1
|
von Känel S, Pavlidou A, Nadesalingam N, Chapellier V, Nuoffer MG, Kyrou A, Maderthaner L, Wüthrich F, Lefebvre S, Walther S. Manual dexterity and grip force are distinctly linked to domains of neurological soft signs in schizophrenia spectrum disorders. Schizophr Res 2025; 277:65-73. [PMID: 40020341 DOI: 10.1016/j.schres.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/30/2025] [Accepted: 02/22/2025] [Indexed: 03/03/2025]
Abstract
Motor abnormalities are highly prevalent among patients with schizophrenia spectrum disorders. Very likely, motor control processes, such as dexterity and grip force (GF), are impaired in schizophrenia. We aimed to explore associations between various motor abnormalities and motor control processes and to investigate whether specific motor abnormalities predict the performance of fine motor movements and GF. Our analyses included 198 patients with schizophrenia spectrum disorders. We applied well-established standardized motor rating scales to assess five different motor abnormalities: psychomotor slowing (PS), neurological soft signs (NSS), parkinsonism, catatonia, and dyskinesia. As a measure of manual dexterity, we used the coin rotation (CR) task, requiring patients to rotate a coin between their thumb, index, and middle finger. Maximal grip strength was measured with the GF task. Correlation analyses revealed that both CR and GF performances were associated with different motor abnormalities, most strongly with NSS (CR: tau = -0.263, p < 0.001; GF: tau = -0.208, p < 0.001). Hierarchical regression showed that NSS predicted performance on the CR and GF task better compared to PS, parkinsonism, and catatonia alone (CR: ∆R2 = 0.09, F = 22.26, p < 0.001; GF: ∆R2 = 0.02, F = 6.61, p < 0.001). When looking within the NSS domains, CR performance was predicted better by motor coordination and sequencing of motor acts, whereas GF was predicted better by sensory integration. Motor control processes are influenced by different motor abnormalities, especially NSS. Our results suggest that distinct aspects of NSS affect fine motor movements and GF. This knowledge is important for designing specific novel interventions aimed at improving specific motor control processes.
Collapse
Affiliation(s)
- Sofie von Känel
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland; Graduate School for Health Science, University of Bern, Switzerland.
| | - Anastasia Pavlidou
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Niluja Nadesalingam
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Victoria Chapellier
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Melanie G Nuoffer
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland; Graduate School for Health Science, University of Bern, Switzerland
| | - Alexandra Kyrou
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Lydia Maderthaner
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland; Competence Centre for Psychosomatics, Department of Neurology, University Hospital Inselspital Bern, Switzerland
| | - Florian Wüthrich
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland; University Hospital of Old Age Psychiatry, University of Bern, Switzerland
| | - Stephanie Lefebvre
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland; Department of Psychiatry, Psychosomatics, and Psychotherapy, Center for Mental Health, University Hospital of Würzburg, Germany
| |
Collapse
|
2
|
Fritze S, Brandt GA, Volkmer S, Daub J, Krayem M, Kukovic J, Schwarz E, Braun U, Northoff G, Wolf RC, Kubera KM, Meyer-Lindenberg A, Hirjak D. Deciphering the interplay between psychopathological symptoms, sensorimotor, cognitive and global functioning: a transdiagnostic network analysis. Eur Arch Psychiatry Clin Neurosci 2024; 274:1625-1637. [PMID: 38509230 PMCID: PMC11422259 DOI: 10.1007/s00406-024-01782-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/16/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Understanding the relationship between psychopathology and major domains of human neurobehavioral functioning may identify new transdiagnostic treatment targets. However, studies examining the interrelationship between psychopathological symptoms, sensorimotor, cognitive, and global functioning in a transdiagnostic sample are lacking. We hypothesized a close relationship between sensorimotor and cognitive functioning in a transdiagnostic patient sample. METHODS We applied network analysis and community detection methods to examine the interplay and centrality [expected influence (EI) and strength] between psychopathological symptoms, sensorimotor, cognitive, and global functioning in a transdiagnostic sample consisting of 174 schizophrenia spectrum (SSD) and 38 mood disorder (MOD) patients. All patients (n = 212) were examined with the Positive and Negative Syndrome Scale (PANSS), the Heidelberg Neurological Soft Signs Scale (NSS), the Global Assessment of Functioning (GAF), and the Brief Cognitive Assessment Tool for Schizophrenia consisted of trail making test B (TMT-B), category fluency (CF) and digit symbol substitution test (DSST). RESULTS NSS showed closer connections with TMT-B, CF, and DSST than with GAF and PANSS. DSST, PANSS general, and NSS motor coordination scores showed the highest EI. Sensory integration, DSST, and CF showed the highest strength. CONCLUSIONS The close connection between sensorimotor and cognitive impairment as well as the high centrality of sensorimotor symptoms suggests that both domains share aspects of SSD and MOD pathophysiology. But, because the majority of the study population was diagnosed with SSD, the question as to whether sensorimotor symptoms are really a transdiagnostic therapeutic target needs to be examined in future studies including more balanced diagnostic groups.
Collapse
Affiliation(s)
- Stefan Fritze
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159, Mannheim, Germany
| | - Geva A Brandt
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159, Mannheim, Germany
| | - Sebastian Volkmer
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159, Mannheim, Germany
- Hector Institute for Artificial Intelligence in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jonas Daub
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159, Mannheim, Germany
| | - Maria Krayem
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159, Mannheim, Germany
| | - Jacqueline Kukovic
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159, Mannheim, Germany
| | - Emanuel Schwarz
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159, Mannheim, Germany
- Hector Institute for Artificial Intelligence in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Centre for Mental Health (DZPG), Partner Site Heidelberg/Mannheim/Ulm, Mannheim, Germany
| | - Urs Braun
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159, Mannheim, Germany
- German Centre for Mental Health (DZPG), Partner Site Heidelberg/Mannheim/Ulm, Mannheim, Germany
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, The Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| | - Robert Christian Wolf
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Heidelberg, Germany
| | - Katharina M Kubera
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Heidelberg, Germany
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159, Mannheim, Germany
- German Centre for Mental Health (DZPG), Partner Site Heidelberg/Mannheim/Ulm, Mannheim, Germany
| | - Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159, Mannheim, Germany.
- German Centre for Mental Health (DZPG), Partner Site Heidelberg/Mannheim/Ulm, Mannheim, Germany.
| |
Collapse
|
3
|
Singh K, Jayaram M, Hanumantharaju A, Tõnissoo T, Jagomäe T, Mikheim K, Muthuraman S, Gilbert SF, Plaas M, Schäfer MKE, Innos J, Lilleväli K, Philips MA, Vasar E. The IgLON family of cell adhesion molecules expressed in developing neural circuits ensure the proper functioning of the sensory system in mice. Sci Rep 2024; 14:22593. [PMID: 39349721 PMCID: PMC11442611 DOI: 10.1038/s41598-024-73358-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
Deletions and malfunctions of the IgLON family of cell adhesion molecules are associated with anatomical, behavioral, and metabolic manifestations of neuropsychiatric disorders. We have previously shown that IgLON genes are expressed in sensory nuclei/pathways and that IgLON proteins modulate sensory processing. Here, we examined the expression of IgLON alternative promoter-specific isoforms during embryonic development and studied the sensory consequences of the anatomical changes when one of the IgLON genes, Negr1, is knocked out. At the embryonal age of E12.5 and E13.5, various IgLONs were distributed differentially and dynamically in the developing sensory areas within the central and peripheral nervous system, as well as in limbs and mammary glands. Sensory tests showed that Negr1 deficiency causes differences in vestibular function and temperature sensitivity in the knockout mice. Sex-specific differences were noted across olfaction, vestibular functioning, temperature regulation, and mechanical sensitivity. Our findings highlight the involvement of IgLON molecules during sensory circuit formation and suggest Negr1's critical role in somatosensory processing.
Collapse
Affiliation(s)
- Katyayani Singh
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia.
| | - Mohan Jayaram
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Arpana Hanumantharaju
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Tambet Tõnissoo
- Institute of Molecular and Cell Biology, University of Tartu, Vanemuise 46-221, Ria 23-204, 51010, Tartu, Estonia
| | - Toomas Jagomäe
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
- Laboratory Animal Centre, Institute of Biomedicine and Translational Medicine, University of Tartu, 14B Ravila Street, 50411, Tartu, Estonia
| | - Kaie Mikheim
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Srirathi Muthuraman
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Scott F Gilbert
- Department of Biology, Swarthmore College, Swarthmore, PA, USA
| | - Mario Plaas
- Laboratory Animal Centre, Institute of Biomedicine and Translational Medicine, University of Tartu, 14B Ravila Street, 50411, Tartu, Estonia
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, 55131, Mainz, Germany
- Focus Program Translational Neurosciences, Johannes Gutenberg-University Mainz, 55131, Mainz, Germany
- Research Center for Immunotherapy, Johannes Gutenberg-University Mainz, 55131, Mainz, Germany
| | - Jürgen Innos
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Kersti Lilleväli
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
- The Centre of Estonian Rural Research and Knowledge, 48309, Jõgeva Alevik, Estonia
| | - Mari-Anne Philips
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| |
Collapse
|
4
|
Ding Q, Li L, Tong Q, He H, Gao B, Xia L. White matter microstructure alterations of the posterior limb of internal capsule in first-episode drug naive schizophrenia patients. Brain Res 2024; 1841:149114. [PMID: 38977237 DOI: 10.1016/j.brainres.2024.149114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/19/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
OBJECTIVES Previous studies have shown that microstructural alterations in white matter (WM) could contribute to the symptom manifestation and support the dysconnectivity hypothesis in schizophrenia patients. These alterations were pervasive, non-specific, and reported inconsistently across the literature. This study aimed to specifically investigate the microstructure alterations of the posterior limb of the internal capsule (PLIC) in first-episode, drug-naive schizophrenia patients. Utilizing a multicompartmental biophysical model, we further explored the correlation between these alterations and syndrome scale scores. METHODS Thirty-two individuals with first-episode, drug-naive schizophrenia (FES) and thirty demographically matched healthy controls were enrolled. High-resolution multi-shell diffusion MRI data were collected, followed by the application of a three-compartment Neurite Orientation Dispersion and Density Imaging (NODDI) model to scrutinize the alterations in white matter microstructure. Changes in sensory and motor fibers within the PLIC were specifically focused on. Additionally, the correlation between these pathological changes and scores on the Positive and Negative Syndrome Scale (PANSS) was investigated. RESULTS The Neurite density index (NDI) in the left PLIC was significantly lower in FES patients compared to healthy individuals, and positively correlated with PANSS positive syndrome scores (r = 0.0379, p = 0.046). In the sensory component (left superior thalamic radiation within PLIC, STR_P), the NDI was significantly elevated (p < 0.0001). Conversely, the NDI in the motor component (left corticospinal tract within PLIC, CST_P) was reduced (p = 0.007) in FES patients compared to healthy individuals, and strongly correlated with PANSS positive syndrome scores (p < 0.020) and PANSS total scores (p < 0.045). Moreover, the NDI deviation of STR from total PLIC (fSTR_P) and NDI deviation in STR_P and CST_P compared to PLIC region (fPLIC) were significantly higher in FES patients than in healthy controls (p < 0.00001), with an area under the curve (AUC) of fPLIC reaching 0.872. CONCLUSION The study's findings provided new insights into the discrepancy of white matter microstructure changes associated with the sensory and motor fibers in the PLIC region in FES patients. These results contribute to the growing body of evidence suggesting that WM microstructural alterations play a critical role in schizophrenia pathophysiology.
Collapse
Affiliation(s)
- Qiuping Ding
- Center for Brain Imaging Science and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China; Polytechnic Institute, Zhejiang University, Hangzhou, China
| | - Lingyu Li
- Center for Brain Imaging Science and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China; Polytechnic Institute, Zhejiang University, Hangzhou, China
| | - Qiqi Tong
- Research Center for Data Hub and Security, Zhejiang Lab, Hangzhou, China
| | - Hongjian He
- School of Physics, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Bin Gao
- Department of Psychiatry, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Ling Xia
- Center for Brain Imaging Science and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Lai YJ, Lin YC, Hsu CH, Tseng HH, Lee CN, Huang PC, Hsu HY, Kuo LC. Are the sensorimotor control capabilities of the hands the factors influencing hand function in people with schizophrenia? BMC Psychiatry 2023; 23:807. [PMID: 37936136 PMCID: PMC10631069 DOI: 10.1186/s12888-023-05259-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/07/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Previous works reported people with schizophrenia experienced inferior hand functions which influence their daily participation and work efficiency. Sensorimotor capability is one of indispensable elements acting in a well-executed feed-forward and feedback control loop to contribute to hand performances. However, rare studies investigated contribution of sensorimotor ability to hand functions for people with schizophrenia. This study aimed to explore hand function in people with schizophrenia based on the perspective of the sensorimotor control capabilities of the hands. METHODS Twenty-seven people at the chronic stage of schizophrenia were enrolled. The following assessment tools were used: the Purdue Pegboard Test (PPT) and the VALPAR Component Work Sample-8 (VCWS 8) system for hand function; the Self-Reported Graphic version of the Personal and Social Performance (SRG-PSP) scale for functionality; and the Semmes-Weinstein Monofilaments (SWM), the pinch-holding-up-activity (PHUA) test and the Manual Tactile Test (MTT) for the sensory and sensorimotor parameters. The Clinical Global Impression-Severity (CGI-S) scale and the Extrapyramidal Symptom Rating Scale (ESRS) were used to grade the severity of the illness and the side-effects of the drugs. Spearman's rank correlation coefficient was used to analyze associations among hand function, functionality, and sensorimotor capabilities. A multiple linear regression analysis was used to identify the determinants of hand function. RESULTS The results indicated that both hand function and sensorimotor capability were worse in people with schizophrenia than in healthy people, with the exception of the sensory threshold measured with the SWM. Moreover, the sensorimotor abilities of the hands were associated with hand function. The results of the regression analysis showed that the MTT measure of stereognosis was a determinant of the PPT measure of the dominant hand function and of the performance on the VCWS 8, and that the ESRS and the MTT measure of barognosis were determinants of the performance on the assembly task of the PPT. CONCLUSIONS The findings suggested that sensorimotor capabilities, especially stereognosis and barognosis, are crucial determinants of hand function in people with schizophrenia. The results also revealed that the side effects of drugs and the duration of the illness directly affect hand function. CLINICAL TRAIL REGISTRATION ClinicalTrials.gov , identifier NCT04941677, 28/06/2021.
Collapse
Affiliation(s)
- Yu-Jen Lai
- Department of Occupational Therapy, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan City, 701, Taiwan
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Chen Lin
- Department of Occupational Therapy, Da-Yeh University, Changhua, Taiwan
| | - Chieh-Hsiang Hsu
- Department of Occupational Therapy, Da-Yeh University, Changhua, Taiwan
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Huai-Hsuan Tseng
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Ning Lee
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pai-Chuan Huang
- Department of Occupational Therapy, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan City, 701, Taiwan.
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Hsiu-Yun Hsu
- Department of Occupational Therapy, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan City, 701, Taiwan.
- Department of Physical Medicine and Rehabilitation, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan City, 701, Taiwan.
| | - Li-Chieh Kuo
- Department of Occupational Therapy, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan City, 701, Taiwan.
- Department of Physical Medicine and Rehabilitation, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan City, 701, Taiwan.
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan, Taiwan.
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
6
|
Wang L, Zhu R, Zhou X, Zhang Z, Peng D. Altered local and remote functional connectivity in mild Alzheimer's disease patients with sleep disturbances. Front Aging Neurosci 2023; 15:1269582. [PMID: 37920381 PMCID: PMC10619161 DOI: 10.3389/fnagi.2023.1269582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023] Open
Abstract
Objectives This study aimed to investigate local and remote functional connectivity in mild Alzheimer's disease patients with sleep disturbances (ADSD) and those without sleep disturbances (ADNSD). Methods Thirty eight mild AD patients with sleep disturbances and 21 mild AD patients without sleep disturbances participated in this study. All subjects underwent neuropsychological assessments and 3.0 Tesla magnetic resonance scanning. Static and dynamic regional homogeneity (ReHo) were used to represent the local functional connectivity. Seed-based whole-brain functional connectivity was used to represent the remote functional connectivity. The seed was chosen based on the results of ReHo. Results Compared to ADNSD, ADSD showed decreased static ReHo in the left posterior central gyrus and the right cuneus and increased dynamic ReHo in the left posterior central gyrus. As for the remote functional connectivity, comparing ADSD to ADNSD, it was found that there was a decreased functional connection between the left posterior central gyrus and the left cuneus as well as the left calcarine. Conclusion The current study demonstrated that, compared with ADNSD, ADSD is impaired in both local and remote functional connectivity, manifested as reduced functional connectivity involving the primary sensory network and the primary visual network. The abnormality of the above functional connectivity is one of the reasons why sleep disorders promote cognitive impairment in AD. Moreover, sleep disorders change the temporal sequence of AD pathological damage to brain functional networks, but more evidence is needed to support this conclusion.
Collapse
Affiliation(s)
- Lei Wang
- Department of Neurology, Beijing Geriatric Hospital, Beijing, China
| | - Rui Zhu
- Department of Neurology, Beijing Geriatric Hospital, Beijing, China
| | - Xiao Zhou
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhiyong Zhang
- Department of Neurology, Beijing Geriatric Hospital, Beijing, China
| | - Dantao Peng
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
7
|
He B, Wang Y, Li H, Huang Y. The role of integrin beta in schizophrenia: a preliminary exploration. CNS Spectr 2023; 28:561-570. [PMID: 36274632 DOI: 10.1017/s1092852922001080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Integrins are transmembrane heterodimeric (αβ) receptors that transduce mechanical signals between the extracellular milieu and the cell in a bidirectional manner. Extensive research has shown that the integrin beta (β) family is widely expressed in the brain and that they control various aspects of brain development and function. Schizophrenia is a relatively common neurological disorder of unknown etiology and has been found to be closely related to neurodevelopment and neurochemicals in neuropathological studies of schizophrenia. Here, we review literature from recent years that shows that schizophrenia involves multiple signaling pathways related to neuronal migration, axon guidance, cell adhesion, and actin cytoskeleton dynamics, and that dysregulation of these processes affects the normal function of neurons and synapses. In fact, alterations in integrin β structure, expression and signaling for neural circuits, cortex, and synapses are likely to be associated with schizophrenia. We explored several aspects of the possible association between integrin β and schizophrenia in an attempt to demonstrate the role of integrin β in schizophrenia, which may help to provide new insights into the study of the pathogenesis and treatment of schizophrenia.
Collapse
Affiliation(s)
- Binshan He
- Department of Blood Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuhan Wang
- Department of Blood Transfusion, Ya'an People's Hospital, Ya'an, China
| | - Huang Li
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Yuanshuai Huang
- Department of Blood Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
8
|
The effects of the ethanol extract of Cordia myxa leaves on the cognitive function in mice. BMC Complement Med Ther 2022; 22:215. [PMID: 35948926 PMCID: PMC9367120 DOI: 10.1186/s12906-022-03693-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/30/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Cordia myxa L. (Boraginaceae) is widely distributed in tropical regions and it’s fruits, leaves and stem bark have been utilized in folk medicine for treating trypanosomiasis caused by Trypanosoma cruzi. A population-based study showed that T. cruzi infection is associated with cognitive impairments. Therefore, if C. myxa has ameliorating activities on cognitive function, it would be useful for both T. cruzi infection and cognitive impairments.
Methods
In this study, we evaluated the effects of an ethanol extract of leaves of C. myxa (ELCM) on memory impairments and sensorimotor gating deficits in mice. The phosphorylation level of protein was observed by the Western blot analysis.
Results
The administration of ELCM significantly attenuated scopolamine-induced cognitive dysfunction in mice, as measured by passive avoidance test and novel object recognition test. Additionally, in the acoustic startle response test, we observed that the administration of ELCM ameliorated MK-801-induced prepulse inhibition deficits. We found that these behavioral outcomes were related with increased levels of phosphorylation phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt) and glycogen synthase kinase 3 beta (GSK-3β) in the cortex and extracellular signal-regulated kinase (ERK) and cAMP response element-binding protein (CREB) in the hippocampus by western blot analysis.
Conclusions
These results suggest that ELCM would be a potential candidate for treating cognitive dysfunction and sensorimotor gating deficits observed in individuals with neurodegenerative diseases.
Collapse
|
9
|
Vanes LD, Dolan RJ. Transdiagnostic neuroimaging markers of psychiatric risk: A narrative review. NEUROIMAGE-CLINICAL 2021; 30:102634. [PMID: 33780864 PMCID: PMC8022867 DOI: 10.1016/j.nicl.2021.102634] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/03/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023]
Abstract
We review the literature on neural correlates of a general psychopathology factor General psychopathology relates to structural and functional neurodevelopment Disrupted network connectivity maturation may underlie psychiatric vulnerability
Several decades of neuroimaging research in psychiatry have shed light on structural and functional neural abnormalities associated with individual psychiatric disorders. However, there is increasing evidence for substantial overlap in the patterns of neural dysfunction seen across disorders, suggesting that risk for psychiatric illness may be shared across diagnostic boundaries. Gaining insights on the existence of shared neural mechanisms which may transdiagnostically underlie psychopathology is important for psychiatric research in order to tease apart the unique and common aspects of different disorders, but also clinically, so as to help identify individuals early on who may be biologically vulnerable to psychiatric disorder in general. In this narrative review, we first evaluate recent studies investigating the functional and structural neural correlates of a general psychopathology factor, which is thought to reflect the shared variance across common mental health symptoms and therefore index psychiatric vulnerability. We then link insights from this research to existing meta-analytic evidence for shared patterns of neural dysfunction across categorical psychiatric disorders. We conclude by providing an integrative account of vulnerability to mental illness, whereby delayed or disrupted maturation of large-scale networks (particularly default-mode, executive, and sensorimotor networks), and more generally between-network connectivity, results in a compromised ability to integrate and switch between internally and externally focused tasks.
Collapse
Affiliation(s)
- Lucy D Vanes
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, King's College London, United Kingdom.
| | - Raymond J Dolan
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom
| |
Collapse
|
10
|
Serdarevic F, Tiemeier H, Jansen PR, Alemany S, Xerxa Y, Neumann A, Robinson E, Hillegers MHJ, Verhulst FC, Ghassabian A. Polygenic Risk Scores for Developmental Disorders, Neuromotor Functioning During Infancy, and Autistic Traits in Childhood. Biol Psychiatry 2020; 87:132-138. [PMID: 31629460 DOI: 10.1016/j.biopsych.2019.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 05/03/2019] [Accepted: 06/03/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Impaired neuromotor development is often one of the earliest observations in children with autism spectrum disorder (ASD). We investigated whether a genetic predisposition to developmental disorders was associated with nonoptimal neuromotor development during infancy and examined the genetic correlation between nonoptimal neuromotor development and autistic traits in the general population. METHODS In a population-based cohort in The Netherlands (2002-2006), we calculated polygenic risk scores (PRSs) for ASD and attention-deficit/hyperactivity disorder (ADHD) using genome-wide association study summary statistics. In 1921 children with genetic data, parents rated autistic traits at 6 years of age. Among them, 1174 children (61.1%) underwent neuromotor examinations (tone, responses, senses, and other observations) during infancy (9-20 weeks of age). We used linear regressions to examine associations of PRSs with neuromotor scores and autistic traits. We performed a bivariate genome-based restricted maximum likelihood analysis to explore whether genetic susceptibility underlies the association between neuromotor development and autistic traits. RESULTS Higher PRSs for ASD were associated with less optimal overall infant neuromotor development, in particular low muscle tone. Higher PRSs for ADHD were associated with less optimal senses. PRSs for ASD and those for ADHD both were associated with autistic traits. The single nucleotide polymorphism-based heritability of overall motor development was 20% (SE = .21) and of autistic traits was 68% (SE = .26). The genetic correlation between overall motor development and autistic traits was .35 (SE = .21, p < .001). CONCLUSIONS We found that genetic liabilities for ASD and ADHD covary with neuromotor development during infancy. Shared genetic liability might partly explain the association between nonoptimal neuromotor development during infancy and autistic traits in childhood.
Collapse
Affiliation(s)
- Fadila Serdarevic
- Generation R Study Group, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands; Department of Child and Adolescent Psychiatry, Erasmus Medical Center-Sophia Children's Hospital Rotterdam, Rotterdam, The Netherlands; Department of Pediatrics, New York University School of Medicine, New York, New York
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry, Erasmus Medical Center-Sophia Children's Hospital Rotterdam, Rotterdam, The Netherlands; Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.
| | - Philip R Jansen
- Generation R Study Group, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands; Department of Child and Adolescent Psychiatry, Erasmus Medical Center-Sophia Children's Hospital Rotterdam, Rotterdam, The Netherlands; Department of Complex Trait Genetics, Center for Neuroscience and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Silvia Alemany
- Barcelona Institute for Global Health, Universitat Pompeu Fabra, CIBER Epidemiología y Salud Pública, Barcelona, Spain
| | - Yllza Xerxa
- Generation R Study Group, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands; Department of Child and Adolescent Psychiatry, Erasmus Medical Center-Sophia Children's Hospital Rotterdam, Rotterdam, The Netherlands
| | - Alexander Neumann
- Department of Child and Adolescent Psychiatry, Erasmus Medical Center-Sophia Children's Hospital Rotterdam, Rotterdam, The Netherlands
| | - Elise Robinson
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Manon H J Hillegers
- Generation R Study Group, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Frank C Verhulst
- Department of Child and Adolescent Psychiatry, Erasmus Medical Center-Sophia Children's Hospital Rotterdam, Rotterdam, The Netherlands
| | - Akhgar Ghassabian
- Department of Pediatrics, New York University School of Medicine, New York, New York; Department of Population Health, New York University School of Medicine, New York, New York; Department of Environmental Medicine, New York University School of Medicine, New York, New York
| |
Collapse
|
11
|
Parlikar R, Bose A, Venkatasubramanian G. Schizophrenia and Corollary Discharge: A Neuroscientific Overview and Translational Implications. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2019; 17:170-182. [PMID: 30905117 PMCID: PMC6478093 DOI: 10.9758/cpn.2019.17.2.170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/25/2018] [Accepted: 08/02/2018] [Indexed: 01/10/2023]
Abstract
Corollary discharge mechanism refers to the suppression of sensory consequences of self-generated actions; a process that serves to distinguish between self and non-self based on discrimination of origination of action. It explains, say for example, why we cannot tickle ourselves. This review discusses how corollary discharge model is an essential neural integration mechanism central to the motor functioning of animal kingdom. In this article, research conducted in the field of corollary discharge has been reviewed to understand the neuroanatomical and neurophysiological basis of corollary discharge and gain insight into the biochemical basis of its dysfunction. This review article also explores the role of corollary discharge and its dysfunction in the presentation of symptoms of schizophrenia, discussing the findings from corollary discharge studies on schizophrenia population. Lastly, the link between schizophrenia psychopathology and corollary discharge dysfunction has been highlighted, and an attempt has been made to establish a case for correction of corollary discharge deficit in schizophrenia through neuromodulation.
Collapse
Affiliation(s)
- Rujuta Parlikar
- WISER Program, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Anushree Bose
- WISER Program, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Ganesan Venkatasubramanian
- WISER Program, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| |
Collapse
|
12
|
Carrick FR, Pagnacco G, Hankir A, Abdulrahman M, Zaman R, Kalambaheti ER, Barton DA, Link PE, Oggero E. The Treatment of Autism Spectrum Disorder With Auditory Neurofeedback: A Randomized Placebo Controlled Trial Using the Mente Autism Device. Front Neurol 2018; 9:537. [PMID: 30026726 PMCID: PMC6041407 DOI: 10.3389/fneur.2018.00537] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/18/2018] [Indexed: 11/23/2022] Open
Abstract
Introduction: Children affected by autism spectrum disorder (ASD) often have impairment of social interaction and demonstrate difficulty with emotional communication, display of posture and facial expression, with recognized relationships between postural control mechanisms and cognitive functions. Beside standard biomedical interventions and psychopharmacological treatments, there is increasing interest in the use of alternative non-invasive treatments such as neurofeedback (NFB) that could potentially modulate brain activity resulting in behavioral modification. Methods: Eighty-three ASD subjects were randomized to an Active group receiving NFB using the Mente device and a Control group using a Sham device. Both groups used the device each morning for 45 minutes over a 12 week home based trial without any other clinical interventions. Pre and Post standard ASD questionnaires, qEEG and posturography were used to measure the effectiveness of the treatment. Results: Thirty-four subjects (17 Active and 17 Control) completed the study. Statistically and substantively significant changes were found in several outcome measures for subjects that received the treatment. Similar changes were not detected in the Control group. Conclusions: Our results show that a short 12 week course of NFB using the Mente Autism device can lead to significant changes in brain activity (qEEG), sensorimotor behavior (posturography), and behavior (standardized questionnaires) in ASD children.
Collapse
Affiliation(s)
- Frederick R Carrick
- Neurology, Carrick Institute, Cape Canaveral, FL, United States.,Bedfordshire Centre for Mental Health Research in Association with University of Cambridge, Cambridge, United Kingdom.,Harvard Macy Institute and MGH Institute of Health Professions, Boston, MA, United States
| | - Guido Pagnacco
- Bioengineering, Carrick Institute, Cape Canaveral, FL, United States.,Department of Electrical and Computer Engineering, University of Wyoming, Laramie, WY, United States
| | - Ahmed Hankir
- Bedfordshire Centre for Mental Health Research in Association with University of Cambridge, Cambridge, United Kingdom.,Psychiatry, Carrick Institute, Cape Canaveral, FL, United States.,Leeds York Partnership NHS Foundation Trust, Leeds, United Kingdom
| | - Mahera Abdulrahman
- Department of Medical Education, Dubai Health Authority, Dubai, United Arab Emirates.,Department of Primary Health Care, Dubai Medical College, Dubai, United Arab Emirates
| | - Rashid Zaman
- Bedfordshire Centre for Mental Health Research in Association with University of Cambridge, Cambridge, United Kingdom.,Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | | | - Derek A Barton
- Neurology, Carrick Institute, Cape Canaveral, FL, United States.,Neurology, Plasticity Brain Center, Orlando, FL, United States
| | - Paul E Link
- Neurology, Plasticity Brain Center, Orlando, FL, United States
| | - Elena Oggero
- Bioengineering, Carrick Institute, Cape Canaveral, FL, United States.,Department of Electrical and Computer Engineering, University of Wyoming, Laramie, WY, United States
| |
Collapse
|
13
|
Białuńska A, Salvatore AP. The auditory comprehension changes over time after sport-related concussion can indicate multisensory processing dysfunctions. Brain Behav 2017; 7:e00874. [PMID: 29299391 PMCID: PMC5745251 DOI: 10.1002/brb3.874] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/04/2017] [Accepted: 10/12/2017] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Although science findings and treatment approaches of a concussion have changed in recent years, there continue to be challenges in understanding the nature of the post-concussion behavior. There is growing a body of evidence that some deficits can be related to an impaired auditory processing. PURPOSE To assess auditory comprehension changes over time following sport-related concussion (SRC) in young athletes. METHODS A prospective, repeated measures mixed-design was used. A sample of concussed athletes (n = 137) and the control group consisted of age-matched, non-concussed athletes (n = 143) were administered Subtest VIII of the Computerized-Revised Token Test (C-RTT). The 88 concussed athletes selected for final analysis (neither previous history of brain injury, neurological, psychiatric problems, nor auditory deficits) were evaluated after injury during three sessions (PC1, PC2, and PC3); controls were tested once. Between- and within-group comparisons using RMANOVA were performed on the C-RTT Efficiency Score (ES). RESULTS ES of the SRC athletes group improved over consecutive testing sessions (F = 14.7, p < .001), while post-hoc analysis showed that PC1 results differed from PC2 and PC3 (ts ≥ 4.0, ps < .001), but PC2 and PC3 C-RTT ES did not change statistically (t = 0.6, p = .557). The SRC athletes demonstrated lower ES for all test session when compared to the control group (ts > 2.0, Ps<.01). CONCLUSION Dysfunctional auditory comprehension performance following a concussion improved over time, but after the second testing session improved performance slowed, especially in terms of its timing. Yet, not only auditory processing but also sensorimotor integration and/or motor execution can be compromised after a concussion.
Collapse
Affiliation(s)
- Anita Białuńska
- Department of Rehabilitation Sciences College of Health Sciences University of Texas at El Paso El Paso TX USA.,Department of Cognitive Psychology University of Finance and Management in Warsaw Warsaw Poland
| | - Anthony P Salvatore
- Department of Rehabilitation Sciences College of Health Sciences University of Texas at El Paso El Paso TX USA.,Department of Communicative Disorders University of Louisiana-Lafayette Lafayette LA USA
| |
Collapse
|
14
|
Buhusi M, Obray D, Guercio B, Bartlett MJ, Buhusi CV. Chronic mild stress impairs latent inhibition and induces region-specific neural activation in CHL1-deficient mice, a mouse model of schizophrenia. Behav Brain Res 2017. [PMID: 28647594 DOI: 10.1016/j.bbr.2017.06.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Schizophrenia is a neurodevelopmental disorder characterized by abnormal processing of information and attentional deficits. Schizophrenia has a high genetic component but is precipitated by environmental factors, as proposed by the 'two-hit' theory of schizophrenia. Here we compared latent inhibition as a measure of learning and attention, in CHL1-deficient mice, an animal model of schizophrenia, and their wild-type littermates, under no-stress and chronic mild stress conditions. All unstressed mice as well as the stressed wild-type mice showed latent inhibition. In contrast, CHL1-deficient mice did not show latent inhibition after exposure to chronic stress. Differences in neuronal activation (c-Fos-positive cell counts) were noted in brain regions associated with latent inhibition: Neuronal activation in the prelimbic/infralimbic cortices and the nucleus accumbens shell was affected solely by stress. Neuronal activation in basolateral amygdala and ventral hippocampus was affected independently by stress and genotype. Most importantly, neural activation in nucleus accumbens core was affected by the interaction between stress and genotype. These results provide strong support for a 'two-hit' (genes x environment) effect on latent inhibition in CHL1-deficient mice, and identify CHL1-deficient mice as a model of schizophrenia-like learning and attention impairments.
Collapse
Affiliation(s)
- Mona Buhusi
- Interdisciplinary Program in Neuroscience, USTAR BioInnovations Center, Dept. Psychology, Utah State University, Logan UT, United States.
| | - Daniel Obray
- Interdisciplinary Program in Neuroscience, USTAR BioInnovations Center, Dept. Psychology, Utah State University, Logan UT, United States
| | - Bret Guercio
- Interdisciplinary Program in Neuroscience, USTAR BioInnovations Center, Dept. Psychology, Utah State University, Logan UT, United States
| | - Mitchell J Bartlett
- Interdisciplinary Program in Neuroscience, USTAR BioInnovations Center, Dept. Psychology, Utah State University, Logan UT, United States
| | - Catalin V Buhusi
- Interdisciplinary Program in Neuroscience, USTAR BioInnovations Center, Dept. Psychology, Utah State University, Logan UT, United States
| |
Collapse
|
15
|
Yu NY, Chang SH. Kinematic Analyses of Graphomotor Functions in Individuals with Alzheimer’s Disease and Amnestic Mild Cognitive Impairment. J Med Biol Eng 2016. [DOI: 10.1007/s40846-016-0143-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
16
|
Selective Persistence of Sensorimotor Mismatch Signals in Visual Cortex of Behaving Alzheimer’s Disease Mice. Curr Biol 2016; 26:956-64. [DOI: 10.1016/j.cub.2016.01.070] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 12/23/2015] [Accepted: 01/28/2016] [Indexed: 11/20/2022]
|
17
|
Brown JA, Ramikie TS, Schmidt MJ, Báldi R, Garbett K, Everheart MG, Warren LE, Gellért L, Horváth S, Patel S, Mirnics K. Inhibition of parvalbumin-expressing interneurons results in complex behavioral changes. Mol Psychiatry 2015; 20:1499-507. [PMID: 25623945 PMCID: PMC4516717 DOI: 10.1038/mp.2014.192] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 11/06/2014] [Accepted: 12/08/2014] [Indexed: 12/20/2022]
Abstract
Reduced expression of the Gad1 gene-encoded 67-kDa protein isoform of glutamic acid decarboxylase (GAD67) is a hallmark of schizophrenia. GAD67 downregulation occurs in multiple interneuronal sub-populations, including the parvalbumin-positive (PVALB+) cells. To investigate the role of the PV-positive GABAergic interneurons in behavioral and molecular processes, we knocked down the Gad1 transcript using a microRNA engineered to target specifically Gad1 mRNA under the control of Pvalb bacterial artificial chromosome. Verification of construct expression was performed by immunohistochemistry. Follow-up electrophysiological studies revealed a significant reduction in γ-aminobutyric acid (GABA) release probability without alterations in postsynaptic membrane properties or changes in glutamatergic release probability in the prefrontal cortex pyramidal neurons. Behavioral characterization of our transgenic (Tg) mice uncovered that the Pvalb/Gad1 Tg mice have pronounced sensorimotor gating deficits, increased novelty-seeking and reduced fear extinction. Furthermore, NMDA (N-methyl-d-aspartate) receptor antagonism by ketamine had an opposing dose-dependent effect, suggesting that the differential dosage of ketamine might have divergent effects on behavioral processes. All behavioral studies were validated using a second cohort of animals. Our results suggest that reduction of GABAergic transmission from PVALB+ interneurons primarily impacts behavioral domains related to fear and novelty seeking and that these alterations might be related to the behavioral phenotype observed in schizophrenia.
Collapse
Affiliation(s)
- Jacquelyn A. Brown
- Department of Psychiatry, Vanderbilt University, Nashville, TN 37232, USA,Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235, USA
| | - Teniel S. Ramikie
- Department of Psychiatry, Vanderbilt University, Nashville, TN 37232, USA,Neuroscience Graduate Program, Vanderbilt University, Nashville, TN 37232, USA
| | - Martin J. Schmidt
- Department of Psychiatry, Vanderbilt University, Nashville, TN 37232, USA,Neuroscience Graduate Program, Vanderbilt University, Nashville, TN 37232, USA
| | - Rita Báldi
- Department of Psychiatry, Vanderbilt University, Nashville, TN 37232, USA
| | - Krassimira Garbett
- Department of Psychiatry, Vanderbilt University, Nashville, TN 37232, USA
| | | | - Lambert E. Warren
- Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA
| | - Levente Gellért
- Department of Psychiatry, University of Szeged, 6725 Szeged, Hungary
| | - Szatmár Horváth
- Department of Psychiatry, Vanderbilt University, Nashville, TN 37232, USA,Department of Psychiatry, University of Szeged, 6725 Szeged, Hungary
| | - Sachin Patel
- Department of Psychiatry, Vanderbilt University, Nashville, TN 37232, USA,Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Károly Mirnics
- Department of Psychiatry, Vanderbilt University, Nashville, TN 37232, USA,Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235, USA,Department of Psychiatry, University of Szeged, 6725 Szeged, Hungary,Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA,Correspondence: Karoly Mirnics, Department of Psychiatry, Vanderbilt University, 8130A MRB III, 465 21st Avenue South, Nashville TN 37232, USA, , Office phone: 615-936-1074, www.mirnicslab.org
| |
Collapse
|
18
|
Dede E, Zalonis I, Gatzonis S, Sakas D. Integration of computers in cognitive assessment and level of comprehensiveness of frequently used computerized batteries. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.npbr.2015.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Holston EC. The Electrophysiological Phenomenon of Alzheimer's Disease: A Psychopathology Theory. Issues Ment Health Nurs 2015; 36:603-13. [PMID: 26379134 DOI: 10.3109/01612840.2015.1015696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The current understanding of Alzheimer's disease (AD) is based on the Aβ and tau pathology and the resulting neuropathological changes, which are associated with manifested clinical symptoms. However, electrophysiological brain changes may provide a more expansive understanding of AD. Hence, the objective of this systematic review is to propose a theory about the electrophysiological phenomenon of Alzheimer's disease (EPAD). The review of literature resulted from an extensive search of PubMed and MEDLINE databases. One-hundred articles were purposively selected. They provided an understanding of the concepts establishing the theory of EPAD (neuropathological changes, neurochemical changes, metabolic changes, and electrophysiological brain changes). Changes in the electrophysiology of the brain are foundational to the association or interaction of the concepts. Building on Berger's Psychophysical Model, it is evident that electrophysiological brain changes occur and affect cortical areas to generate or manifest symptoms from onset and across the stages of AD, which may be prior to pathological changes. Therefore, the interaction of the concepts demonstrates how the psychopathology results from affected electrophysiology of the brain. The theory of the EPAD provides a theoretical foundation for appropriate measurements of AD without dependence on neuropathological changes. Future research is warranted to further test this theory. Ultimately, this theory contributes to existing knowledge because it shows how electrophysiological changes are useful in understanding the risk and progression of AD across the stages.
Collapse
Affiliation(s)
- Ezra C Holston
- a University of Tennessee-Knoxville , College of Nursing , Knoxville , Tennessee , USA
| |
Collapse
|
20
|
Rich ME, Caldwell HK. A Role for Oxytocin in the Etiology and Treatment of Schizophrenia. Front Endocrinol (Lausanne) 2015; 6:90. [PMID: 26089815 PMCID: PMC4453483 DOI: 10.3389/fendo.2015.00090] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 05/15/2015] [Indexed: 01/12/2023] Open
Abstract
Schizophrenia is a chronic debilitating neuropsychiatric disorder estimated to affect 51 million people worldwide. Several symptom domains characterize schizophrenia, including negative symptoms, such as social withdrawal and anhedonia, cognitive impairments, such as disorganized thinking and impaired memory, and positive symptoms, such as hallucinations and delusions. While schizophrenia is a complex neuropsychiatric disorder with no single "cause," there is evidence that the oxytocin (Oxt) system may be dysregulated in some individuals. Further, treatment with intranasal Oxt reduces some of the heterogeneous symptoms associated with schizophrenia. Since Oxt is known for its modulatory effects on a variety of social and non-social behaviors, it is perhaps not surprising that it may contribute to some aspects of schizophrenia and could also be a useful therapeutic agent. In this review, we highlight what is known about Oxt's contributions to schizophrenia and schizophrenia-related behaviors and discuss its potential as a therapeutic agent.
Collapse
Affiliation(s)
- Megan Elizabeth Rich
- Laboratory of Neuroendocrinology and Behavior, Department of Biological Sciences, The School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Heather Kingsley Caldwell
- Laboratory of Neuroendocrinology and Behavior, Department of Biological Sciences, The School of Biomedical Sciences, Kent State University, Kent, OH, USA
- *Correspondence: Heather Kingsley Caldwell, Laboratory of Neuroendocrinology and Behavior, Department of Biological Sciences, The School of Biomedical Sciences, Kent State University, PO Box 5190, 121 Cunningham Hall, Kent, OH 44242, USA,
| |
Collapse
|
21
|
Plenty S, Bejerot S, Eriksson K. Humor Style and Motor Skills: Understanding Vulnerability to Bullying. EUROPES JOURNAL OF PSYCHOLOGY 2014. [DOI: 10.5964/ejop.v10i3.749] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The purpose of this study was to examine the role of humor style and motor skills in vulnerability to bullying. 729 adults responded to the Humor Style Questionnaire (HSQ) and items retrospectively addressing their motor skills and bullying experiences during childhood. Consistent with recent research, poorer motor skills were associated with a greater extent of having been bullied. An association between stronger motor skills and affiliative humor was found, lending support to a shared biological basis theory underlying social and motor competency processes. Most importantly, being bullied was associated with higher self-defeating humor and lower affiliative humor. This supports earlier theoretical work by Klein and Kuiper (2006) and highlights the role that humor styles play in social interactions that can promote positive peer acceptance and wellbeing.
Collapse
|
22
|
Peciccia M, Mazzeschi C, Donnari S, Buratta L. A Sensory-Motor Approach for Patients with a Diagnosis of Psychosis. Some Data From an Empirical Investigation on Amniotic Therapy. PSYCHOSIS-PSYCHOLOGICAL SOCIAL AND INTEGRATIVE APPROACHES 2014. [DOI: 10.1080/17522439.2014.926560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Schneider F, Baldauf K, Wetzel W, Reymann KG. Behavioral and EEG changes in male 5xFAD mice. Physiol Behav 2014; 135:25-33. [PMID: 24907698 DOI: 10.1016/j.physbeh.2014.05.041] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/23/2014] [Accepted: 05/28/2014] [Indexed: 11/18/2022]
Abstract
Transgenic animal models of Alzheimer's disease (AD) are widely used to investigate mechanisms of pathophysiology and cognitive dysfunctions. A model with a very early development of parenchymal plaque load at the age of 2months is the 5xFAD mouse (Tg6799, Oakley et al. 2006). These 5xFAD mice over-express both human amyloid precursor protein (APP) and human presenilin 1 (PS1). Mice from this line have a high APP expression correlating with a high burden and an accelerated accumulation of the 42 amino acid species of amyloid-β (Aβ). The aim of this study was the behavioral and functional investigations of 5xFAD males because in most studies females of this strain were characterized. In comparison to literature of transgenic 5xFAD females, transgenic 5xFAD males showed decreased anxiety in the elevated plus maze, reduced locomotion and exploration in the open field and disturbances in learning performance in the Morris water maze starting at 9months of age. Electroencephalogram (EEG) recordings on 6month old transgenic mice revealed a decrease of delta, theta, alpha, beta and gamma frequency bands whereas the subdelta frequency was increased. EEG recordings during sleep showed a reduction of rapid eye movement sleep in relation to the amount of total sleep. Thus, 5xFAD males develop early functional disturbances and subsequently behavioral deficits and therefore they are a good mouse model for studying Alzheimer's disease.
Collapse
Affiliation(s)
- F Schneider
- German Centre for Neurodegenerative Diseases (DZNE), D-39120 Magdeburg, Germany.
| | - K Baldauf
- German Centre for Neurodegenerative Diseases (DZNE), D-39120 Magdeburg, Germany.
| | - W Wetzel
- Leibniz Institute for Neurobiology, Brenneckestr. 6, D-39118 Magdeburg, Germany.
| | - K G Reymann
- German Centre for Neurodegenerative Diseases (DZNE), D-39120 Magdeburg, Germany; Leibniz Institute for Neurobiology, Brenneckestr. 6, D-39118 Magdeburg, Germany.
| |
Collapse
|
24
|
Di Martino A, Zuo XN, Kelly C, Grzadzinski R, Mennes M, Schvarcz A, Rodman J, Lord C, Castellanos FX, Milham MP. Shared and distinct intrinsic functional network centrality in autism and attention-deficit/hyperactivity disorder. Biol Psychiatry 2013; 74:623-32. [PMID: 23541632 PMCID: PMC4508007 DOI: 10.1016/j.biopsych.2013.02.011] [Citation(s) in RCA: 264] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 01/10/2013] [Accepted: 02/11/2013] [Indexed: 02/04/2023]
Abstract
BACKGROUND Individuals with autism spectrum disorders (ASD) often exhibit symptoms of attention-deficit/hyperactivity disorder (ADHD). Across both disorders, observations of distributed functional abnormalities suggest aberrant large-scale brain network connectivity. Yet, common and distinct network correlates of ASD and ADHD remain unidentified. Here, we aimed to examine patterns of dysconnection in school-age children with ASD and ADHD and typically developing children who completed a resting state functional magnetic resonance imaging scan. METHODS We measured voxelwise network centrality, functional connectivity metrics indexing local (degree centrality [DC]) and global (eigenvector centrality) functional relationships across the entire brain connectome, in resting state functional magnetic resonance imaging data from 56 children with ASD, 45 children with ADHD, and 50 typically developing children. A one-way analysis of covariance, with group as fixed factor (whole-brain corrected), was followed by post hoc pairwise comparisons. RESULTS Cortical and subcortical areas exhibited centrality abnormalities, some common to both ADHD and ASD, such as in precuneus. Others were disorder-specific and included ADHD-related increases in DC in right striatum/pallidum, in contrast with ASD-related increases in bilateral temporolimbic areas. Secondary analyses differentiating children with ASD into those with or without ADHD-like comorbidity (ASD(+) and ASD(-), respectively) revealed that the ASD(+) group shared ADHD-specific abnormalities in basal ganglia. By contrast, centrality increases in temporolimbic areas characterized children with ASD regardless of ADHD-like comorbidity. At the cluster level, eigenvector centrality group patterns were similar to DC. CONCLUSIONS ADHD and ASD are neurodevelopmental disorders with distinct and overlapping clinical presentations. This work provides evidence for both shared and distinct underlying mechanisms at the large-scale network level.
Collapse
|
25
|
Silverstein SM, Wang Y, Keane BP. Cognitive and neuroplasticity mechanisms by which congenital or early blindness may confer a protective effect against schizophrenia. Front Psychol 2013; 3:624. [PMID: 23349646 PMCID: PMC3552473 DOI: 10.3389/fpsyg.2012.00624] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Accepted: 12/31/2012] [Indexed: 12/12/2022] Open
Abstract
Several authors have noted that there are no reported cases of people with schizophrenia who were born blind or who developed blindness shortly after birth, suggesting that congenital or early (C/E) blindness may serve as a protective factor against schizophrenia. By what mechanisms might this effect operate? Here, we hypothesize that C/E blindness offers protection by strengthening cognitive functions whose impairment characterizes schizophrenia, and by constraining cognitive processes that exhibit excessive flexibility in schizophrenia. After briefly summarizing evidence that schizophrenia is fundamentally a cognitive disorder, we review areas of perceptual and cognitive function that are both impaired in the illness and augmented in C/E blindness, as compared to healthy sighted individuals. We next discuss: (1) the role of neuroplasticity in driving these cognitive changes in C/E blindness; (2) evidence that C/E blindness does not confer protective effects against other mental disorders; and (3) evidence that other forms of C/E sensory loss (e.g., deafness) do not reduce the risk of schizophrenia. We conclude by discussing implications of these data for designing cognitive training interventions to reduce schizophrenia-related cognitive impairment, and perhaps to reduce the likelihood of the development of the disorder itself.
Collapse
Affiliation(s)
- Steven M. Silverstein
- University Behavioral HealthCare, University of Medicine and Dentistry of New JerseyPiscataway, NJ, USA
- Department of Psychiatry, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical SchoolPiscataway, NJ, USA
| | - Yushi Wang
- University Behavioral HealthCare, University of Medicine and Dentistry of New JerseyPiscataway, NJ, USA
| | - Brian P. Keane
- University Behavioral HealthCare, University of Medicine and Dentistry of New JerseyPiscataway, NJ, USA
- Department of Psychiatry, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical SchoolPiscataway, NJ, USA
- Rutgers University Center for Cognitive SciencePiscataway, NJ, USA
| |
Collapse
|
26
|
Buhusi M, Scripa I, Williams CL, Buhusi CV. Impaired interval timing and spatial-temporal integration in mice deficient in CHL1, a gene associated with schizophrenia. TIMING & TIME PERCEPTION 2013; 1:21-38. [PMID: 28890867 DOI: 10.1163/22134468-00002003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Interval timing is crucial for decision-making and motor control and is impaired in many neuropsychiatric disorders, including schizophrenia - a neurodevelopmental disorder with a strong genetic component. Several gene mutations, polymorphisms or rare copy number variants have been associated with schizophrenia. L1 cell adhesion molecules (L1CAMs) are involved in neurodevelopmental processes, and in synaptic function and plasticity in the adult brain. Mice deficient in the Close Homolog to L1 (CHL1) adhesion molecule show alterations of hippocampal and thalamo-cortical neuroanatomy as well as deficits in sensorimotor gating and exploratory behavior. We analyzed interval timing and attentional control of temporal and spatial information in male CHL1 deficient (KO) mice and wild type (WT) controls. In a 20-s peak-interval timing procedure (standard and reversed), KO mice showed a maintained leftward shift of the response function relative to WT, indicative of a deficit in memory encoding/decoding. In trials with 2, 5, or 10-s gaps, KO mice shifted their peak times less than WT controls at longer gap durations, suggesting a decreased (attentional) effect of interruptions. In the spatial-temporal task, KO mice made more working and reference memory errors than controls, suggestive of impaired use of spatial and/or temporal information. When the duration spent on the central platform of the maze was manipulated, WT mice showed fewer spatial errors at the trained duration than at shorter or longer durations, indicative of discrimination based upon spatial-temporal integration. In contrast, performance was similar at all tested durations in KO mice, indicative of control by spatial cues, but not by temporal cues. These results suggest that CHL1 KO mice selectively attend to the more relevant cues of the task, and fail to integrate more complex spatial-temporal information, possibly as a result of reduced memory capacity related to hippocampal impairment, and altered temporal-integration mechanisms possibly due to thalamo-cortical anomalies.
Collapse
Affiliation(s)
- Mona Buhusi
- USTAR BioInnovations Center, Dept. Psychology, Utah State University, Logan UT
| | - Ioana Scripa
- USTAR BioInnovations Center, Dept. Psychology, Utah State University, Logan UT
| | | | - Catalin V Buhusi
- USTAR BioInnovations Center, Dept. Psychology, Utah State University, Logan UT
| |
Collapse
|