1
|
Ogunro OB. An updated and comprehensive review of the health benefits and pharmacological activities of hesperidin. Biochem Biophys Res Commun 2025; 772:151974. [PMID: 40414011 DOI: 10.1016/j.bbrc.2025.151974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 05/06/2025] [Accepted: 05/07/2025] [Indexed: 05/27/2025]
Abstract
OBJECTIVES This review aims to comprehensively assess the health benefits and pharmacological activities of hesperidin, a flavonoid commonly found in citrus fruits. It consolidates recent research findings to provide insights into hesperidin's diverse health-promoting effects. KEY FINDINGS Hesperidin has gained significant attention recently for its notable pharmacological activities and potential health benefits. Studies reveal its antioxidant properties, protecting cells from oxidative damage, and its anti-inflammatory effects, inhibiting pro-inflammatory cytokines and enzymes. Also, hesperidin shows promise in cardiovascular health by reducing blood pressure and cholesterol levels and enhancing endothelial function. It also exhibits anticancer potential by hindering cell proliferation, inducing apoptosis, and suppressing tumour growth. Moreover, hesperidin demonstrates neuroprotective effects, potentially mitigating neuroinflammation and oxidative stress associated with neurodegenerative diseases. Furthermore, it displays beneficial effects in metabolic disorders such as diabetes, obesity, and fatty liver disease by influencing glucose metabolism, lipid profile, and insulin sensitivity. SUMMARY Hesperidin exhibits a wide range of health benefits and pharmacological activities, making it a promising candidate for therapeutic interventions in various diseases. Its antioxidant, anti-inflammatory, cardiovascular, anticancer, neuroprotective, and metabolic effects underscore its potential as a valuable natural compound for promoting health and preventing chronic diseases.
Collapse
Affiliation(s)
- Olalekan Bukunmi Ogunro
- Drug Discovery, Toxicology, and Pharmacology Research Laboratory, Department of Biological Sciences, KolaDaisi University, Ibadan, Nigeria.
| |
Collapse
|
2
|
Ali GF, Hassanein EHM, Mohamed WR. Molecular mechanisms underlying methotrexate-induced intestinal injury and protective strategies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8165-8188. [PMID: 38822868 PMCID: PMC11522073 DOI: 10.1007/s00210-024-03164-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/13/2024] [Indexed: 06/03/2024]
Abstract
Methotrexate (MTX) is a folic acid reductase inhibitor that manages various malignancies as well as immune-mediated inflammatory chronic diseases. Despite being frequently prescribed, MTX's severe multiple toxicities can occasionally limit its therapeutic potential. Intestinal toxicity is a severe adverse effect associated with the administration of MTX, and patients are significantly burdened by MTX-provoked intestinal mucositis. However, the mechanism of such intestinal toxicity is not entirely understood, mechanistic studies demonstrated oxidative stress and inflammatory reactions as key factors that lead to the development of MTX-induced intestinal injury. Besides, MTX causes intestinal cells to express pro-inflammatory cytokines like interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), which activate nuclear factor-kappa B (NF-κB). This is followed by the activation of the Janus kinase/signal transducer and activator of the transcription3 (JAK/STAT3) signaling pathway. Moreover, because of its dual anti-inflammatory and antioxidative properties, nuclear factor erythroid-2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) has been considered a critical signaling pathway that counteracts oxidative stress in MTX-induced intestinal injury. Several agents have potential protective effects in counteracting MTX-provoked intestinal injury such as omega-3 polyunsaturated fatty acids, taurine, umbelliferone, vinpocetine, perindopril, rutin, hesperidin, lycopene, quercetin, apocynin, lactobacillus, berberine, zinc, and nifuroxazide. This review aims to summarize the potential redox molecular mechanisms of MTX-induced intestinal injury and how they can be alleviated. In conclusion, studying these molecular pathways might open the way for early alleviation of the intestinal damage and the development of various agent plans to attenuate MTX-mediated intestinal injury.
Collapse
Affiliation(s)
- Gaber F Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, 62514, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Assiut Branch, Al-Azhar University, Assiut, 71524, Egypt
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, 62514, Egypt.
| |
Collapse
|
3
|
Shihadeh S, Patrick MM, Postma G, Trokthi B, Maitland C. Blinding Optic Neuropathy Associated With Carboplatin Therapy: A Case Report and Literature Review. Cureus 2024; 16:e52975. [PMID: 38406141 PMCID: PMC10893981 DOI: 10.7759/cureus.52975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/25/2024] [Indexed: 02/27/2024] Open
Abstract
Various forms of cancer and chemotherapeutics are associated with optic neuropathy. Cisplatin is a platinum analogue chemotherapeutic commonly associated with ocular toxicity among many other serious adverse effects. Carboplatin is a more chemically stable platinum analogue that is generally better tolerated with a comparatively favorable side effect profile. There are very few reports of carboplatin precipitating optic neuropathy. This case report describes a rare occurrence of carboplatin-induced blinding optic neuropathy. We treated a patient receiving carboplatin for neuroendocrine bladder cancer who developed rapidly progressive bilateral optic neuropathy over the course of three days. Upon evaluation at our clinic, his visual acuity had declined to light perception only and 20/60 in his left and right eye, respectively. Carboplatin therapy was immediately held and steroids were initiated. Despite the intervention, the patient's visual deficits have not improved at the one-year follow-up. Although the mechanism by which carboplatin causes ocular toxicity remains speculative, arterial ischemia appears to be the likely mechanism given the irreversible nature of visual decline. As demonstrated by our patient's course, irreversible vision loss despite high-dose steroid intervention necessitates expeditious recognition and management of this rare adverse effect. .
Collapse
Affiliation(s)
- Sammy Shihadeh
- Clinical Sciences, Florida State University College of Medicine, Tallahassee, USA
| | - Madison M Patrick
- Clinical Sciences, Florida State University College of Medicine, Tallahassee, USA
| | - Galen Postma
- Clinical Research, Florida State University College of Medicine, Tallahassee, USA
| | - Brenda Trokthi
- Clinical Research, Florida State University College of Medicine, Tallahassee, USA
| | - Charles Maitland
- Clinical Sciences, Florida State University College of Medicine, Tallahassee, USA
| |
Collapse
|
4
|
Feng J, Zhang Y. The potential benefits of polyphenols for corneal diseases. Biomed Pharmacother 2023; 169:115862. [PMID: 37979379 DOI: 10.1016/j.biopha.2023.115862] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/20/2023] Open
Abstract
The cornea functions as the primary barrier of the ocular surface, regulating temperature and humidity while providing protection against oxidative stress, harmful stimuli and pathogenic microorganisms. Corneal diseases can affect the biomechanical and optical properties of the eye, resulting in visual impairment or even blindness. Due to their diverse origins and potent biological activities, plant secondary metabolites known as polyphenols offer potential advantages for treating corneal diseases owing to their anti-inflammatory, antioxidant, and antibacterial properties. Various polyphenols and their derivatives have demonstrated diverse mechanisms of action in vitro and in vivo, exhibiting efficacy against a range of corneal diseases including repair of tissue damage, treatment of keratitis, inhibition of neovascularization, alleviation of dry eye syndrome, among others. Therefore, this article presents a concise overview of corneal and related diseases, along with an update on the research progress of natural polyphenols in safeguarding corneal health. A more comprehensive understanding of natural polyphenols provides a novel perspective for secure treatment of corneal diseases.
Collapse
Affiliation(s)
- Jing Feng
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Yangyang Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China.
| |
Collapse
|
5
|
Polat OA, Karabulut D, Akkul Z, Unsal M, Sayan M, Horozoglu F, Evereklioglu C, Sener H. Evaluation of histologic, antiapoptotic and antioxidant effects of melatonin against the acute ocular toxicity of Cisplatin. Tissue Cell 2023; 85:102226. [PMID: 37793209 DOI: 10.1016/j.tice.2023.102226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/16/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
This study aimed to investigate the protective effect of melatonin against the acute toxicity of cisplatin in ocular tissues. The eyes of 40 rats were divided into 4 groups: Control group (10 rats), Melatonin (Mel) group (10 rats), Cisplatin (Cis) group (10 rats), Melatonin (Mel) + Cisplatin (Cis) group (10 rats). Retina, cornea, and ciliary body tissues were examined after hematoxylin-eosin staining of sections obtained from the eyes and were scored for disorganization and degeneration. Apoptotic cells were counted for the retina, cornea, and ciliary body with the TUNEL (Terminal deoxynucleotidyl transferase dUTP nick end labeling) method. The total antioxidant status (TAS) / total oxidant status (TOS) of homogenized eye tissues were measured. While apoptotic cells were found to increase in the cornea of the Cisplatin (Cis) group, no difference was found regarding the retina and ciliary body cell count. An increased number of apoptotic cells in the cornea of the Cis group was found while there was a decrease in the group where Cisplatin and Melatonin were administered together (Mel+Cis group). There was no statistically significant difference amongst groups for TOS or TAS. Melatonin had a partial protective effect against histological damage.
Collapse
Affiliation(s)
- Osman Ahmet Polat
- Department of Ophthalmology, Erciyes University Medicine Faculty, Kayseri, Turkey.
| | - Derya Karabulut
- Department of Histology and Embryology, Erciyes University Medicine Faculty, Kayseri, Turkey
| | - Zeynep Akkul
- Department of Ophthalmology, Erciyes University Medicine Faculty, Kayseri, Turkey
| | - Murat Unsal
- Department of Histology and Embryology, Erciyes University Medicine Faculty, Kayseri, Turkey
| | - Meryem Sayan
- Department of Histology and Embryology, Erciyes University Medicine Faculty, Kayseri, Turkey
| | - Fatih Horozoglu
- Department of Ophthalmology, Erciyes University Medicine Faculty, Kayseri, Turkey
| | - Cem Evereklioglu
- Department of Ophthalmology, Erciyes University Medicine Faculty, Kayseri, Turkey
| | - Hidayet Sener
- Department of Ophthalmology, Erciyes University Medicine Faculty, Kayseri, Turkey
| |
Collapse
|
6
|
Ileriturk M, Kandemir O, Akaras N, Simsek H, Genc A, Kandemir FM. Hesperidin has a protective effect on paclitaxel-induced testicular toxicity through regulating oxidative stress, apoptosis, inflammation and endoplasmic reticulum stress. Reprod Toxicol 2023; 118:108369. [PMID: 36966900 DOI: 10.1016/j.reprotox.2023.108369] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023]
Abstract
Paclitaxel (PTX) is widely used to treat a number of malignancies, although it has toxic side effects. Hesperidin (HES) has a wide range of biological and pharmacological properties, including anti-inflammatory and antioxidant abilities. This research aims to investigate the role of HES in PTX-induced testicular toxicity. For 5 days, 2 mg/kg/bw i.p. of PTX was administered to induce testicular toxicity. Rats were administered oral dosages of 100 and 200 mg/kg/bw HES for 10 days after PTX injection. The mechanisms of inflammation, apoptosis, endoplasmic reticulum (ER) stress, and oxidants were investigated using biochemical, genetic, and histological techniques. As a result of PTX administration, decreased antioxidant enzyme (superoxide dismutase, catalase, and glutathione peroxidase) activities and increased malondialdehyde level were regulated, and the severity of oxidative stress was reduced. NF-κB, IL-1β and TNF-α levels, which are among the increased inflammation parameters caused by PTX, decreased with HES administration. Although AKT2 gene expression decreased in PTX administered rats, it was determined that HES administration up-regulated AKT2 mRNA expression. Anti-apoptotic Bcl-2 decreased with PTX administration, and apoptotic Bax and Caspase-3 increased while HES administration reverted these effects towards control level. As a result of toxicity, the increase in ATF6, PERK, IRE1α, GRP78 levels caused prolonged ER stress, and this activity was diminished with HES and tended to regress. While all data were evaluated, Paclitaxel caused damage by increasing inflammation, apoptosis, ER stress and oxidant levels in testicular tissue, and Hesperidin showed a protective effect by correcting the deterioration in these levels.
Collapse
Affiliation(s)
- Mustafa Ileriturk
- Department of Animal Science, Horasan Vocational College, Ataturk University, Erzurum, Turkey.
| | - Ozge Kandemir
- Aksaray Technical Sciences Vocational School, Aksaray University, Aksaray, Turkey
| | - Nurhan Akaras
- Department of Histology and Embryology, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Hasan Simsek
- Department of Physiology, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Aydin Genc
- Department of Biochemistry, Faculty of Veterinary Medicine, Bingol University, Bingol, Turkey
| | - Fatih Mehmet Kandemir
- Department of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Turkey.
| |
Collapse
|
7
|
Somisetty S, Santina A, Sarraf D, Mieler WF. The Impact of Systemic Medications on Retinal Function. Asia Pac J Ophthalmol (Phila) 2023; 12:115-157. [PMID: 36971705 DOI: 10.1097/apo.0000000000000605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/02/2023] [Indexed: 03/29/2023] Open
Abstract
This study will provide a thorough review of systemic (and select intravitreal) medications, along with illicit drugs that are capable of causing various patterns of retinal toxicity. The diagnosis is established by taking a thorough medication and drug history, and then by pattern recognition of the clinical retinal changes and multimodal imaging features. Examples of all of these types of toxicity will be thoroughly reviewed, including agents that cause retinal pigment epithelial disruption (hydroxychloroquine, thioridazine, pentosan polysulfate sodium, dideoxyinosine), retinal vascular occlusion (quinine, oral contraceptives), cystoid macular edema/retinal edema (nicotinic acid, sulfa-containing medications, taxels, glitazones), crystalline deposition (tamoxifen, canthaxanthin, methoxyflurane), uveitis, miscellaneous, and subjective visual symptoms (digoxin, sildenafil). The impact of newer chemotherapeutics and immunotherapeutics (tyrosine kinase inhibitor, mitogen-activated protein kinase kinase, checkpoint, anaplastic lymphoma kinase, extracellular signal-regulated kinase inhibitors, and others), will also be thoroughly reviewed. The mechanism of action will be explored in detail when known. When applicable, preventive measures will be discussed, and treatment will be reviewed. Illicit drugs (cannabinoids, cocaine, heroin, methamphetamine, alkyl nitrite), will also be reviewed in terms of the potential impact on retinal function.
Collapse
Affiliation(s)
- Swathi Somisetty
- Jules Stein Eye Institute, University of California, Los Angeles, CA
| | - Ahmad Santina
- Jules Stein Eye Institute, University of California, Los Angeles, CA
| | - David Sarraf
- Jules Stein Eye Institute, University of California, Los Angeles, CA
| | | |
Collapse
|
8
|
Preparation of Novel Composites of Polyvinyl Alcohol Containing Hesperidin Loaded ZnO Nanoparticles and Determination of Their Biological and Thermal Properties. J Inorg Organomet Polym Mater 2023; 33:731-746. [PMID: 36694851 PMCID: PMC9851736 DOI: 10.1007/s10904-023-02532-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023]
Abstract
Hesperidin (HSP) is considered to be the most effective antimicrobial agent against SARS-CoV2 virus. The HSP was loaded onto ZnO nanoparticles that were successfully incorporated, via the hydrothermal method, into polyvinyl alcohol (PVA) for use as food packaging material. The hydrothermal method enabled the bioactive ZnO-HSP to be homogeneously dispersed in the PVA, which significantly increased the thermal stability of the matrix, while decreasing the softening temperature. The water holding capacity and water solubility of the obtained nanocomposites was reduced compared to the PVA. Finally, the ZnO-HSP antimicrobial agent contributed important antibacterial properties to the PVA and increased its antioxidant capacity against Staphylococcus aureus and Escherichia coli pathogens. In addition, the nanocomposites had no cytotoxic/proliferative effects on cancer cells. All results showed promise that the PVA/ZnO-HSP nanocomposites would be an excellent alternative for food packaging applications.
Collapse
|
9
|
Mostafa OAA, Ibrahim F, Borai E. Protective effects of hesperidin in cyclophosphamide-induced parotid toxicity in rats. Sci Rep 2023; 13:158. [PMID: 36599902 DOI: 10.1038/s41598-022-26881-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/21/2022] [Indexed: 01/05/2023] Open
Abstract
Cyclophosphamide (CYP) is an alkylating agent that is used on a wide range as a treatment of malignancies and autoimmune diseases. Previous studies have shown the promising role of hesperidin (HSP) as an antioxidant agent against various models of toxic agents. The protective effect of the HSP against CYP-induced parotid damage was evaluated in this study. Forty rats (180-200 g) were divided into four equal groups: Group I (received normal saline), Group II (HSP-treated at a dose of 100 mg/kg/day for 7 consecutive days), Group III (CYP-treated at a dose of 200 mg/kg single intraperitoneal injection on the 7th day of the experiment), Group IV (CYP + HSP); HSP-treated at a dose of 100 mg/kg/day for 7 consecutive days and CYP (200 mg/kg) single intraperitoneal injection on the 7th day of the experiment. Afterwards, the oxidative stress and inflammatory markers, the histopathological and immunohistochemical alterations of the parotid tissues in the studied groups were evaluated. CYP intoxication induced a significant parotid tissue injury represented by the elevation in the values of malondialdehyde (MDA), tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) and decrease in the catalase activity and glutathione peroxidase (GPx). Histologically, extensive histopathological alterations e.g., widely spaced serous acini with irregular shapes and congested blood vessels as well as downregulated ki-67 and alpha-smooth muscle actin (α-SMA) immunoexpression were induced by CYP. HSP administration markedly improved the biochemical and the histopathological studies. We can conclude that HSP elicited protective effects against the CYP-induced parotid toxicity.
Collapse
Affiliation(s)
- Ola A Abdelwahab Mostafa
- Department of Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt.
| | - Fatma Ibrahim
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Eman Borai
- Department of Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
10
|
Ferah Okkay I, Okkay U, Bayram C, Cicek B, Sezen S, Aydin IC, Mendil AS, Hacimuftuoglu A. Bromelain protects against cisplatin-induced ocular toxicity through mitigating oxidative stress and inflammation. Drug Chem Toxicol 2023; 46:69-76. [PMID: 34894956 DOI: 10.1080/01480545.2021.2011308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The aim of this study was to investigate the molecular, biochemical, and histopathological effects of bromelain, which has antioxidant and anti-inflammatory properties, against cisplatin-induced ocular toxicity. The groups were designed as (1) Control, (2) Cisplatin (7 mg/kg, intraperitoneally), (3) Cisplatin + Bromelain (50 mg/kg, orally for 14 consecutive days), (4) Cisplatin + Bromelain (100 mg/kg, orally for 14 consecutive days). The activity of total antioxidant capacity (TAC) and total oxidant status (TOS) and levels of reactive oxygen species (ROS), superoxide dismutase (SOD), malondialdehyde (MDA), interleukin-1β (IL-1β), IL-10, nuclear factor kappa B (NF-κB), tumor necrosis factor-alpha (TNF-α) and 8-OHdG were measured in ocular tissue. The mRNA expression of NF-κB and Caspase-3 was also evaluated. Also, ocular sections were evaluated histopathologically. Bromelain demonstrated a dose-dependent protective effect in cisplatin-induced toxicity by regulating oxidative stress, inflammation, and tissue damage. Our results suggested that bromelain may be a potential adjuvant that can protect the eye from cisplatin-induced toxicity.
Collapse
Affiliation(s)
- Irmak Ferah Okkay
- Faculty of Pharmacy, Department of Pharmacology, Ataturk University, Erzurum, Turkey
| | - Ufuk Okkay
- Faculty of Medicine, Department of Medical Pharmacology, Ataturk University, Erzurum, Turkey
| | - Cemil Bayram
- Faculty of Medicine, Department of Medical Pharmacology, Ataturk University, Erzurum, Turkey
| | - Betul Cicek
- Faculty of Medicine, Department of Physiology, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Selma Sezen
- Faculty of Medicine, Department of Medical Pharmacology, Ataturk University, Erzurum, Turkey
| | - Ismail Cagri Aydin
- Faculty of Medicine, Department of Medical Pharmacology, Ataturk University, Erzurum, Turkey.,Faculty of Pharmacy, Department of Pharmacology, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Ali Sefa Mendil
- Faculty of Veterinary Medicine, Department of Pathology, Erciyes University, Kayseri, Turkey
| | - Ahmet Hacimuftuoglu
- Faculty of Medicine, Department of Medical Pharmacology, Ataturk University, Erzurum, Turkey
| |
Collapse
|
11
|
Erol I, Hazman Ö, Aksu M, Bulut E. Synergistic effect of ZnO nanoparticles and hesperidin on the antibacterial properties of chitosan. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1973-1997. [PMID: 35797143 DOI: 10.1080/09205063.2022.2099668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
In this study, hesperidin (HSP) biological agent, which has strong antioxidant properties, was successfully transferred to ZnO nanoparticles, which were first synthesized by the hydrothermal method. Then, chitosan (CS)/ZnO-HSP nanocomposites were produced by adding different ratios of the ZnO-HSPs to the biodegradable CS biopolymer by hydrothermal method. The resulting materials were characterized using various biophysical strategies, including X-ray diffraction (XRD), Fourier transform infrared spectrometry, scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy. The mean particle size of ZnO was estimated to be 29 nm from the XRD calculations and SEM measurements. The effect of the ZnO-HSPs on the thermal properties of pure CS was investigated by thermogravimetric analysis and differential scanning calorimetry techniques, and improvements were noted in the thermal properties of CS. While the Tg value of CS was 81 °C, this value increased by 13-94 °C with the addition of 6 wt% by weight of the ZnO-HSP. The antibacterial effect of materials was determined by the disc diffusion method. The ZnO-HSPs added to the CS caused the nanocomposites to have a remarkable effect against Escherichia coli and Staphylococcus aureus microorganisms. While the inhibition diameter of the CS against E. coli was 18.3, the same value increased to 22.3 for the composite containing 6 wt% the ZnO-HSP. The HSP increased the antioxidant capacity of both the ZnO-HSP particles and the CS/ZnO-HSP nanocomposites, reducing the toxic effects of ZnO nanoparticles. Thus, it was determined that the CS/ZnO-HSP nanocomposites did not have any cytotoxicity in healthy human cells. The fact that the produced nanocomposites exhibit antibacterial activity and do not harm human cells shows that they can be a safe product for health. From all these results, this triple hybrid system is hoped that it will be used in biomedical applications as a naturally-sourced, environmentally friendly, and cost-effective composite biomaterial by combining its antimicrobial and strong antioxidant properties.
Collapse
Affiliation(s)
- Ibrahim Erol
- Department of Chemistry, Faculty of Science and Arts, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Ömer Hazman
- Department of Chemistry, Faculty of Science and Arts, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Mecit Aksu
- Department of Chemistry, Faculty of Science and Arts, Düzce University, Düzce, Turkey
| | - Emine Bulut
- Department of Food Processing, Bolvadin Vocational School, Afyon Kocatepe University, Afyonkarahisar, Turkey
| |
Collapse
|
12
|
Okkay U, Ferah Okkay I, Aydin IC, Bayram C, Ertugrul MS, Gezer A, Hacimuftuoglu A. Effects of Achillea millefolium on cisplatin induced ocular toxicity: an experimental study. Cutan Ocul Toxicol 2021; 40:214-220. [PMID: 34180746 DOI: 10.1080/15569527.2021.1919137] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Aim: Cisplatin is a widely used and highly effective anti-cancer agent and one of the limiting side effects of cisplatin is ocular toxicity. Achillea millefolium, also known as yarrow, is a plant that has been used for many years to treat various health problems including chemotherapy-related toxicities. Methods: The present investigation was designed to evaluate the biochemical, molecular and histopathological effects of Achillea Millefolium on cisplatin-induced oxidative and inflammatory ocular damage in rats. Twenty-four adult male rats were assigned randomly to four groups (n = 6) as (1) control, (2) cisplatin (7 mg/kg, intraperitoneally), (3) Cisplatin + Achillea millefolium (200 mg/kg, orally for 14 consecutive days), (4) Cisplatin + Achillea millefolium (400 mg/kg, orally for 14 consecutive days). Levels of total antioxidant capacity and total oxidant status, SOD, MDA, IL-1β, and IL-10 were measured in ocular tissue. The mRNA expressions of TNF-α, nuclear factor kappa B and Caspase-3 were evaluated. Also, ocular sections were evaluated histopathologically.Results: Achillea Millefolium upregulated ocular antioxidant enzymes and downregulated inflammation. The SOD activity and total antioxidant capacity increased whereas total oxidant status and MDA levels decreased significantly at high dose group. High dose Achillea millefolium treatment reduced the IL-1β concentrations, whereas IL-10 levels increased significantly in that group. Moreover, we observed that Achillea millefolium restored ocular histopathological structure and significantly suppressed apoptosis by reducing the expression of Caspase-3.Conclusion: Collectively, our results suggest that Achillea millefolium have protective effects against cisplatin-induced ocular toxicity and is a promising adjuvant therapy with the potential to prevent cisplatin related ocular toxicity.
Collapse
Affiliation(s)
- Ufuk Okkay
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Irmak Ferah Okkay
- Department of Pharmacology, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Ismail Cagri Aydin
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey.,Department of Pharmacology, Faculty of Pharmacy, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Cemil Bayram
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Muhammed Sait Ertugrul
- Department of Pharmacology, Faculty of Pharmacy, Agri Ibrahim Cecen University, Agri, Turkey
| | - Arzu Gezer
- Department of Histology, Vocational School of Health Services, Ataturk University, Erzurum, Turkey
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| |
Collapse
|
13
|
Retinal toxicities of systemic anticancer drugs. Surv Ophthalmol 2021; 67:97-148. [PMID: 34048859 DOI: 10.1016/j.survophthal.2021.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 01/07/2023]
Abstract
Newer anticancer drugs have revolutionized cancer treatment in the last decade, but conventional chemotherapy still occupies a central position in many cancers, with combination therapy and newer methods of delivery increasing their efficacy while minimizing toxicities. We discuss the retinal toxicities of anticancer drugs with an emphasis on the mechanism of toxicity. Uveitis is seen with the use of v-raf murine sarcoma viral oncogene homolog B editing anticancer inhibitors as well as immunotherapy. Most of the cases are mild with only anterior uveitis, but severe cases of posterior uveitis, panuveitis, and Vogt-Koyanagi-Harada-like disease may also occur. In the retina, a transient neurosensory detachment is observed in almost all patients on mitogen-activated protein kinase kinase (MEK) inhibitors. Microvasculopathy is often seen with interferon α, but vascular occlusion is a more serious toxicity caused by interferon α and MEK inhibitors. Crystalline retinopathy with or without macular edema may occur with tamoxifen; however, even asymptomatic patients may develop cavitatory spaces seen on optical coherence tomography. A unique macular edema with angiographic silence is characteristic of taxanes. Delayed dark adaptation has been observed with fenretinide. Interestingly, this drug is finding potential application in Stargardt disease and age-related macular degeneration.
Collapse
|
14
|
Jain A, Madu CO, Lu Y. Phytochemicals in Chemoprevention: A Cost-Effective Complementary Approach. J Cancer 2021; 12:3686-3700. [PMID: 33995644 PMCID: PMC8120178 DOI: 10.7150/jca.57776] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 04/21/2021] [Indexed: 12/20/2022] Open
Abstract
Cancer is one of the leading causes of death across the world. Although conventional cancer treatments such as chemotherapy and radiotherapy have effectively decreased cancer progression, they come with many dose-limiting side-effects. Phytochemicals that naturally occur in spices, fruits, vegetables, grains, legumes, and other common foods are surprisingly effective complements to conventional cancer treatments. These biologically active compounds demonstrate anticancer effects via cell signaling pathway interference in cancerous cells. In addition, phytochemicals protect non-cancerous cells from chemotherapy-induced side-effects. This paper addresses the not only the potential of phytochemicals quercetin, isoflavones, curcumin, catechins, and hesperidin in terms of cancer treatment and protection against side-effects of chemotherapy, but also methods for increasing phytochemical bioavailability.
Collapse
Affiliation(s)
- Aayush Jain
- Departments of Biological Sciences, University of Memphis, Memphis, TN 38152. USA
| | - Chikezie O. Madu
- Departments of Biological Sciences, University of Memphis, Memphis, TN 38152. USA
| | - Yi Lu
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38163. USA
| |
Collapse
|
15
|
Ahiskali I, Ferah Okkay I, Mammadov R, Okkay U, Keskin Cimen F, Kurt N, Suleyman H. Effect of taxifolin on cisplatin-associated oxidative optic nerve damage in rats. Cutan Ocul Toxicol 2020; 40:1-6. [PMID: 33121287 DOI: 10.1080/15569527.2020.1844726] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIM To investigate the effect of taxifolin on cisplatin-induced oxidative and proinflammatory optic nerve damage in rats. METHODS A total of 18 albino Wistar male rats were assigned into 3 groups, as follows; Group 1: Control group, Group 2: Only cisplatin administered group for 14 days (Cisplatin group), and Group 3: Taxifolin + cisplatin administered group for 14 days (CIS + TAX group). Serum malondialdehyde (MDA), total Glutathione (tGSH), Nuclear Factor-Kappa B (NF-ƘB), Total Oxidative Status (TOS) and Total Antioxidant Status (TAS) levels were collected from the left eyes of rats. Rats' right eyes were enucleated for histopathological evaluations of optic nerves. RESULTS NF-ƘB, MDA and TOS levels were statistically significantly higher (p < 0.001) in cisplatin group when compared to other 2 groups, the tGSH and TAS levels of which were statistically significantly lower (p < 0.001). Regarding these parameters, in cisplatin group NF-ƘB, MDA and TOS levels were statistically significantly increased with cisplatin administration and giving taxifolin concomitantly with cisplatin prevented this elevation. On the other hand, tGSH and TAS levels were statistically significantly decreased with cisplatin administration and routine simultaneous application of taxifolin with cisplatin prevented this decrease. In histopathological findings, haemorrhage was observed in the perineum of the injured optic nerves in the cisplatin treated group. And also edoema and degeneration in nerve fascicles in damaged optic nerves were seen in the cisplatin group. In the taxifolin treated group histopathological examinations were close to normal appearance, except mild edoema in nerve fascicles. CONCLUSION Cisplatin causes oxidative stress on the rat optic nerves, and these changes lead to significant histopathological damage. Taxifolin, which we used to prevent oxidative damage to the optic nerves caused by cisplatin, has been emphasized as a powerful antioxidant agent in many previous scientific investigations. Concomitant administration of taxifolin may prevent these adverse effects of cisplatin, as well as histopathological damage. Further studies are needed to fully determine the effects of cisplatin and taxifolin on the eye.
Collapse
Affiliation(s)
- Ibrahim Ahiskali
- Department of Ophtalmology, University of Health Sciences; Erzurum Regional Training and Research Hospital, Erzurum, Turkey
| | - Irmak Ferah Okkay
- Department of Pharmacology, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Renad Mammadov
- Department of Pharmacology, Faculty of Medicine, Erzincan University, Erzincan, Turkey
| | - Ufuk Okkay
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Ferda Keskin Cimen
- Department of Pathology, Faculty of Medicine, Erzincan University, Erzincan, Turkey
| | - Nezahat Kurt
- Department of Biochemistry, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Halis Suleyman
- Department of Pharmacology, Faculty of Medicine, Erzincan University, Erzincan, Turkey
| |
Collapse
|
16
|
Sulaiman GM, Waheeb HM, Jabir MS, Khazaal SH, Dewir YH, Naidoo Y. Hesperidin Loaded on Gold Nanoparticles as a Drug Delivery System for a Successful Biocompatible, Anti-Cancer, Anti-Inflammatory and Phagocytosis Inducer Model. Sci Rep 2020; 10:9362. [PMID: 32518242 PMCID: PMC7283242 DOI: 10.1038/s41598-020-66419-6] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 05/20/2020] [Indexed: 11/24/2022] Open
Abstract
Hesperidin is a flavonoid glycoside with proven therapeutic activities for various diseases, including cancer. However, its poor solubility and bioavailability render it only slightly absorbed, requiring a delivery system to reach its therapeutic target. Hesperidin loaded on gold nanoparticles (Hsp-AuNPs) was prepared by a chemical synthesis method. Various characterization techniques such as UV-VIS spectroscopy, FTIR, XRD, FESEM, TEM and EDX, Zeta potential analysis, particle size analysis, were used to confirm the synthesis of Hsp-AuNPs. The cytotoxic effect of Hsp-AuNPs on human breast cancer cell line (MDA-MB-231) was assessed using MTT and crystal violet assays. The results revealed significant decrease in proliferation and inhibition of growth of the treated cells when compared with human normal breast epithelial cell line (HBL-100). Determination of apoptosis by fluorescence microscope was also performed using acridine orange-propidium iodide dual staining assay. The in vivo study was designed to evaluate the toxicity of Hsp-AuNPs in mice. The levels of hepatic and kidney functionality markers were assessed. No significant statistical differences were found for the tested indicators. Histological images of liver, spleen, lung and kidney showed no apparent damages and histopathological abnormalities after treatment with Hsp-AuNPs. Hsp-AuNPs ameliorated the functional activity of macrophages against Ehrlich ascites tumor cells-bearing mice. The production of the pro-inflammatory cytokines was also assessed in bone marrow–derived macrophage cells treated with Hsp-AuNPs. The results obviously demonstrated that Hsp-AuNPs treatment significantly inhibited the secretion of IL-1β, IL-6 and TNF.
Collapse
Affiliation(s)
- Ghassan M Sulaiman
- Biotechnology Division, Applied Science Department, University of Technology, Baghdad, Iraq.
| | - Hanaa M Waheeb
- Biotechnology Division, Applied Science Department, University of Technology, Baghdad, Iraq
| | - Majid S Jabir
- Biotechnology Division, Applied Science Department, University of Technology, Baghdad, Iraq
| | - Shaymaa H Khazaal
- Applied Chemistry Division, Applied Science Department, University of Technology, Baghdad, Iraq
| | - Yaser Hassan Dewir
- King Saud University, College of Food and Agriculture Sciences, P.O. Box 2460, Riyadh, 11451, Saudi Arabia.,Kafrelsheikh University, Faculty of Agriculture, Kafr El-Sheikh, 33516, Egypt
| | - Yougasphree Naidoo
- University of KwaZulu-Natal, School of Life Sciences, Westville Campus, Private Bag X54001, Durban, 4000, South Africa
| |
Collapse
|
17
|
Protective effects of hesperidin against MTX-induced hepatotoxicity in male albino rats. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1405-1417. [PMID: 32103295 DOI: 10.1007/s00210-020-01843-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/14/2020] [Indexed: 02/07/2023]
Abstract
Hesperidin (HD), a bioflavonoid, has been shown to exert hepatoprotective effects. Our aim is to investigate the possible protective effects of HD against methotrexate (MTX) hepatotoxicity in adult male Sprague-Dawley (SD) rats that were divided into four groups (10 rats/each) and were exposed to MTX with or without HD co-administration for consecutive 28 days. The results showed that HD significantly ameliorated MTX-induced increase in liver enzymes and histopathological changes. Hepatic oxidative stress was suppressed by HD, as evidenced by the decrease in malondialdehyde (MDA), with a concomitant increase in total antioxidant activity (TAC), catalase (CAT), and glutathione (GSH) levels. Moreover, co-administration of HD with MTX remarkably upregulated the expression of Nrf2 and HO-1 compared with the MTX group. By the decrease in nuclear factor-kB (NF-κB) pathway and tumor necrosis factor α (TNF-α), HD obviously attenuated inflammatory response in MTX-lesioned livers. Likewise, the downregulation of P53 by HD could explain its antiapoptotic effects as indicated by increase BCl2 and the significant decrease of caspase-9 mRNA expression as compared with the MTX group. Thus, these findings revealed the hepatoprotective nature of HD against MTX hepatotoxicity by attenuating the pro-inflammatory and apoptotic mediators and improving antioxidant aptitude.
Collapse
|
18
|
Ibrahim AE, Shafaa MW, Khedr MH, Rashed RF. Comparative study between lutein and its liposomal form on cisplatin-induced retinal injury in rabbits. Cutan Ocul Toxicol 2019; 38:279-285. [PMID: 31039623 DOI: 10.1080/15569527.2019.1608227] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Aim: Lutein is a potent antioxidant that is found in ocular tissue. It protects retina against oxidative stress. We aimed to increase lutein efficiency by encapsulating it into liposome and testing its neuroprotective effect against cisplatin-induced retinal injury in rabbits. Materials and methods: Twenty-four male, New Zealand, rabbits weighing 1.5-2 kg were divided into four groups, as follows: group I as a control, group II received cisplatin, group III received free lutein + cisplatin and group IV received liposomal lutein + cisplatin. All treatments were administrated twice per week for 14 days. Electroretinogram (ERG) was recorded for all rabbits just before decapitation. Then, the retinae were subjected to histopathological evaluations and comet assay. Results: Results indicated significant decrease (p ˂ 0.01) in ERG waves, significant increase (p ˂ 0.01) in all parameters of comet assay (% tailed cells, tail length, DNA% in tail and tail moment), severe fragmentation in photoreceptors layer and changes in inner retina after the administration of cisplatin. There were some sort of improvement in ERG, comet assay and the histological results after the administration of lutein with cisplatin, whereas these tests yielded values comparable to control in the liposomal lutein group. Conclusions: Liposomal lutein administration could prevent the detrimental effects of cisplatin on the retina, while avoiding the use any artificial chemicals. The latter might be preferable but with possible highly toxic effects. Results were promising and worse further future investigations.
Collapse
Affiliation(s)
- Amal E Ibrahim
- a Visual science Department, Research Institute of Ophthalmology , Giza , Egypt
| | - Medhat W Shafaa
- b Physics Department, Medical Biophysics Division, Faculty of Science, Helwan University , Cairo , Egypt
| | - Mahmoud H Khedr
- b Physics Department, Medical Biophysics Division, Faculty of Science, Helwan University , Cairo , Egypt
| | - Rawda F Rashed
- b Physics Department, Medical Biophysics Division, Faculty of Science, Helwan University , Cairo , Egypt
| |
Collapse
|
19
|
Fındık H, Tumkaya L, Yılmaz A, Gökhan Aslan M, Okutucu M, Akyildiz K, Mercantepe T. The protective effects of astaxanthin against cisplatin-induced retinal toxicity. Cutan Ocul Toxicol 2019; 38:59-65. [DOI: 10.1080/15569527.2018.1518330] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Hüseyin Fındık
- Department of Ophthalmology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Levent Tumkaya
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Adnan Yılmaz
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Mehmet Gökhan Aslan
- Department of Ophthalmology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Murat Okutucu
- Department of Ophthalmology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Kerimali Akyildiz
- Department of Medical Services and Techniques, Health Care Services Vocational School Recep Tayyip Erdogan University, Rize, Turkey
| | - Tolga Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| |
Collapse
|
20
|
Ansar S, Abudawood M, Alaraj ASA, Hamed SS. Hesperidin alleviates zinc oxide nanoparticle induced hepatotoxicity and oxidative stress. BMC Pharmacol Toxicol 2018; 19:65. [PMID: 30340509 PMCID: PMC6195725 DOI: 10.1186/s40360-018-0256-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 10/03/2018] [Indexed: 01/23/2023] Open
Abstract
Background Nanoparticles are widely utilized in many products such as cosmetics and sunscreens. The present study was undertaken to evaluate the effect of hesperidin (HSP) on nano zinc oxide particles (nZnO) induced oxidative stress in rat livers. Methods Rats were randomly divided into 4 groups of 6 rats each and exposed to single administration of nZnO intraperitoneally (600 mg/kg bwt) and HSP (100 mg/kg bwt) by gavage. Group I served as the control; group II was given nZnO only; groups III received HSP only and group IV received nZnO 1 h after pretreatment with HSP for 7 days. Results Compared to the controls, nZnO administration enhanced alanine aminotransferase (AST) and aspartate aminotransferase (ALT) levels (p < 0.05) with reduction in the levels of glutathione (GSH), catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD) and increase in levels of malondialdehyde (MDA) while HSP attenuated nZnO-induced hepatotoxicity for above mentioned parameters. Conclusions The induced toxicity in the liver was corrected by pretreatment with HSP. The findings of this study suggest that HSP pretreatment can potentially be used to prevent nZnO-induced biochemical alterations toxicity. Further, protection by HSP on biochemical results was confirmed by histopathological changes. The present study suggests that HSP can protect against nZnO-induced oxidative damage in the rat livers.
Collapse
Affiliation(s)
- Sabah Ansar
- Clinical Laboratory Sciences, Applied Medical Science, King Saud University, Riyadh, Saudi Arabia.
| | - Manal Abudawood
- Clinical Laboratory Sciences, Applied Medical Science, King Saud University, Riyadh, Saudi Arabia
| | - Amal S A Alaraj
- Clinical Laboratory Sciences, Applied Medical Science, King Saud University, Riyadh, Saudi Arabia
| | - Sherifa S Hamed
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia.,Zoology Department, Faculty of Science, University of Alexandria, Moharram Bey, Alexandria, 21511, Egypt
| |
Collapse
|
21
|
Karakurt Y, Uçak T, Tasli N, Ahiskali I, Şipal S, Kurt N, Süleyman H. The effects of lutein on cisplatin-induced retinal injury: an experimental study. Cutan Ocul Toxicol 2018; 37:374-379. [DOI: 10.1080/15569527.2018.1482494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Yücel Karakurt
- Department of Ophthalmology, Faculty of Medicine, Erzincan University, Erzincan, Turkey
| | - Turgay Uçak
- Department of Ophthalmology, Faculty of Medicine, Erzincan University, Erzincan, Turkey
| | - NurdanGamze Tasli
- Department of Ophthalmology, Faculty of Medicine, Erzincan University, Erzincan, Turkey
| | - Ibrahim Ahiskali
- Department of Ophthalmology, Erzurum Regional Training and Research Hospital, Erzurum, Turkey
| | - Sare Şipal
- Department of Pathology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Nezahat Kurt
- Department of Biochemistry, College of Medicine, Atatürk University Hospital, Erzurum, Turkey
| | - Halis Süleyman
- Department of Pharmacology, Faculty of Medicine, Erzincan University, Erzincan, Turkey
| |
Collapse
|
22
|
Taşlı NG, Uçak T, Karakurt Y, Keskin Çimen F, Özbek Bilgin A, Kurt N, Süleyman H. The effects of rutin on cisplatin induced oxidative retinal and optic nerve injury: an experimental study. Cutan Ocul Toxicol 2018; 37:252-257. [DOI: 10.1080/15569527.2018.1442842] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Nurdan Gamze Taşlı
- Department of Ophthalmology, College of Medicine, Erzincan University Hospital, Erzincan, Turkey
| | - Turgay Uçak
- Department of Ophthalmology, College of Medicine, Erzincan University Hospital, Erzincan, Turkey
| | - Yücel Karakurt
- Department of Ophthalmology, College of Medicine, Erzincan University Hospital, Erzincan, Turkey
| | - Ferda Keskin Çimen
- Department of Pathology, College of Medicine, Erzincan University Hospital, Erzincan, Turkey
| | - Aslı Özbek Bilgin
- Department of Pharmacology, College of Medicine, Erzincan University Hospital, Erzincan, Turkey
| | - Nezahat Kurt
- Department of Biochemistry, College of Medicine, Atatürk University Hospital, Erzurum, Turkey
| | - Halis Süleyman
- Department of Pharmacology, College of Medicine, Erzincan University Hospital, Erzincan, Turkey
| |
Collapse
|
23
|
Polat N, Ozer MA, Parlakpinar H, Vardi N, Aksungur Z, Ozhan O, Yildiz A, Turkoz Y. Effects of molsidomine on retinal ischemia/reperfusion injury in rabbits. Biotech Histochem 2018; 93:188-197. [PMID: 29323543 DOI: 10.1080/10520295.2017.1406616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
We investigated the effect of molsidomine (MOL) on ischemia/reperfusion (I/R) injury. Rabbits were assigned to four groups: group 1, sham; group 2, I/R; group 3, MOL treatment for 4 days after I/R; group 4, MOL treatment for 1 day before I/R and 3 days after I/R. Retinal I/R was produced by elevating the intraocular pressure to 150 mm Hg for 60 min. Seven days after I/R, the eyes were enucleated. Retinal changes were examined using histochemistry. The levels of malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT) also were measured. We found a significant increase in the thickness of the outer nuclear layer of group 3 compared to the other groups. In groups 3 and 4, caspase-3 stained cells in the ganglion cell layer were decreased compared to group 2. We found a significant increase in caspase-3 stained cells in the inner nuclear layer (INL) of group 2 compared to the other groups. We found a significant increase in caspase-3 stained cells in group 3 compared to group 4 in the INL. The MDA level in group 2 was significantly higher than group 1 and MOL significantly decreased MDA levels in groups 3 and 4. We found that MOL protected the retina from I/R injury by enhancing antioxidative effects and inhibiting apoptosis of retinal cells.
Collapse
Affiliation(s)
- N Polat
- a Department of Ophthalmology , Inonu University School of Medicine , Malatya
| | - M A Ozer
- b Department of Ophthalmology , Giresun University School of Medicine , Giresun
| | | | | | - Z Aksungur
- e Biochemistry , Inonu University School of Medicine , Malatya , Turkey
| | - O Ozhan
- c Departments of Pharmacology
| | | | - Y Turkoz
- e Biochemistry , Inonu University School of Medicine , Malatya , Turkey
| |
Collapse
|
24
|
Gul Baykalir B, Ciftci O, Cetin A, Basak Turkmen N. The protective effect of fish oil against cisplatin induced eye damage in rats. Cutan Ocul Toxicol 2017; 37:151-156. [DOI: 10.1080/15569527.2017.1361438] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Burcu Gul Baykalir
- Department of Nursing, Faculty of Health Sciences, University of Firat, Elazig, Turkey
| | - Osman Ciftci
- Department of Medical Pharmacology, Faculty of Medicine, University of Inonu, Malatya, Turkey
| | - Aslı Cetin
- Department of Histology and Embryology, Faculty of Medicine, University of Inonu, Malatya, Turkey
| | - Nese Basak Turkmen
- Department of Toxicology, Faculty of Pharmacy, University of Inonu, Malatya, Turkey
| |
Collapse
|
25
|
Ansar S, Abudawood M, Hamed SS, Aleem MM. Exposure to Zinc Oxide Nanoparticles Induces Neurotoxicity and Proinflammatory Response: Amelioration by Hesperidin. Biol Trace Elem Res 2017; 175:360-366. [PMID: 27300038 DOI: 10.1007/s12011-016-0770-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 05/30/2016] [Indexed: 01/22/2023]
Abstract
Zinc oxide nanoparticles (ZnONPs) are widely used in food packaging and may enter the body directly if exposed. Hereby, in this study, the oral administration was selected as the route of exposure for rats to nanoparticles and the effect of hesperidin (HSP, 100 mg/kg bwt) was evaluated on ZnONP (600 mg/kg bwt)-induced neurotoxicity in rats. ZnONPs were characterized using transmission electron microscopy. Neurotoxicity was observed as seen by elevation in serum inflammatory markers including tumor necrosis factor alpha (TNF-α), interleukin 1 (IL-1β), interleukin-6 (IL-6), C-reactive protein (CRP), and activities of catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione (GSH) content in rat brains. Pretreatment of rats with HSP in ZnONP-treated group elevated activities of antioxidant enzymes. HSP also caused decrease in TNF-α, IL-1β, IL-6, and CRP levels which was higher in the ZnONP-treated group. The results suggest that HSP augments antioxidant defense with anti-inflammatory response against ZnONP-induced neurotoxicity. The increased antioxidant enzymes enhance the antioxidant potential to reduce oxidative stress.
Collapse
Affiliation(s)
- Sabah Ansar
- Clinical Laboratory Sciences, Applied Medical Science, King Saud University, Riyadh, Saudi Arabia.
| | - Manal Abudawood
- Clinical Laboratory Sciences, Applied Medical Science, King Saud University, Riyadh, Saudi Arabia
| | - Sherifa Shaker Hamed
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Zoology Department, Faculty of Science, University of Alexandria, Moharram Bey, Alexandria, 21511, Egypt
| | - Mukhtar M Aleem
- Chemistry and Biochemistry Department, University of California, Santa Cruz, CA, USA
| |
Collapse
|