Krętowski
- Clinical Research Center, Medical University of Bialystok, Poland; Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Poland
| | | | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Poland.
| |
Collapse
|
6
|
Pyrogallol and Fluconazole Interact Synergistically In Vitro against Candida glabrata through an Efflux-Associated Mechanism. Antimicrob Agents Chemother 2021; 65:e0010021. [PMID: 33875436 PMCID: PMC8373228 DOI: 10.1128/aac.00100-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Candida glabrata is currently the first or second most commonly encountered non-albicans Candida species worldwide. The potential severity of Candida resistance mandates the discovery of novel antifungal agents, including those that can be used in combination therapies. In this study, we evaluated the in vitro interactions of pyrogallol (PG) and azole drugs against 22 clinical C. glabrata isolates. The potential mechanism underlying the synergism between PG and fluconazole (FLC) was investigated by the rhodamine 6G efflux method and quantitative reverse transcription (qRT)-PCR analysis. In susceptibility tests, PG showed strong synergism with FLC, itraconazole (ITC), and voriconazole (VRC), with fractional inhibitory concentration index values of 0.18 to 0.375 for PG+FLC, 0.250 to 0.750 for PG+ITC, and 0.141 to 0.750 for PG+VRC. Cells grown in the presence of PG+FLC exhibited reduced rhodamine 6G extrusion and significantly downregulated expression of the efflux-related genes CgCDR1, CgCDR2, and CgPDR1 compared with cells grown in the presence of PG or FLC alone. PG did not potentiate FLC when tested against a ΔCgpdr1 strain. Restoration of a functional CgPDR1 allele also restored the synergism. These results indicate that PG is an antifungal agent that synergistically potentiates the activity of azoles. Furthermore, PG appears to exert its effects by inhibiting efflux pumps and downregulating CgCDR1, CgCDR2, and CgPDR1, with CgPDR1 probably playing a crucial role in this process.
Collapse
|
7
|
Ahamad N, Anjum S, Ahmed S. Pyrogallol induces oxidative stress defects in the fission yeast S. pombe. MICROPUBLICATION BIOLOGY 2021; 2021. [PMID: 33437930 PMCID: PMC7791341 DOI: 10.17912/micropub.biology.000348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Apart from the beneficial roles of pyrogallol in industries, it also tends to produce free radicals that trigger apoptosis in human cells. In this study, we checked the toxic effect of pyrogallol in fission yeast S. pombe cells. We observed that the wild type and wat1/pop3 delete cells were unable to grow on plates containing pyrogallol in a dose-dependent manner. Furthermore, the wat1/pop3 delete cells exhibit higher sensitivity against pyrogallol as compared to wild type cells suggesting that the pyrogallol induces oxidative stress. The exposure to pyrogallol also leads to the production of ROS and affects the sporulation in S. pombe.
Collapse
Affiliation(s)
- Nafees Ahamad
- Molecular and Structural Biology Division, CSIR- Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow- 226031. India
| | - Simmi Anjum
- Molecular and Structural Biology Division, CSIR- Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow- 226031. India
| | - Shakil Ahmed
- Molecular and Structural Biology Division, CSIR- Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow- 226031. India
| |
Collapse
|
8
|
Bei Z, Lei Y, Lv R, Huang Y, Chen Y, Zhu C, Cai S, Zhao D, You Q, Cao Y, Zhang X. Elytra-Mimetic Aligned Composites with Air-Water-Responsive Self-Healing and Self-Growing Capability. ACS NANO 2020; 14:12546-12557. [PMID: 32813499 DOI: 10.1021/acsnano.0c02549] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Room-temperature self-healing and self-growing of the exoskeleton with aligned structures in insects has few analogs in synthetic materials. Insect cuticle, such as elytra in beetles, with a typical lightweight lamellar structure, has shown this capability, which is attributed to the accumulation of phenol oxidase with polyphenol and amine-rich compounds in the hard cuticle. In this study, laminar-structure-based intelligence is imitated by incorporating adaptable and growable pyrogallol (PG)-borax dynamic-covalent bonds into a poly(acrylamide)-clay network. The events that lead to crack formation and water accumulation quickly trigger the deprotection of PG. Subsequently, atmospheric O2, as a regeneration source, activates PG oxidative self-polymerization. Multiple permanent and dynamic cross-links, with the involvement of the sacrificed borax, and initiation of a series of intelligent responses occur. The fabricated composites with an aligned lamellar structure exhibit outstanding characteristics, such as air/water-triggered superstrong adhesion, self-repairing, self-sealing and resealing, and reprocessing. Moreover, the strategy endows the composites with a self-growing capability, which leads to a 4- to 10-fold increase in its strength in an outdoor climate (up to 51 MPa). This study could lead to advances in the development of air/water-responsive composite materials for applications such as adaptive barriers.
Collapse
Affiliation(s)
- Zhongwu Bei
- Institute for Interdisciplinary Research and Department of Polymer Science, Jianghan University, Wuhan 430056 People's Republic of China
| | - Yang Lei
- Institute for Interdisciplinary Research and Department of Polymer Science, Jianghan University, Wuhan 430056 People's Republic of China
| | - Rui Lv
- Institute for Interdisciplinary Research and Department of Polymer Science, Jianghan University, Wuhan 430056 People's Republic of China
| | - Yuan Huang
- Institute for Interdisciplinary Research and Department of Polymer Science, Jianghan University, Wuhan 430056 People's Republic of China
| | - Yangwei Chen
- Institute for Interdisciplinary Research and Department of Polymer Science, Jianghan University, Wuhan 430056 People's Republic of China
| | - Chao Zhu
- Institute for Interdisciplinary Research and Department of Polymer Science, Jianghan University, Wuhan 430056 People's Republic of China
| | - Shaojun Cai
- Institute for Interdisciplinary Research and Department of Polymer Science, Jianghan University, Wuhan 430056 People's Republic of China
| | - Dong Zhao
- Institute for Interdisciplinary Research and Department of Polymer Science, Jianghan University, Wuhan 430056 People's Republic of China
| | - Qingliang You
- Institute for Interdisciplinary Research and Department of Polymer Science, Jianghan University, Wuhan 430056 People's Republic of China
| | - Yiping Cao
- Institute for Interdisciplinary Research and Department of Polymer Science, Jianghan University, Wuhan 430056 People's Republic of China
| | - Xianzheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072 People's Republic of China
| |
Collapse
|
9
|
Li L, Wang XC, Gong PT, Zhang N, Zhang X, Li S, Li X, Liu SX, Zhang XX, Li W, Li JH, Zhang XC. ROS-mediated NLRP3 inflammasome activation participates in the response against Neospora caninum infection. Parasit Vectors 2020; 13:449. [PMID: 32891167 PMCID: PMC7487665 DOI: 10.1186/s13071-020-04331-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/30/2020] [Indexed: 12/14/2022] Open
Abstract
Background Neospora caninum is an obligate intracellular protozoan that causes neosporosis, N. caninum infection is a major cause of abortion in cattle worldwide. Currently, specific treatment for neosporosis is not available. The NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is a cytoplasmic protein complex that plays an important role in host defense against N. caninum infection, but the underlying mechanisms are poorly understood. Methods The reactive oxygen species (ROS) inhibitor and the ROS inducer, wild-type (WT) and NLRP3-deficient peritoneal macrophages or mice were used to investigate the role of ROS in NLRP3 inflammasome activation and controlling parasite burdens. ROS production, cell death and cell viability, production of inflammasome-mediated IL-1β or IL-18, cleavage of caspase-1 and NLRP3 expression, as well as parasite burdens were detected. Results In vitro, N. caninum induced ROS generation in a dose-dependent manner in peritoneal macrophages. The pretreatment of ROS inhibitor N-acetyl-l-cysteine (NAC) significantly attenuated N. caninum-induced ROS production, LDH release, IL-1β secretion and NLRP3 expression, whereas N. caninum proliferation was notably increased. In contrary, the ROS inducer pyrogallol (PG) significantly enhanced ROS production and NLRP3 inflammasome activity and decreased the parasite burden in N. caninum-infected peritoneal macrophages. NADPH-dependent ROS-mediated NLRP3 inflammasome activation induced by N. caninum can also be confirmed by using the NADPH oxidase inhibitor diphenyleneiodonium chloride (DPI). However, the NAC or DPI pre-treatment or PG treatment did not significantly alter N. caninum-induced inflammasome activities and parasite proliferation in Nlrp3−/− peritoneal macrophages. In vivo, IL-18 releases in serum and parasite burdens in peritoneal exudate cells were significantly increased in PG-treated WT mice after infection with N. caninum; however, IL-18 productions and parasite burdens were not changed in PG-treated Nlrp3−/− mice. Furthermore, PG treatment in WT mice infected with N. caninum significantly decreased the mortality, weight loss and parasite burdens in tissues and histopathological lesions. Conclusions Neospora caninum-induced NADPH-dependent ROS generation plays an important role in NLRP3 inflammasome activation and controlling parasites. The ROS inducer PG can control N. caninum infection mainly by promoting NLRP3 inflammasome activation. ROS-mediated NLRP3 inflammasome axis can be a potential therapeutic target for neosporosis.![]()
Collapse
Affiliation(s)
- Lu Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, PR China
| | - Xiao-Cen Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, PR China
| | - Peng-Tao Gong
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, PR China
| | - Nan Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, PR China
| | - Xu Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, PR China
| | - Shan Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, PR China
| | - Xin Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, PR China
| | - Shao-Xiong Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, PR China
| | - Xiao-Xu Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, PR China
| | - Wei Li
- Heilongjiang Key Laboratory for Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jian-Hua Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, PR China.
| | - Xi-Chen Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, PR China.
| |
Collapse
|
10
|
Bahri S, Ben Ali R, Nahdi A, Mlika M, Abdennabi R, Jameleddine S. Salvia officinalisattenuates bleomycin-induced oxidative stress and lung fibrosis in rats. Nutr Cancer 2019; 72:1135-1145. [DOI: 10.1080/01635581.2019.1675724] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Sana Bahri
- Laboratory of Physiology, Faculty of Medicine of Tunis, University of Tunis El Manar, La Rabta, Tunis, Tunisia
- Laboratory of Physiopathology, Food and Biomolecules (LR-17-ES-03), Technology Center of Sidi Thabet, University of Manouba, Tunis, Tunisia
| | - Ridha Ben Ali
- Laboratory of Experimental Medicine, Faculty of Medicine of Tunis, University of Tunis El Manar, La Rabta, Tunis, Tunisia
- Research Unit n° 17/ES/13, Faculty of Medicine, University of Tunis El Manar, Tunis, Tunisia
| | - Afef Nahdi
- Research Unit n° 17/ES/13, Faculty of Medicine, University of Tunis El Manar, Tunis, Tunisia
| | - Mona Mlika
- Laboratory of Anatomy and Pathology, Abderhaman Mami Hospital, Ariana, Tunisia
| | - Raed Abdennabi
- Faculty of Science, Laboratory of Plant Biotechnology, University of Sfax, Sfax, Tunisia
| | - Saloua Jameleddine
- Laboratory of Physiology, Faculty of Medicine of Tunis, University of Tunis El Manar, La Rabta, Tunis, Tunisia
- Laboratory of Physiopathology, Food and Biomolecules (LR-17-ES-03), Technology Center of Sidi Thabet, University of Manouba, Tunis, Tunisia
| |
Collapse
|
11
|
Bahri S, Ben Ali R, Abdennabi R, Ben Said D, Mlika M, Ben Fradj MK, El May MV, Jameleddine SBK. Comparison of the Protective Effect of Salvia officinalis and Rosmarinus officinalis Infusions Against Hepatic Damage Induced by Hypotermic-Ischemia in Wistar Rats. Nutr Cancer 2019; 72:283-292. [PMID: 31251088 DOI: 10.1080/01635581.2019.1631359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We aimed to evaluate, in this study, the effect of Rosmarinus officinalis L. and Salvia officinalis L. in the amelioration of liver hypothermic conservation in male wistar rats. Livers from each rat were collected and preserved for 24 h at 4 °C in a Krebs solution with or without increasing doses of sage or rosemary infusions (25, 50, and 100 mg/mL). Liver hypothermic conservation induced a decrease in the activity of superoxide dismutase, catalase, and glutathione peroxidase and a significant increase in lipid peroxidation. S. officinalis L. infusion at 25 mg/mL normalized this oxidative disturbance but appears toxic at 50 and 100 mg/mL due to the presence of large amount of pyrogallol which contribute to the cytoplasmic alteration of hepatocytes. The addition of different doses of R. officinalis L. infusion induced an increase in catalase and glutathione peroxidase activities and a decrease in lipid peroxidation with an amelioration of cellular architecture. In conclusion, increasing doses of R. officinalis L. infusion protect against hepatic hypotermic-ischemia while S. officinalis L. infusion could have an hepatoprotective role when administrated at lower dose.
Collapse
Affiliation(s)
- Sana Bahri
- Laboratory of Physiology, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia.,Laboratory of Physiopathology, Food and Biomolecules (LR-17-ES-03), Technology Center of SidiThabet, University of Manouba, Tunis, Tunisia
| | - Ridha Ben Ali
- Laboratory of Experimental Medicine, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Raed Abdennabi
- Laboratory of Plant Biotechnology, Faculty of Science, University of Sfax, Sfax, Tunisia
| | - Dorra Ben Said
- Laboratory of Clinical Pharmacology, National Pharmacovigilance Center, Tunis, Tunisia
| | - Mona Mlika
- Laboratory of Anatomy and Pathology, Abderhaman Mami Hospital, Ariana, Tunisia
| | | | | | - Saloua Ben Khamsa Jameleddine
- Laboratory of Physiology, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia.,Laboratory of Physiopathology, Food and Biomolecules (LR-17-ES-03), Technology Center of SidiThabet, University of Manouba, Tunis, Tunisia
| |
Collapse
|
12
|
Roufegarinejad L, Amarowicz R, Jahanban-Esfahlan A. Characterizing the interaction between pyrogallol and human serum albumin by spectroscopic and molecular docking methods. J Biomol Struct Dyn 2019; 37:2766-2775. [DOI: 10.1080/07391102.2018.1496854] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Leila Roufegarinejad
- Department of Food Sciences, Tabriz branch, Islamic Azad University, Tabriz, Iran
| | - Ryszard Amarowicz
- Division of Food Sciences, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn, Poland
| | - Ali Jahanban-Esfahlan
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Contact sensitizing potential of pyrogallol and 5-amino-o-cresol in female BALB/c mice. Toxicology 2013; 314:202-8. [PMID: 24172597 DOI: 10.1016/j.tox.2013.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/14/2013] [Accepted: 10/18/2013] [Indexed: 11/22/2022]
Abstract
Hair dye components such as pyrogallol and cresol have been shown previously to promote allergic reactions such as rashes, dermal inflammation, irritation and dermatitis. The objective of this study was to determine the contact sensitization potential of pyrogallol (PYR) and 5-amino-o-cresol (AOC) when applied dermally to female BALB/c mice. Measurement of the contact hypersensitivity response was initially accomplished using the local lymph node assay. For PYR, significant increases in the proliferation of lymph node cells were observed at concentrations of 0.5% (w/v) and higher. For AOC, borderline increases, albeit significant, in auricular lymph node cell proliferation were observed at 5% and 10%. Results from the irritancy assay suggested that PYR, but not AOC, was an irritant. To further delineate whether PYR was primarily an irritant or a contact sensitizer, the mouse ear swelling test (MEST) was conducted. A significant increase in mouse ear thickness was observed at 72h following challenge with 0.5% PYR in mice that had been sensitized with 5% PYR. In contrast, no effects were observed in the MEST in mice sensitized and challenged with the highest achievable concentration of AOC (10%). Additional studies examining lymph node subpopulations and CD86 (B7.2) expression by B cells further support the indication that PYR was a sensitizer in BALB/c mice. The results demonstrate that PYR is both a sensitizer and an irritant in female BALB/c mice. However, the contact sensitization potential of AOC is minimal in this strain of mouse.
Collapse
|