1
|
Ali N, Hasan RA, Ibrahim IA, Mahmoud MF. Agomelatine attenuates dexamethasone-induced neurotoxicity in rats through the activation of MT1/2 receptors and attenuation of oxidative stress. Eur J Pharmacol 2025; 998:177659. [PMID: 40274180 DOI: 10.1016/j.ejphar.2025.177659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 04/10/2025] [Accepted: 04/22/2025] [Indexed: 04/26/2025]
Abstract
Previous studies showed that agomelatine ameliorates doxorubicin-induced brain injury in rats. Furthermore, it protects neurons against oxidative stress triggered by acute ischemia reperfusion injury. So, this study aimed to investigate the possible neuroprotective effects of agomelatine on dexamethasone-induced neurotoxicity in rats and the underlying mechanisms. Subcutaneous injections of dexamethasone (10 mg/kg, 4 days) were used to induce neurotoxicity in rats. Agomelatine (10 mg/kg), luzindole (2.5 mg/kg, a melatonin receptor blocker), and luzindole plus agomelatine treatment commenced 3 days before dexamethasone injections and concurrent with dexamethasone injections. Elevated plus maze test, Y-maze test and open field test were carried out after 1 h of the last dose of dexamethasone on day 7. On 8th day of the experiment, brain tissues were collected. Brain oxidative stress markers, immunohistochemical expression of β-amyloid and glial fibrillary acidic protein (GFAP) were measured. Moreover, histopathological changes in the cerebral cortex and hippocampus were recorded and the number of damaged cells was counted. Dexamethasone increased anxiety and memory impairment but decreased locomotor exploration activity. Furthermore, it increased brain oxidative stress, expression of β-amyloid and GFAP, increased the number of damaged neurons, and caused structural changes in cerebral cortex and hippocampus. All these deleterious changes were mitigated by agomelatine. Luzindole prior administration to agomelatine reversed the protective effects of agomelatine except its effect on lipid peroxidation. Collectively, these findings suggest that agomelatine can protect against dexamethasone-induced neurotoxicity partially by activating melatonin receptors in addition to exerting antioxidant effects.
Collapse
Affiliation(s)
- Noura Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Rehab A Hasan
- Department of Histology, Faculty of Medicine for Girls, Al Azhar University, Cairo, 11751, Egypt
| | - Islam Ahmed Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Mona F Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
2
|
Khoshnevis S, Smolensky MH, Haghayegh S. Circadian attributes of neurological and psychiatric disorders as basis for their medication chronotherapy. Adv Drug Deliv Rev 2025:115576. [PMID: 40187645 DOI: 10.1016/j.addr.2025.115576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/13/2025] [Accepted: 03/24/2025] [Indexed: 04/07/2025]
Abstract
This review focuses on (i) 24 h patterns in the symptom intensity of common neurologic and psychiatric disorders and (ii) medications prescribed for their management that have a recommended administration time or schedule, presumably to potentiate desired and minimize undesired effects and by definition qualify them as chronotherapies. Predictable-in-time patterning of symptoms is exhibited by many neurologic - headaches, multiple sclerosis, neurogenic orthostatic hypotension, neuropathic pain, Parkinson's disease, epileptic seizure, attention deficit hyperactivity, Alzheimer's disease - and psychiatric - eating, depressive, obsessive-compulsive, post-traumatic stress, anxiety, and panic - disorders, due either to circadian rhythms of disease pathophysiology or inadequacies of medication-delivery systems. Circadian disruption and circadian misalignment of the sleep-wake and other 24 h rhythms plus late chronotype are characteristic of many of these disorders, suggesting involvement in the mechanisms or consequence of their pathology or as an adverse effect of therapy, especially when administered at an inappropriate biological time. The Prescribers' Digital Reference, a compendium of all prescription medications approved for marketing in the US, reveals 65 of them are utilized to manage neurologic and psychiatric disorders by a recommended specified time-of-day or an asymmetrical interval or strength of dose schedule, presumably to optimize beneficial and minimize adverse effects, thereby qualifying them as chronotherapies. Overall, the contents of this review are intended to inform the development of future chronotherapies that incorporate state-of-the-art drug-delivery systems to improve management of neurologic and psychiatric disorders and associated circadian malalignment and disruption.
Collapse
Affiliation(s)
- Sepideh Khoshnevis
- Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX, USA.
| | - Michael H Smolensky
- Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX, USA; Department of Internal Medicine, Division of Cardiology, McGovern School of Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Shahab Haghayegh
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, MA, United States; Harvard Medical School, Boston, MA, United States; Broad Institute, Cambridge, MA, United States
| |
Collapse
|
3
|
Mottarlini F, Caffino L, Fumagalli F, Calabrese F, Brivio P. NeuropsychopharmARCology: Shaping Neuroplasticity through Arc/ Arg3.1 Modulation. Curr Neuropharmacol 2025; 23:650-670. [PMID: 39473108 DOI: 10.2174/011570159x338335240903075655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/25/2024] [Accepted: 07/18/2024] [Indexed: 11/05/2024] Open
Abstract
Activity-regulated cytoskeleton-associated protein (aka activity-regulated gene Arg3.1) belongs to the effector gene family of the immediate early genes. This family encodes effector proteins, which act directly on cellular homeostasis and function. Arc/Arg3.1 is localized at dendritic processes, allowing the protein local synthesis on demand, and it is considered a reliable index of activity- dependent synaptic changes. Evidence also exists showing the critical role of Arc/Arg3.1 in memory processes. The high sensitivity to changes in neuronal activity, its specific localization as well as its involvement in long-term synaptic plasticity indeed make this effector gene a potential, critical target of the action of psychotropic drugs. In this review, we focus on antipsychotic and antidepressant drugs as well as on psychostimulants, which belong to the category of drugs of abuse but can also be used as drugs for specific disorders of the central nervous system (i.e., Attention Deficit Hyperactivity Disorder). It is demonstrated that psychotropic drugs with different mechanisms of action converge on Arc/Arg3.1, providing a means whereby Arc/Arg3.1 synaptic modulation may contribute to their therapeutic activity. The potential translational implications for different neuropsychiatric conditions are also discussed, recognizing that the treatment of these disorders is indeed complex and involves the simultaneous regulation of several dysfunctional mechanisms.
Collapse
Affiliation(s)
- Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Paola Brivio
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| |
Collapse
|
4
|
Koai YA, Huang CC, Liang CS, Yeh TC. Agomelatine as an Effective Intervention for Psychiatric Symptoms in Postacute Sequelae of COVID-19. J Clin Psychopharmacol 2024; 44:195-196. [PMID: 38421926 DOI: 10.1097/jcp.0000000000001823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
|
5
|
Palamarchuk IS, Slavich GM, Vaillancourt T, Rajji TK. Stress-related cellular pathophysiology as a crosstalk risk factor for neurocognitive and psychiatric disorders. BMC Neurosci 2023; 24:65. [PMID: 38087196 PMCID: PMC10714507 DOI: 10.1186/s12868-023-00831-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
In this narrative review, we examine biological processes linking psychological stress and cognition, with a focus on how psychological stress can activate multiple neurobiological mechanisms that drive cognitive decline and behavioral change. First, we describe the general neurobiology of the stress response to define neurocognitive stress reactivity. Second, we review aspects of epigenetic regulation, synaptic transmission, sex hormones, photoperiodic plasticity, and psychoneuroimmunological processes that can contribute to cognitive decline and neuropsychiatric conditions. Third, we explain mechanistic processes linking the stress response and neuropathology. Fourth, we discuss molecular nuances such as an interplay between kinases and proteins, as well as differential role of sex hormones, that can increase vulnerability to cognitive and emotional dysregulation following stress. Finally, we explicate several testable hypotheses for stress, neurocognitive, and neuropsychiatric research. Together, this work highlights how stress processes alter neurophysiology on multiple levels to increase individuals' risk for neurocognitive and psychiatric disorders, and points toward novel therapeutic targets for mitigating these effects. The resulting models can thus advance dementia and mental health research, and translational neuroscience, with an eye toward clinical application in cognitive and behavioral neurology, and psychiatry.
Collapse
Affiliation(s)
- Iryna S Palamarchuk
- Centre for Addiction and Mental Health, 1001 Queen Street West, Toronto, ON, M6J1H4, Canada.
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Sunnybrook Health Sciences Centre, Division of Neurology, Toronto, ON, Canada.
- Temerty Faculty of Medicine, Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada.
| | - George M Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tracy Vaillancourt
- Counselling Psychology, Faculty of Education, University of Ottawa, Ottawa, ON, Canada
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Tarek K Rajji
- Centre for Addiction and Mental Health, 1001 Queen Street West, Toronto, ON, M6J1H4, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Temerty Faculty of Medicine, Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Mitroshina EV, Marasanova EA, Vedunova MV. Functional Dimerization of Serotonin Receptors: Role in Health and Depressive Disorders. Int J Mol Sci 2023; 24:16416. [PMID: 38003611 PMCID: PMC10671093 DOI: 10.3390/ijms242216416] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Understanding the neurobiological underpinnings of depressive disorder constitutes a pressing challenge in the fields of psychiatry and neurobiology. Depression represents one of the most prevalent forms of mental and behavioral disorders globally. Alterations in dimerization capacity can influence the functional characteristics of serotonin receptors and may constitute a contributing factor to the onset of depressive disorders. The objective of this review is to consolidate the current understanding of interactions within the 5-HT receptor family and between 5-HT receptors and members of other receptor families. Furthermore, it aims to elucidate the role of such complexes in depressive disorders and delineate the mechanisms through which antidepressants exert their effects.
Collapse
Affiliation(s)
- Elena V. Mitroshina
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (E.A.M.)
| | - Ekaterina A. Marasanova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (E.A.M.)
| | - Maria V. Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (E.A.M.)
- Faculty of Biology and Biotechnology, HSE University, St. Profsoyuznaya, 33, 117418 Moscow, Russia
| |
Collapse
|
7
|
Noworyta K, Cieslik-Starkiewicz A, Rygula R. Importance of additional behavioral observation in psychopharmacology: a case study on agomelatine's effects on feedback sensitivity in probabilistic reversal learning in rats. Psychopharmacology (Berl) 2023:10.1007/s00213-023-06443-2. [PMID: 37572112 DOI: 10.1007/s00213-023-06443-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/31/2023] [Indexed: 08/14/2023]
Abstract
Since the second half of the twentieth century, many important discoveries in the field of behavioral psychopharmacology have been made using operant conditioning cages. These cages provide objective data collection and have revolutionized behavioral research. Unfortunately, in the rush towards automation, many mistakes may have been made that could have been avoided by observing experimental animals. The study described in this paper is an excellent example of how important additional behavioral observation can be for interpreting instrumental data. In this study, we evaluated the effects of single injections of 3 different doses of agomelatine (5, 10, and 40 mg/kg) on feedback sensitivity in rats. To this end, we tested 40 animals in the instrumental probabilistic reversal learning task in a Latin square design. The highest applied dose of agomelatine, prima facie, reduced the sensitivity of rats to negative feedback - an effect that can be considered antidepressant. However, additional behavioral observation dramatically changed the interpretation of the results and revealed that the perceived effect of agomelatine on sensitivity to negative feedback can actually be attributed to drug-induced drowsiness.
Collapse
Affiliation(s)
- Karolina Noworyta
- Affective Cognitive Neuroscience Laboratory, Department of Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343, Krakow, Poland
| | - Agata Cieslik-Starkiewicz
- Affective Cognitive Neuroscience Laboratory, Department of Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343, Krakow, Poland
| | - Rafal Rygula
- Affective Cognitive Neuroscience Laboratory, Department of Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343, Krakow, Poland.
| |
Collapse
|
8
|
Caniceiro AB, Bueschbell B, Schiedel AC, Moreira IS. Class A and C GPCR Dimers in Neurodegenerative Diseases. Curr Neuropharmacol 2022; 20:2081-2141. [PMID: 35339177 PMCID: PMC9886835 DOI: 10.2174/1570159x20666220327221830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/21/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022] Open
Abstract
Neurodegenerative diseases affect over 30 million people worldwide with an ascending trend. Most individuals suffering from these irreversible brain damages belong to the elderly population, with onset between 50 and 60 years. Although the pathophysiology of such diseases is partially known, it remains unclear upon which point a disease turns degenerative. Moreover, current therapeutics can treat some of the symptoms but often have severe side effects and become less effective in long-term treatment. For many neurodegenerative diseases, the involvement of G proteincoupled receptors (GPCRs), which are key players of neuronal transmission and plasticity, has become clearer and holds great promise in elucidating their biological mechanism. With this review, we introduce and summarize class A and class C GPCRs, known to form heterodimers or oligomers to increase their signalling repertoire. Additionally, the examples discussed here were shown to display relevant alterations in brain signalling and had already been associated with the pathophysiology of certain neurodegenerative diseases. Lastly, we classified the heterodimers into two categories of crosstalk, positive or negative, for which there is known evidence.
Collapse
Affiliation(s)
- Ana B. Caniceiro
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Beatriz Bueschbell
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Anke C. Schiedel
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany;
| | - Irina S. Moreira
- University of Coimbra, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; ,Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal,Address correspondence to this author at the Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal; E-mail:
| |
Collapse
|
9
|
Kholghi G, Eskandari M, Shokouhi Qare Saadlou MS, Zarrindast MR, Vaseghi S. Night shift hormone: How does melatonin affect depression? Physiol Behav 2022; 252:113835. [PMID: 35504318 DOI: 10.1016/j.physbeh.2022.113835] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 12/23/2022]
Abstract
Melatonin is the main hormone secreted by the pineal gland that modulates the circadian rhythm and mood. Previous studies have shown the therapeutic effects of melatonin, or its important analogue, agomelatine, on depression. In this review study, we aimed to discuss the potential mechanisms of melatonin involved in the treatment of depression. It was noted that disrupted circadian rhythm can lead to depressive state, and melatonin via regulating circadian rhythm shows a therapeutic effect. It was also noted that melatonin induces antidepressant effects via promoting antioxidant system and neurogenesis, and suppressing oxidative stress, neuroinflammation, and apoptosis. The interaction effect between melatonin or agomelatine and serotonergic signaling has a significant effect on depression. It was noted that the psychotropic effects of agomelatine are induced by the synergistic interaction between melatonin and 5-HT2C receptors. Agomelatine also interacts with glutamatergic signaling in brain regions involved in regulating mood and circadian rhythm. Interestingly, it was concluded that melatonin exerts both pro- and anti-inflammatory effects, depending on the grade of inflammation. It was suggested that synergistic interaction between melatonin and 5-HT2C receptors may be able to induce therapeutic effects on other psychiatric disorders. Furthermore, dualistic role of melatonin in regulating inflammation is an important point that can be examined at different levels of inflammation in animal models of depression.
Collapse
Affiliation(s)
- Gita Kholghi
- Department of Psychology, Faculty of Human Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Maliheh Eskandari
- Faculty of Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Salar Vaseghi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
| |
Collapse
|
10
|
Klein ME, Grice AB, Sheth S, Go M, Murrough JW. Pharmacological Treatments for Anhedonia. Curr Top Behav Neurosci 2022; 58:467-489. [PMID: 35507281 DOI: 10.1007/7854_2022_357] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Anhedonia - the reduced ability to experience or respond to pleasure - is an important symptom domain for many psychiatric disorders. It is particularly relevant to depression and other mood disorders and it is a diagnostic criterion of a major depressive episode. Developing safe and effective pharmacological interventions for anhedonia is a critical public health need. The current chapter will review the state of the field with respect to both the efficacy of currently available pharmacotherapies for anhedonia and the recent clinical research focusing on new brain targets, including the kappa-opioid receptor and the KCNQ2/3 receptors. The evidence for anti-anhedonic effects of ketamine and psychedelic agents will be reviewed, as well.
Collapse
Affiliation(s)
- Matthew E Klein
- Depression and Anxiety Center, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Ariela Buxbaum Grice
- Depression and Anxiety Center, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sahil Sheth
- Depression and Anxiety Center, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Megan Go
- Depression and Anxiety Center, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James W Murrough
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
11
|
Naveed M, Li LD, Sheng G, Du ZW, Zhou YP, Nan S, Zhu MY, Zhang J, Zhou QG. Agomelatine: An astounding sui-generis antidepressant? Curr Mol Pharmacol 2021; 15:943-961. [PMID: 34886787 DOI: 10.2174/1874467214666211209142546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/09/2021] [Accepted: 06/25/2021] [Indexed: 11/22/2022]
Abstract
Major depressive disorder (MDD) is one of the foremost causes of disability and premature death worldwide. Although the available antidepressants are effective and well tolerated, they also have many limitations. Therapeutic advances in developing a new drug's ultimate relation between MDD and chronobiology, which targets the circadian rhythm, have led to a renewed focus on psychiatric disorders. In order to provide a critical analysis about antidepressant properties of agomelatine, a detailed PubMed (Medline), Scopus (Embase), Web of Science (Web of Knowledge), Cochrane Library, Google Scholar, and PsycInfo search was performed using the following keywords: melatonin analog, agomelatine, safety, efficacy, adverse effects, pharmacokinetics, pharmacodynamics, circadian rhythm, sleep disorders, neuroplasticity, MDD, bipolar disorder, anhedonia, anxiety, generalized anxiety disorder (GAD), and mood disorders. Agomelatine is a unique melatonin analog with antidepressant properties and a large therapeutic index that improves clinical safety. It is a melatonin receptor agonist (MT1 and MT2) and a 5-HT2C receptor antagonist. The effects on melatonin receptors enable the resynchronization of irregular circadian rhythms with beneficial effects on sleep architectures. In this way, agomelatine is accredited for its unique mode of action, which helps to exert antidepressant effects and resynchronize the sleep-wake cycle. To sum up, an agomelatine has not only antidepressant properties but also has anxiolytic effects.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166. China
| | - Lian-Di Li
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166. China
| | - Gang Sheng
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166. China
| | - Zi-Wei Du
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166. China
| | - Ya-Ping Zhou
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166. China
| | - Sun Nan
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166. China
| | - Ming-Yi Zhu
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166. China
| | - Jing Zhang
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166. China
| | - Qi-Gang Zhou
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166. China
| |
Collapse
|
12
|
Maddukuri RK, Hema C, Sri Tejaswi K, Venkata Mounika M, Vegesana BP. Antidepressant efficacy of Agomelatine: Meta-analysis of placebo controlled and active comparator studies. Asian J Psychiatr 2021; 65:102866. [PMID: 34592623 DOI: 10.1016/j.ajp.2021.102866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
Agomelatine is a novel antidepressant that was developed to counter the adverse effects associated with the standard SSRIs and SNRIs that limited their usage. Publication bias was identified in antidepressant trials which can potentially overestimate the treatment efficacy. This meta-analysis was designed to assess the overall antidepressant effect of Agomelatine by pooling all the published and unpublished studies available till date. Studies conducted on adult patients who met with the criteria for MDD that evaluated efficacy of Agomelatine at acute phase (6-12weeks) and at long term phase (24weeks) were included. The primary efficacy measured with SMD of final mean scores of HAM-D and MADRS. Secondary efficacy measures of Response, remission and safety parameters were evaluated with relative risks. RevMan version 5.4 was used for analysis of both continuous (Standardized mean difference) and dichotomous outcomes (response, remission and all cause of discontinuation). Efficacy parameters were presented with 99% confidence intervals while safety parameters were presented with 95% CI. A total of 9233 patients were included from 27 studies. In acute phase placebo controlled studies, Agomelatine had a statistically significant SMD of - 0.24 (-0.39 to -0.09) and response rate of (1.25, 1.07-1.47). In comparison (RR 0.99, 0.92-1.07) Agomelatine is an effective antidepressant having similar efficacy with the currently used antidepressants.
Collapse
Affiliation(s)
| | - Chava Hema
- Chebrolu Hanumaiah Institute of Pharmaceutical Sciences, Guntur, Andhra Pradesh, India.
| | | | | | | |
Collapse
|
13
|
Le C, Finger E. Pharmacotherapy for Neuropsychiatric Symptoms in Frontotemporal Dementia. CNS Drugs 2021; 35:1081-1096. [PMID: 34426949 DOI: 10.1007/s40263-021-00854-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/08/2021] [Indexed: 10/20/2022]
Abstract
Despite significant progress in the understanding of the frontotemporal dementias (FTDs), there remains no disease-modifying treatment for these conditions, and limited effective symptomatic treatment. Behavioural variant frontotemporal dementia (bvFTD) is the most common FTD syndrome, and is characterized by severe impairments in behaviour, personality and cognition. Neuropsychiatric symptoms are common features of bvFTD but are present in the other FTD syndromes. Current treatment strategies therefore focus on ameliorating the neuropsychiatric features. Here we review the rationale for current treatments related to each of the main neuropsychiatric symptoms forming the diagnostic criteria for bvFTD relevant to all FTD subtypes, and two additional symptoms not currently part of the diagnostic criteria: lack of insight and psychosis. Given the paucity of effective treatments for these symptoms, we highlight how contributing mechanisms delineated in cognitive neuroscience may inform future approaches to clinical trials and more precise symptomatic treatments for FTDs.
Collapse
Affiliation(s)
- Christine Le
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
14
|
Gerbier R, Ndiaye-Lobry D, Martinez de Morentin PB, Cecon E, Heisler LK, Delagrange P, Gbahou F, Jockers R. Pharmacological evidence for transactivation within melatonin MT 2 and serotonin 5-HT 2C receptor heteromers in mouse brain. FASEB J 2020; 35:e21161. [PMID: 33156577 DOI: 10.1096/fj.202000305r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 01/01/2023]
Abstract
Association of G protein-coupled receptors into heterodimeric complexes has been reported for over 50 receptor pairs in vitro but functional in vivo validation remains a challenge. Our recent in vitro studies defined the functional fingerprint of heteromers composed of Gi -coupled melatonin MT2 receptors and Gq -coupled serotonin 5-HT2C receptors, in which melatonin transactivates phospholipase C (PLC) through 5-HT2C . Here, we identified this functional fingerprint in the mouse brain. Gq protein activation was probed by [35 S]GTPγS incorporation followed by Gq immunoprecipitation, and PLC activation by determining the inositol phosphate levels in brain lysates of animals previously treated with melatonin. Melatonin concentration-dependently activated Gq proteins and PLC in the hypothalamus and cerebellum but not in cortex. These effects were inhibited by the 5-HT2C receptor-specific inverse agonist SB-243213, and were absent in MT2 and 5-HT2C knockout mice, fully recapitulating previous in vitro data and indicating the involvement of MT2 /5-HT2C heteromers. The antidepressant agomelatine had a similar effect than melatonin when applied alone but blocked the melatonin-promoted Gq activation due to its 5-HT2C antagonistic component. Collectively, we provide strong functional evidence for the existence of MT2 /5-HT2C heteromeric complexes in mouse brain. These heteromers might participate in the in vivo effects of agomelatine.
Collapse
Affiliation(s)
- Romain Gerbier
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | | | | | - Erika Cecon
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | | | | | - Florence Gbahou
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Ralf Jockers
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| |
Collapse
|
15
|
Khan S, Khurana M, Vyas P, Vohora D. The role of melatonin and its analogues in epilepsy. Rev Neurosci 2020; 32:/j/revneuro.ahead-of-print/revneuro-2019-0088/revneuro-2019-0088.xml. [PMID: 32950966 DOI: 10.1515/revneuro-2019-0088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 04/01/2020] [Indexed: 12/31/2022]
Abstract
Extensive research has gone into proposing a promising link between melatonin administration and attenuation of epileptic activity, the majority of which suggest its propensity as an antiseizure with antioxidant and neuroprotective properties. In the past few years, a number of studies highlighting the association of the melatonergic ligands with epilepsy have also emerged. In this context, our review is based on discussing the recent studies and various mechanisms of action that the said category of drugs exhibit in the context of being therapeutically viable antiseizure drugs. Our search revealed several articles on the four major drugs i.e. melatonin, agomelatine, ramelteon and piromelatine along with other melatonergic agonists like tasimelteon and TIK-301. Our review is suggestive of antiseizure effects of both melatonin and its analogues; however, extensive research work is still required to study their implications in the treatment of persons with epilepsy. Further evaluation of melatonergic signaling pathways and mechanisms may prove to be helpful in the near future and might prove to be a significant advance in the field of epileptology.
Collapse
Affiliation(s)
- Sumaira Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mallika Khurana
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Preeti Vyas
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Divya Vohora
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
16
|
El-Khatib YA, Sayed RH, Sallam NA, Zaki HF, Khattab MM. 17β-Estradiol augments the neuroprotective effect of agomelatine in depressive- and anxiety-like behaviors in ovariectomized rats. Psychopharmacology (Berl) 2020; 237:2873-2886. [PMID: 32535690 DOI: 10.1007/s00213-020-05580-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 06/08/2020] [Indexed: 02/06/2023]
Abstract
RATIONALE AND OBJECTIVE Estradiol decline has been associated with depression and anxiety in post-menopausal women. Agomelatine (Ago) is an agonist of the melatonergic MT1/MT2 receptors and an antagonist of the serotonergic 5-HT2c receptors. The present study aimed to evaluate the effects of combining Ago with 17β-estradiol (E2) on ovariectomy (OVX)-induced depressive- and anxiety-like behaviors in young adult female rats. METHODS OVX rats were treated with Ago (40 mg/kg/day, p.o.) for 10 days starting 1 week after surgery alone or combined with two doses of E2 (40 μg/kg/day, s.c.) given before behavioral testing. RESULTS Co-administration of E2 enhanced the anti-depressant and anxiolytics effects of Ago as evidenced by decreased immobility time in the forced swimming test, as well as increased time spent in the open arms and number of entries to open arms in the elevated plus-maze. In parallel, Ago increased hippocampal norepinephrine, dopamine, melatonin, and brain-derived neurotrophic factor (BDNF). Meanwhile, Ago-treated rats exhibited reduced hippocampal nuclear factor kappa beta (NF-kB) P65 expression and pro-inflammatory cytokine level. Ago upregulated estrogen receptor (ER α and β) mRNA expression in the hippocampus of OVX rats and elevated serum estradiol levels. Co-administration of E2 with Ago synergistically decreased NF-kB P65 expression and pro-inflammatory cytokines, and increased BDNF levels. CONCLUSION E2 augmented the neuroprotective effect of Ago in OVX rats via its anti-inflammatory and neurotrophic effects. The combined treatment of E2 and Ago should be further investigated as a treatment of choice for depression, anxiety, and sleep disturbances associated with menopause.
Collapse
Affiliation(s)
- Yasmine A El-Khatib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt.
| | - Nada A Sallam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt
| | - Hala F Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt
| | - Mahmoud M Khattab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt
| |
Collapse
|
17
|
Konstantakopoulos G, Dimitrakopoulos S, Michalopoulou PG. The preclinical discovery and development of agomelatine for the treatment of depression. Expert Opin Drug Discov 2020; 15:1121-1132. [PMID: 32568567 DOI: 10.1080/17460441.2020.1781087] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Under the treatment of commonly used antidepressants, many patients with major depressive disorder (MDD) do not achieve remission. All previous first-line treatments for depression have focused on the enhancement of monoaminergic activity. Agomelatine was the first antidepressant with a mechanism of action extending beyond monoaminergic neurotransmission. AREAS COVERED The aim of this case history is to describe the discovery strategy and development of agomelatine. The pharmacodynamic profile of the drug is briefly presented. The article summarizes (a) the preclinical behavioral data on agomelatine's effects on depressive-like behavior, anxiety, and circadian rhythmicity disruptions, and (b) the results of early preclinical studies on safety, efficacy in MDD, and the risk-benefit pharmacological profile. Furthermore, the article examines findings of post-marketing research on safety, efficacy, and cost-effectiveness of the drug. EXPERT OPINION There is now evidence supporting the clinical efficacy and safety profile of agomelatine in the acute-phase treatment of MDD. Agomelatine may be more effective in specific subgroups of MDD patients, those with severe anxiety symptoms or disturbed circadian profiles. Its antidepressant and anxiolytic activities are due to synergy between its melatonergic and 5-hydroxytryptaminergic effects. Since its discovery, novel compounds acting on the melatonergic system have been under investigation for the treatment of MDD.
Collapse
Affiliation(s)
- George Konstantakopoulos
- First Department of Psychiatry, University of Athens , Athens, Greece.,Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London , London, UK
| | | | - Panayiota G Michalopoulou
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London , London, UK
| |
Collapse
|
18
|
Gulcu Bulmus F, Canpolat S, Sahin Z, Bulmus O, Serhatlioglu I, Kelestimur H. Kisspeptin and RF9 prevent paroxetine-induced changes in some parameters of seminal vesicle fluid in the male rats. Andrologia 2020; 52:e13538. [PMID: 32052480 DOI: 10.1111/and.13538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/30/2019] [Accepted: 01/11/2020] [Indexed: 11/28/2022] Open
Abstract
The aim of the study was to examine possible impacts of paroxetine and agomelatine on the levels of some components that constitute the seminal vesicle fluid. As a second purpose, it was also aimed to examine how possible negative effects induced by paroxetine on seminal vesicle fluid components were affected by kisspeptin and RF9 (an RFamide-related peptide antagonist, RFRP). Forty-two male rats, aged 21 days, divided into six groups; control, sham, paroxetine, agomelatine, paroxetine + kisspeptin and paroxetine + RF9. Paroxetine (3.6 mg/kg) and agomelatine (10 mg/kg) were administrated by oral gavage. Kisspeptin (1 nmol) and RF9 (20 nmol) were administered intracerebroventricular (i.c.v). The experiments were ended on post-natal 120 days; fructose, vitamin E, sodium, potassium and magnesium levels were measured in seminal vesicle fluid. Fructose, vitamin E, magnesium and potassium levels were significantly decreased in seminal vesicle fluid from the rats treated with paroxetine but did not show significant differences following agomelatine administration. The co-administration of kisspeptin or RF9 with paroxetine prevented the paroxetine-induced negative effects on seminal vesicle fluid components. These results suggest that reduction in sperm fertilising ability caused by changes in seminal vesicle fluid can be seen in long-term antidepressant use. RF-9 and kisspeptin might have positive effects on long-term antidepressant use-induced infertility.
Collapse
Affiliation(s)
| | - Sinan Canpolat
- Department of Physiology, Medicine Faculty, Firat University, Elazig, Turkey
| | - Zafer Sahin
- Department of Physiology, Medicine Faculty, Karadeniz Technical University, Trabzon, Turkey
| | - Ozgur Bulmus
- Department of Physical Therapy and Rehabilitation, Faculty of Health Sciences, Firat University, Elazig, Turkey
| | - Ihsan Serhatlioglu
- Department of Biophysics, Medicine Faculty, Firat University, Elazig, Turkey
| | - Haluk Kelestimur
- Department of Physiology, Medicine Faculty, Firat University, Elazig, Turkey
| |
Collapse
|
19
|
Cerou M, Peigné S, Comets E, Chenel M. Application of Item Response Theory to Model Disease Progression and Agomelatine Effect in Patients with Major Depressive Disorder. AAPS JOURNAL 2019; 22:4. [PMID: 31720897 DOI: 10.1208/s12248-019-0379-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/04/2019] [Indexed: 11/30/2022]
Abstract
INTRODUCTION In this paper, we studied the effect over time of agomelatine, an antidepressant drug administered in patient with major depressive disorder, through item response theory (IRT), taking into account a strong placebo effect and missing not at random. We also assessed the informativeness of the HAMD-17 scale's item. MATERIALS AND METHODS The data includes five phase III clinical trials sponsored by Servier Institute, totalling 1549 patients followed during a maximum of 1 year. At each observation, individual scores for the 17 items of the HAMD scale were recorded. The probability for each score was modelled with IRT. A non-linear mixed effects model was used to describe the evolution of the disease and was coupled with a time to event model to predict dropout. Clinical trial simulations were then used to compare placebo and active treatment. Informativeness of each item was evaluated using the Fisher information theory. RESULTS The best model combined an IRT model, a longitudinal model for underlying depression which describes the remission and then a possible relapse, and a hazard model for dropout depending on the evolution from baseline. The drug effect was best modelled as an effect on the remission and the relapse phases. The median predicted drop in HAMD between baseline and 6 weeks was 8.8 (90% PI, 8.3-9.2) when on placebo and 13.1 (90% PI, 12.8-13.4) when treated. Nine items were found to be the most informative. CONCLUSION The IRT framework allowed to characterise the evolution of depression with time and estimate the effect of agomelatine, as well as the link between symptoms and disease.
Collapse
Affiliation(s)
- Marc Cerou
- Université de Paris, IAME, INSERM, F-75018, Paris, France. .,Division of Clinical Pharmacokinetics and Pharmacometrics, Institut de Recherches Internationales Servier, Suresnes, France.
| | - Sophie Peigné
- Division of Clinical Pharmacokinetics and Pharmacometrics, Institut de Recherches Internationales Servier, Suresnes, France
| | - Emmanuelle Comets
- Université de Paris, IAME, INSERM, F-75018, Paris, France.,CIC 1414, INSERM, 35700, Rennes, France.,Université Rennes-1, 35700, Rennes, France
| | - Marylore Chenel
- Division of Clinical Pharmacokinetics and Pharmacometrics, Institut de Recherches Internationales Servier, Suresnes, France
| |
Collapse
|
20
|
Jin Y, Cui R, Zhao L, Fan J, Li B. Mechanisms of Panax ginseng action as an antidepressant. Cell Prolif 2019; 52:e12696. [PMID: 31599060 PMCID: PMC6869450 DOI: 10.1111/cpr.12696] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/27/2019] [Accepted: 08/02/2019] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Panax ginseng, a well-known traditional Chinese medicine with multiple pharmacological activities, plays a crucial role in modulating mood disorders. Several recent studies have identified an underlying role of Panax ginseng in the prevention and treatment of depression. However, the cellular and molecular mechanisms remain unclear. MATERIALS AND METHODS In this review, we summarized the recent progress of antidepressant effects and underlying mechanisms of Panax ginseng and its representative herbal formulae. RESULTS The molecular and cellular mechanisms of Panax ginseng and its herbal formulae include modulating monoamine neurotransmitter system, upregulating the expression of neurotrophic factors, regulating the function of HPA axis, and anti-inflammatory action. CONCLUSIONS Therefore, this review may provide theoretical bases and clinical applications for the treatment of depression by Panax ginseng and its representative herbal formulae.
Collapse
Affiliation(s)
- Yang Jin
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Lihong Zhao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Jie Fan
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
21
|
Navarro Gil FJ, Huete-Toral F, Crooke A, Dominguez Godinez CO, Carracedo G, Pintor J. Effect of Melatonin and Its Analogs on Tear Secretion. J Pharmacol Exp Ther 2019; 371:186-190. [PMID: 31371479 DOI: 10.1124/jpet.119.259192] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/30/2019] [Indexed: 11/22/2022] Open
Abstract
Melatonin has been shown to enhance tear secretion associated with dinucleotide diadenosine tetraphosphate. This study investigated the isolated action of melatonin and its analogs, agomelatine, N-butanoyl-2-(2-methoxy-6H-isoindolo[2,1-a]indol-11-yl) ethanamine (IIK7), and 5-methoxycarbonylamino-N-cetyltryptamine (5-MCA-NAT) (10 µl at 100 µM), on tear secretion when applied topically in the rabbit cornea and its relationship with the melatonin MT1, MT2, and MT3/quinone reductase QR2 receptors. The results showed a significant increase in tear secretion, with a maximal effect at 60 minutes for the agonists (138.9% ± 6.5%, 128.9% ± 6.4%, and 120.0% ± 5.2%, respectively; P < 0.05; 100% control) but not for melatonin (101.6% ± 7.9%; P > 0.05). Agonist action was tested combined with the antagonists DH97 (MT2 selective), prazosin (MT3/QR2 inhibitor), and luzindole (nonselective MT membrane receptor) (10 µl at 100 µM). DH97 reversed the effect of agomelatine, IIK7, and 5-MCA-NAT up to 30.85% ± 7.6%,108% ± 7.2%, and 87.01% ± 7.6%, respectively (P < 0.05; 100% control). Luzindole antagonized agomelatine and 5-MCA-NAT up to 67.35% ± 7.6% and 92.12% ± 8%, respectively (P < 0.05). Prazosin only reversed 5-MCA-NAT action up to 84.2% ± 7.7% (P < 0.05). These results suggest different pathways for the agonists to act through MT membrane receptors. Therefore, agomelatine, IIK7, and 5-MCA-NAT act through MT membrane receptors as secretagogues of tear secretion, and these analogs could be considered excellent therapeutic candidates for dry eye treatment. SIGNIFICANCE STATEMENT: Currently, dry eye with aqueous deficit is treated by adding artificial tears palliatively. This study shows that topical installation of three melatonin analogs (agomelatine, IIK7, and 5-MCA-NAT), but not melatonin, in therapeutic doses in the rabbit cornea significantly increases tear production, acting through different melatonin membrane receptor subtypes. Therefore, this study suggests that melatoninergic compounds could be considered excellent therapeutic candidates for dry eye treatment and ocular surface diseases occurring with a reduction in tear production.
Collapse
Affiliation(s)
- Francisco Javier Navarro Gil
- Departamentos de Optometría y Visión (F.J.N.G., C.O.D.G., G.C.) and Bioquímica y Biología Molecular (F.H.-T., A.C., J.P.), Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, Spain
| | - Fernando Huete-Toral
- Departamentos de Optometría y Visión (F.J.N.G., C.O.D.G., G.C.) and Bioquímica y Biología Molecular (F.H.-T., A.C., J.P.), Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, Spain
| | - Almudena Crooke
- Departamentos de Optometría y Visión (F.J.N.G., C.O.D.G., G.C.) and Bioquímica y Biología Molecular (F.H.-T., A.C., J.P.), Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, Spain
| | - Carmen Olalla Dominguez Godinez
- Departamentos de Optometría y Visión (F.J.N.G., C.O.D.G., G.C.) and Bioquímica y Biología Molecular (F.H.-T., A.C., J.P.), Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, Spain
| | - Gonzalo Carracedo
- Departamentos de Optometría y Visión (F.J.N.G., C.O.D.G., G.C.) and Bioquímica y Biología Molecular (F.H.-T., A.C., J.P.), Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, Spain
| | - Jesús Pintor
- Departamentos de Optometría y Visión (F.J.N.G., C.O.D.G., G.C.) and Bioquímica y Biología Molecular (F.H.-T., A.C., J.P.), Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
22
|
Abstract
The old classification of depression as reactive and endogenous, which are still observed in clinical practice, both cannot be accommodated under the current rubric of major depression. This is because psychiatric nosology under the Diagnostic and Statistical Manual of Mental Disorders (DSM) and its latest fifth edition (DSM-V) is still descriptive and not etiologic. The aim of this review was to revisit reactive and endogenous categories of depression from the perspective of today's understanding of etiological pathways. From an epigenetic perspective, the old dichotomy of reactive versus endogenous is interrelated through the impact of the environment (e.g., stress). This includes familial or prenatal depression, where the environmental impact is before birth, or childhood depression, where the early life stress is the precipitating factor to genetic susceptibility. In conclusion, searching for both environmental impact (e.g., stressors) and genetic predispositions in depression, even at a clinical level, could help clinicians with better therapeutic decisions.
Collapse
|
23
|
Agomelatine Effectiveness, Tolerability, and Impact on Anhedonia in Major Depression: A Pooled Analysis. J Clin Psychopharmacol 2019; 39:288-290. [PMID: 30932949 DOI: 10.1097/jcp.0000000000001038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Sant’Ana AB, Vilela-Costa HH, Vicente MA, Hernandes PM, de Andrade TGCS, Zangrossi H. Role of 5-HT2C receptors of the dorsal hippocampus in the modulation of anxiety- and panic-related defensive responses in rats. Neuropharmacology 2019; 148:311-319. [DOI: 10.1016/j.neuropharm.2019.01.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 11/26/2022]
|
25
|
Villas Boas GR, Boerngen de Lacerda R, Paes MM, Gubert P, Almeida WLDC, Rescia VC, de Carvalho PMG, de Carvalho AAV, Oesterreich SA. Molecular aspects of depression: A review from neurobiology to treatment. Eur J Pharmacol 2019; 851:99-121. [PMID: 30776369 DOI: 10.1016/j.ejphar.2019.02.024] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 12/14/2022]
Abstract
Major depressive disorder (MDD), also known as unipolar depression, is one of the leading causes of disability and disease worldwide. The signs and symptoms are low self‑esteem, anhedonia, feeling of worthlessness, sense of rejection and guilt, suicidal thoughts, among others. This review focuses on studies with molecular-based approaches involving MDD to obtain an integrated, more detailed and comprehensive view of the brain changes produced by this disorder and its treatment and how the Central Nervous System (CNS) produces neuroplasticity to orchestrate adaptive defensive behaviors. This article integrates affective neuroscience, psychopharmacology, neuroanatomy and molecular biology data. In addition, there are two problems with current MDD treatments, namely: 1) Low rates of responsiveness to antidepressants and too slow onset of therapeutic effect; 2) Increased stress vulnerability and autonomy, which reduces the responses of currently available treatments. In the present review, we encourage the prospection of new bioactive agents for the development of treatments with post-transduction mechanisms, neurogenesis and pharmacogenetics inducers that bring greater benefits, with reduced risks and maximized access to patients, stimulating the field of research on mood disorders in order to use the potential of preclinical studies. For this purpose, improved animal models that incorporate the molecular and anatomical tools currently available can be applied. Besides, we encourage the study of drugs that do not present "classical application" as antidepressants, (e.g., the dissociative anesthetic ketamine and dextromethorphan) and drugs that have dual action mechanisms since they represent potential targets for novel drug development more useful for the treatment of MDD.
Collapse
Affiliation(s)
- Gustavo Roberto Villas Boas
- Research Group on Development of Pharmaceutical Products (P&DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, CEP 47810-059, Barreiras, Bahia, Brazil; Faculty of Health Sciences, Federal University of Grande Dourados, Dourados Rodovia Dourados, Itahum Km 12, Cidade Universitaria, Caixa. postal 364, CEP 79804-970, Dourados, Mato Grosso do Sul, Brazil.
| | - Roseli Boerngen de Lacerda
- Department of Pharmacology of the Biological Sciences Center, Federal University of Paraná, Jardim das Américas, Caixa. postal 19031, CEP 81531-990, Curitiba, Paraná, Brazil.
| | - Marina Meirelles Paes
- Research Group on Development of Pharmaceutical Products (P&DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, CEP 47810-059, Barreiras, Bahia, Brazil.
| | - Priscila Gubert
- Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, CEP 47810-059, Barreiras, Bahia, Brazil.
| | - Wagner Luis da Cruz Almeida
- Research Group on Development of Pharmaceutical Products (P&DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, CEP 47810-059, Barreiras, Bahia, Brazil.
| | - Vanessa Cristina Rescia
- Research Group on Development of Pharmaceutical Products (P&DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, CEP 47810-059, Barreiras, Bahia, Brazil.
| | - Pablinny Moreira Galdino de Carvalho
- Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, CEP 47810-059, Barreiras, Bahia, Brazil.
| | - Adryano Augustto Valladao de Carvalho
- Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, CEP 47810-059, Barreiras, Bahia, Brazil.
| | - Silvia Aparecida Oesterreich
- Faculty of Health Sciences, Federal University of Grande Dourados, Dourados Rodovia Dourados, Itahum Km 12, Cidade Universitaria, Caixa. postal 364, CEP 79804-970, Dourados, Mato Grosso do Sul, Brazil.
| |
Collapse
|
26
|
Santos P, Herrmann AP, Elisabetsky E, Piato A. Anxiolytic properties of compounds that counteract oxidative stress, neuroinflammation, and glutamatergic dysfunction: a review. ACTA ACUST UNITED AC 2018; 41:168-178. [PMID: 30328963 PMCID: PMC6781690 DOI: 10.1590/1516-4446-2018-0005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/31/2018] [Indexed: 01/27/2023]
Abstract
Objective: Anxiety disorders are highly prevalent and the efficacy of the available anxiolytic drugs is less than desired. Adverse effects also compromise patient quality of life and adherence to treatment. Accumulating evidence shows that the pathophysiology of anxiety and related disorders is multifactorial, involving oxidative stress, neuroinflammation, and glutamatergic dysfunction. The aim of this review was to evaluate data from animal studies and clinical trials showing the anxiolytic effects of agents whose mechanisms of action target these multiple domains. Methods: The PubMed database was searched for multitarget agents that had been evaluated in animal models of anxiety, as well as randomized double-blind placebo-controlled clinical trials of anxiety and/or anxiety related disorders. Results: The main multitarget agents that have shown consistent anxiolytic effects in various animal models of anxiety, as well in clinical trials, are agomelatine, N-acetylcysteine (NAC), and omega-3 fatty acids. Data from clinical trials are preliminary at best, but reveal good safety profiles and tolerance to adverse effects. Conclusion: Agomelatine, NAC and omega-3 fatty acids show beneficial effects in clinical conditions where mainstream treatments are ineffective. These three multitarget agents are considered promising candidates for innovative, effective, and better-tolerated anxiolytics.
Collapse
Affiliation(s)
- Patrícia Santos
- Programa de Pós-Graduação em Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Ana P Herrmann
- Programa de Pós-Graduação em Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Elaine Elisabetsky
- Programa de Pós-Graduação em Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Angelo Piato
- Programa de Pós-Graduação em Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
27
|
Neurocognitive Effects of Agomelatine Treatment in Schizophrenia Patients Suffering From Comorbid Depression: Results From the AGOPSYCH Study. J Clin Psychopharmacol 2018; 38:357-361. [PMID: 29912792 DOI: 10.1097/jcp.0000000000000909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Cognitive impairment in schizophrenia is highly disabling and remains one of the major therapeutic challenges. Agomelatine (AGO), an agonist at melatonergic MT1/MT2 receptors and antagonist at 5-HT2C receptors, increases dopamine and norepinephrine in the prefrontal cortex and may therefore have the potential of improving neurocognition in patients with schizophrenia. METHODS Twenty-seven patients with schizophrenia and comorbid depression were treated with AGO in addition to stable doses of antipsychotic drugs. Cognitive abilities were assessed with the Measurement and Treatment Research to Improve Cognition in Schizophrenia Consensus Cognitive Battery (MCCB) at study entry and after 12 weeks of AGO treatment after the intention-to-treat principle. RESULTS We observed statistically significant yet clinically negligible increases of the MCCB composite score and the reasoning/problem solving subscore. Patients with unimpaired sleep at baseline showed greater improvements over time than those with sleep disturbances. Changes on the MCCB were not correlated with other psychometric variables. CONCLUSIONS Despite statistically significant, cognitive improvements after 12 weeks of AGO treatment were clinically irrelevant. Our findings may be limited by baseline properties of the study sample and the study design. In particular, lacking a control group, it cannot be ruled out that improvements were unrelated to AGO treatment. That is why randomized controlled trials are needed to validate the relevance of AGO as a cognitive enhancer in schizophrenia.
Collapse
|
28
|
Souza LC, Martynhak BJ, Bassani TB, Turnes JDM, Machado MM, Moura E, Andreatini R, Vital MA. Agomelatine's effect on circadian locomotor rhythm alteration and depressive-like behavior in 6-OHDA lesioned rats. Physiol Behav 2018; 188:298-310. [DOI: 10.1016/j.physbeh.2018.02.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/10/2018] [Accepted: 02/15/2018] [Indexed: 12/13/2022]
|
29
|
Regenass W, Möller M, Harvey BH. Studies into the anxiolytic actions of agomelatine in social isolation reared rats: Role of corticosterone and sex. J Psychopharmacol 2018; 32:134-145. [PMID: 29082818 DOI: 10.1177/0269881117735769] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Anxiety disorders are severely disabling, while current pharmacological treatments are complicated by delayed onset, low remission rates and side-effects. Sex is also noted to contribute towards illness severity and treatment response. Agomelatine is a melatonin (MT1/MT2) agonist and serotonin (5-HT2C) antagonist purported to be anxiolytic in clinical and some pre-clinical studies. We undertook a detailed analysis of agomelatine's anxiolytic activity in a neurodevelopmental model of anxiety, the social isolation reared rat. Rats received sub-chronic treatment with vehicle or agomelatine (40 mg/kg per day intraperitoneally at 16:00 h for 16 days), with behaviour analysed in the open field test, social interaction test and elevated plus maze. The contribution of corticosterone and sex was also studied. Social isolation rearing increased locomotor activity and reduced social interaction in the social interaction test, and was anxiogenic in the elevated plus maze in males and females. Agomelatine reversed these behaviours. Male and female social isolation reared rats developed anxiety-like behaviours to a similar degree, although response to agomelatine was superior in male rats. Social isolation rearing decreased plasma corticosterone in both sexes and tended to higher levels in females, although agomelatine did not affect corticosterone in either sex. Concluding, agomelatine is anxiolytic in SIR rats, although correcting altered corticosterone could not be implicated. Sex-related differences in the response to agomelatine are evident.
Collapse
Affiliation(s)
- Wilmie Regenass
- 1 Department of Pharmacology, School of Pharmacy, North West University, Potchefstroom, South Africa.,2 Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North West University, Potchefstroom, South Africa
| | - Marisa Möller
- 1 Department of Pharmacology, School of Pharmacy, North West University, Potchefstroom, South Africa.,2 Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North West University, Potchefstroom, South Africa
| | - Brian H Harvey
- 1 Department of Pharmacology, School of Pharmacy, North West University, Potchefstroom, South Africa.,2 Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North West University, Potchefstroom, South Africa
| |
Collapse
|
30
|
Shagiakhmetov FS, Anokhin PK, Popova AO, Shamakina IY. [A profile of antidepressive effects of agomelatine and a current view on the mechanism of its action]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 117:124-131. [PMID: 29376995 DOI: 10.17116/jnevro2017117121124-131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Agomelatine is one of the latest antidepressants (melatoninergic agonists) with a new mechanism of action. From the positions of classical monoaminoergic theory, tts mechanism of action is difficult to understand, because the drug increases the levels of monoamines and neurotrophic factors, while not affecting their reuptake and negative feedback, which control neurotransmission level. Besides the effect on suprachiasmatic nucleus, a relevant role in the mechanism of action of agomelatine plays its special functionally selective (with regard to intracellular signaling pathways) interaction with heteromeric complexes of serotonin 5-НТ2С and melatonin MT2 receptors in the hippocampus and cerebral cortex. Agomelatine is competitive to other modern antidepressants in the efficacy assessed by the percentage of complete responders and superior in the total frequency of remissions. Compared to other SSRI antidepressants, agomelatine is more effective for anhedonia. In these cases, agomelatine increases the level of brain-derived neurotrophic factor (BDNF) in the blood of responders.
Collapse
Affiliation(s)
- F Sh Shagiakhmetov
- Serbsky Federal Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | - P K Anokhin
- Serbsky Federal Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | - A O Popova
- Russian University of People's Friendship, Moscow, Russia
| | - I Yu Shamakina
- Serbsky Federal Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| |
Collapse
|
31
|
Brown GM, McIntyre RS, Rosenblat J, Hardeland R. Depressive disorders: Processes leading to neurogeneration and potential novel treatments. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80:189-204. [PMID: 28433459 DOI: 10.1016/j.pnpbp.2017.04.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/01/2017] [Indexed: 12/18/2022]
Abstract
Mood disorders are wide spread with estimates that one in seven of the population are affected at some time in their life (Kessler et al., 2012). Many of those affected with severe depressive disorders have cognitive deficits which may progress to frank neurodegeneration. There are several peripheral markers shown by patients who have cognitive deficits that could represent causative factors and could potentially serve as guides to the prevention or even treatment of neurodegeneration. Circadian rhythm misalignment, immune dysfunction and oxidative stress are key pathologic processes implicated in neurodegeneration and cognitive dysfunction in depressive disorders. Novel treatments targeting these pathways may therefore potentially improve patient outcomes whereby the primary mechanism of action is outside of the monoaminergic system. Moreover, targeting immune dysfunction, oxidative stress and circadian rhythm misalignment (rather than primarily the monoaminergic system) may hold promise for truly disease modifying treatments that may prevent neurodegeneration rather than simply alleviating symptoms with no curative intent. Further research is required to more comprehensively understand the contributions of these pathways to the pathophysiology of depressive disorders to allow for disease modifying treatments to be discovered.
Collapse
Affiliation(s)
- Gregory M Brown
- Department of Psychiatry, University of Toronto, Centre for Addiction and Mental Health, 250 College St. Toronto, ON M5T 1R8, Canada.
| | - Roger S McIntyre
- Psychiatry and Pharmacology, University of Toronto, Mood Disorders Psychopharmacology Unit, University Health Network, 399 Bathurst Street, MP 9-325, Toronto, ON M5T 2S8, Canada.
| | - Joshua Rosenblat
- Resident of Psychiatry, Clinician Scientist Stream, University of Toronto, Mood Disorders Psychopharmacology Unit, University Health Network, 399 Bathurst Street, MP 9-325, Toronto, ON M5T 2S8, Canada
| | - Rüdiger Hardeland
- Johann Friedrich Blumenbach Institut für Zoologie und Anthropologie, Universität Göttingen, Buergerstrasse 50, D-37073 Göttingen, Germany.
| |
Collapse
|
32
|
Robillard R, Carpenter JS, Feilds KL, Hermens DF, White D, Naismith SL, Bartlett D, Whitwell B, Southan J, Scott EM, Hickie IB. Parallel Changes in Mood and Melatonin Rhythm Following an Adjunctive Multimodal Chronobiological Intervention With Agomelatine in People With Depression: A Proof of Concept Open Label Study. Front Psychiatry 2018; 9:624. [PMID: 30618853 PMCID: PMC6297866 DOI: 10.3389/fpsyt.2018.00624] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/05/2018] [Indexed: 11/26/2022] Open
Abstract
Background: Agomelatine is a melatonin agonist and 5HT antagonist developed for the treatment of major depressive disorder which also has some effects on the circadian system. Since circadian dysfunctions are thought to play a role in the pathophysiology of depression, some of the mechanism of action of this drug may relate to improvements in circadian rhythms. Objective: This proof of concept open-label study sought to determine if improvements in depressive symptoms following an adjunctive multimodal intervention including agomelatine intake are associated with the magnitude of circadian realignment. This was investigated in young people with depression, a subgroup known to have high rates of delayed circadian rhythms. Methods: Young people with depression received a psychoeducation session about sleep and circadian rhythms, were asked to progressively phase advance their wake up time, and completed an 8 weeks course of agomelatine (25-50 mg). Participants underwent semi-structured psychological assessments, ambulatory sleep-wake monitoring and measurement of melatonin circadian phase before and after the intervention. Results: Twenty-four young adults with depression (17-28 years old; 58% females) completed the study. After the intervention, depressive symptoms were significantly reduced [t (23) = 6.9, p < 0.001] and, on average, the timing of dim light melatonin onset (DLMO) shifted 3.6 h earlier [t (18) = 4.4, p < 0.001]. On average, sleep onset was phase shifted 28 min earlier [t (19) = 2.1, p = 0.047] and total sleep time increased by 24 min [t (19) = -2.6, p = 0.018]. There was no significant change in wake-up times. A strong correlation (r = 0.69, p = 0.001) was found between the relative improvements in depression severity and the degree of phase shift in DLMO. Conclusion: Although this needs to be replicated in larger randomized controlled trials, these findings suggest that the degree of antidepressant response to a multimodal intervention including psychoeducation and agomelatine intake may be associated with the degree of change in evening melatonin release in young people with depression. This offers promising avenues for targeted treatment based on the prior identification of objective individual characteristics.
Collapse
Affiliation(s)
- Rebecca Robillard
- Sleep Research Unit, The Royal Institute for Mental Health Research, Ottawa, ON, Canada.,School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Joanne S Carpenter
- Clinical Research Unit, Brain & Mind Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Kristy-Lee Feilds
- Clinical Research Unit, Brain & Mind Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Daniel F Hermens
- Sunshine Coast Mind and Neuroscience-Thompson Institute, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
| | - Django White
- Clinical Research Unit, Brain & Mind Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Sharon L Naismith
- Clinical Research Unit, Brain & Mind Centre, The University of Sydney, Camperdown, NSW, Australia.,Healthy Brain Ageing Program, Faculty of Science, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Delwyn Bartlett
- Woolcock Institute of Medical Research, Sydney, NSW, Australia
| | - Bradley Whitwell
- Clinical Research Unit, Brain & Mind Centre, The University of Sydney, Camperdown, NSW, Australia
| | - James Southan
- Clinical Research Unit, Brain & Mind Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Elizabeth M Scott
- Clinical Research Unit, Brain & Mind Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Ian B Hickie
- Clinical Research Unit, Brain & Mind Centre, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
33
|
Eliwa H, Belzung C, Surget A. Adult hippocampal neurogenesis: Is it the alpha and omega of antidepressant action? Biochem Pharmacol 2017; 141:86-99. [DOI: 10.1016/j.bcp.2017.08.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 08/04/2017] [Indexed: 01/08/2023]
|
34
|
Effect of Agomelatine and Fluoxetine on HAM-D Score, Serum Brain-Derived Neurotrophic Factor, and Tumor Necrosis Factor-αLevel in Patients With Major Depressive Disorder With Severe Depression. J Clin Pharmacol 2017; 57:1519-1526. [DOI: 10.1002/jcph.963] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/17/2017] [Indexed: 01/09/2023]
|
35
|
Laux G, Barthel B, Hajak G, Lemke M, Volz HP. Pooled Analysis of Four Non-Interventional Studies: Effectiveness and Tolerability of the Antidepressant Agomelatine in Daily Practice. Adv Ther 2017; 34:895-914. [PMID: 28214983 DOI: 10.1007/s12325-017-0485-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Meta-analyses are useful to increase knowledge and strengthen evidence about antidepressant treatment supplementary to individual studies. METHODS A pooled analysis of four multicenter, open-label, prospective, non-interventional studies (2009-2013) was performed to provide further evidence about the antidepressant effectiveness and tolerability of agomelatine (25-50 mg/day) in a large number of non-selected German outpatients with major depressive disorder. The main analysis was performed after 12 weeks (n = 9601) and in subpopulations after 24 and 52 weeks by descriptive statistical methods. RESULTS Overall, 60.1% of patients were pretreated with antidepressants. Concomitant psychiatric diseases (71.9%), co-medication with antidepressants (18.9%) and/or psychotropic medication (31.9%) were observed. Depressive symptoms improved according to the Clinical Global Impression (CGI) in 81% after 12 weeks, a response was observed in 78.7% (CGI-I ≤2), and remission in 34.5% of patients (CGI-S = 1 or 2). In subpopulations, response was documented in 79.3% (W24) and 75.9% (W52) and remission in 38.1% (W24) and 47.5% (W52), respectively. Over 12 weeks, adverse drug reactions (ADRs) were reported for 511 patients (5.32%), most frequently headache (0.92%) and nausea (0.75%), and serious adverse drug reactions (sADR) for 18 patients (0.19%). Between W12-W24 and W24-W52, ADRs were reported for 0.49%/0.99% and sADRs for 0.05%/0%, respectively. Overall, 49 patients (0.5%) showed clinically relevant transaminase elevations (AST/ALT >3 times upper normal value), with 19 patients (0.2%) showing preexisting elevations at the study start. One patient (0.03%) developed hepatitis with reversible symptoms after treatment discontinuation. ADR predominantly occurred within the first weeks of treatment. Mean weight and body mass index (BMI) remained unchanged over 24 weeks. CONCLUSION In this pooled data analysis, 9601 depressed patients of clinical practice were evaluated over 12 weeks and subpopulations were also analyzed over 24 and 52 weeks. Agomelatine effectively reduced depressive symptoms (CGI-response and remission) with good general tolerability.
Collapse
|
36
|
Medvedev VE, Retiunsky KY, Ovchinnikov AA, Barylnik YB, Shmilovich AA, Antokhin EY, Usov GM, Cheremin RA, Poletsky VM, Onegin AV, Kireeva IP, Frolova VI, Filippova NV, Antonova AA, Deeva MA, Onegina DA. [The differences in the estimation of depression severity by psychiatrists and patients during the combined treatment with agomelatine (a multicenter study "EMOTSIA")]. Zh Nevrol Psikhiatr Im S S Korsakova 2017; 116:26-34. [PMID: 28091498 DOI: 10.17116/jnevro201611611126-34] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIM To compare the prognosis of depression severity estimated by the physician and by the patient based on the treatment outcome. MATERIAL AND METHODS One hundred and seven patients with depression were examined. Mental status was assessed with HАМ-D, SHAPS, CGI-S, CGI-I, PGI-S, PGI-I and VAS. A data analysis was performed. RESULTS There were differences in the estimation of depression severity by psychiatrists and patients. Moreover, the scores on HАМ-D and CGI-S were not consistent when assessed by psychiatrists. As the severity of depression decreased and patient's state improved during the treatment with agomelatine (valdoxan), the assessments of the changes by the psychiatrist and the patient became similar. CONCLUSION Agomelatine (valdoxan) is effective and tolerable in the treatment of depression of any severity. The differences between the psychiatrist's and patient's estimation of the depression severity at baseline using different psychometric scales can level the prognostic value of treatment outcome.
Collapse
Affiliation(s)
- V E Medvedev
- Russian University of People's Friendship Moscow, Russia
| | | | | | - Yu B Barylnik
- Razumovsky Saratov State Medical University, Saratov, Russia
| | - A A Shmilovich
- Pirogov National Research Medical University, Moscow, Russia
| | | | - G M Usov
- Omsk State Medical Academy, Omsk, Russia
| | - R A Cheremin
- Organizatsion, Methodical and Consultation Unit for and Psychiatry And Suicidology Public Health Department, Moscow, Russia
| | - V M Poletsky
- South Ural State Medical University, Chelyabinsk, Russia
| | - A V Onegin
- Murmansk Regional Psychoneurological Dispensary, Murmansk, Russia
| | - I P Kireeva
- Pirogov National Research Medical University, Moscow, Russia
| | - V I Frolova
- Russian University of People's Friendship Moscow, Russia
| | - N V Filippova
- Razumovsky Saratov State Medical University, Saratov, Russia
| | - A A Antonova
- Razumovsky Saratov State Medical University, Saratov, Russia
| | - M A Deeva
- Razumovsky Saratov State Medical University, Saratov, Russia
| | - D A Onegina
- Murmansk Regional Psychoneurological Dispensary, Murmansk, Russia
| |
Collapse
|
37
|
Medvedev VE. Agomelatine in the treatment of mild-to-moderate depression in patients with cardiovascular disease: results of the national multicenter observational study PULSE. Neuropsychiatr Dis Treat 2017; 13:1141-1151. [PMID: 28461750 PMCID: PMC5407453 DOI: 10.2147/ndt.s129793] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND PULSE was a large, observational, multicenter study designed to evaluate the efficacy and safety of agomelatine in the treatment of major depression in patients with cardiovascular disease (CVD). METHODS Patients with mild-to-moderate major depressive episodes, without psychotic symptoms, were treated as outpatients or in cardiac facilities in 46 regions of Russia. The patients received antidepressant monotherapy with agomelatine 25 or 50 mg, once daily, for 12 weeks. RESULTS The mean age of the patients (N=896) was 51.4±9.9 years, and 68.5% were women. A progressive improvement in the total score on both the anxiety and depression subscales of the Hospital Anxiety and Depression Scale (HADS), from 13.1±3.8 and 13.9±3.1 at baseline to 3.7±2.8 and 3.9±3.0, respectively, was observed by 12 weeks. All individual HADS scores improved rapidly; the change between visits was also significant (P<0.0001). The majority (84.6%) were remitters (HADS total score <7) by 12 weeks. The Clinical Global Impression - Severity and Improvement scores also improved quickly. The mean hypochondria index (Whiteley Index) decreased significantly from 48.0±11.8 at baseline to 25.2±9.2 at 12 weeks (P<0.0001). The main hemodynamic indices improved or remained stable, and biochemical parameters reflecting liver function (aspartate aminotransferase, alanine aminotransferase, gamma-glutamyl transpeptidase, alkaline phosphatase, total bilirubin) did not exceed three times the upper limits of established norms. CONCLUSION Agomelatine resulted in statistically significant improvements in depressive symptoms, anxiety, and hypochondria in depressed patients with CVD, and had good tolerability. Our data suggest that agomelatine is safe to treat depression in patients with CVD.
Collapse
Affiliation(s)
- Vladimir E Medvedev
- Department of Psychiatry, Psychotherapy and Psychosomatic Pathology, RUDN University, Moscow, Russia
| |
Collapse
|
38
|
Li C, Xu J, Zheng Y, Chen G, Wang J, Ma L, Qiao Y, Niu J, Wu M, Zhang H, Li X, Chen H, Zhu X, Liu C, Ding Y. Bioequivalence and Pharmacokinetic Profiles of Agomelatine 25-mg Tablets in Healthy Chinese Subjects: A Four-Way Replicate Crossover Study Demonstrating High Intra- and Inter-Individual Variations. Chem Pharm Bull (Tokyo) 2017; 65:524-529. [PMID: 28392509 DOI: 10.1248/cpb.c16-00866] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Cuiyun Li
- Phase I Clinical Unit, China-Frontage USA, The First Hospital of Jilin University
| | - Jing Xu
- Department of Neurology, The First Hospital of Jilin University
| | - Yan Zheng
- Department of Geriatrics, The First Hospital of Jilin University
| | - Guiling Chen
- Phase I Clinical Unit, China-Frontage USA, The First Hospital of Jilin University
| | - Jianmeng Wang
- Department of Geriatrics, The First Hospital of Jilin University
| | | | - Yan Qiao
- Department of Clinical Laboratory, The Second Hospital of Jilin
| | - Junqi Niu
- Department of Hepatology, The First Hospital of Jilin University
| | - Min Wu
- Phase I Clinical Unit, China-Frontage USA, The First Hospital of Jilin University
| | - Hong Zhang
- Phase I Clinical Unit, China-Frontage USA, The First Hospital of Jilin University
| | - Xiaojiiao Li
- Phase I Clinical Unit, China-Frontage USA, The First Hospital of Jilin University
| | - Hong Chen
- Phase I Clinical Unit, China-Frontage USA, The First Hospital of Jilin University
| | - Xiaoxue Zhu
- Phase I Clinical Unit, China-Frontage USA, The First Hospital of Jilin University
| | - Chengjiao Liu
- Phase I Clinical Unit, China-Frontage USA, The First Hospital of Jilin University
| | - Yanhua Ding
- Phase I Clinical Unit, China-Frontage USA, The First Hospital of Jilin University
| |
Collapse
|
39
|
Agomelatine for the Treatment of Major Depressive Episodes in Schizophrenia-Spectrum Disorders: An Open-Prospective Proof-of-Concept Study. J Clin Psychopharmacol 2016; 36:597-607. [PMID: 27805978 DOI: 10.1097/jcp.0000000000000587] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Depressive episodes in schizophrenia constitute a major clinical problem, and treatment success is often limited by treatment-emergent side effects. Agomelatine, an agonist at melatonergic MT1/MT2 receptors and 5-HT2C receptor antagonist, is a new antidepressant with a novel mode of action which constitutes a potential therapeutic option for depression in schizophrenia. METHODS Twenty-seven patients with lifetime diagnoses within the schizophrenia spectrum and comorbid depression were treated with agomelatine in addition to stable doses of antipsychotic agents. Severity of depression and other psychopathological domains (positive/negative symptoms, general psychopathology, psychosocial performance) was assessed regularly by means of standardized rating scales during a 6-week acute treatment phase as well as after a 6-week extension phase. Moreover, safety measures (electrocardiograms, laboratory counts, neurological and non-neurological side effects, sleep quality, sexual functioning) were monitored on a regular basis. RESULTS Depressive symptoms improved significantly during the 6-week acute treatment phase. In parallel, a significant improvement of negative symptoms, global psychopathology, and psychosocial performance was observed, whereas positive symptoms remained stable. Agomelatine was mostly well tolerated with predominantly mild and self-limiting side effects. However, pharmacokinetic interactions with antipsychotic agents were observed. Interestingly, the quality of sleep did not improve significantly, pointing toward mechanisms that do not depend on resynchronization of circadian rhythms. CONCLUSIONS Agomelatine appears to be safe and efficacious in treating depressive symptoms in patients with schizophrenia. The risk of pharmacokinetic interactions with antipsychotic agents warrants the need of therapeutic drug monitoring, and regular recording of vital signs seems necessary. Further randomized trials will have to confirm these findings.
Collapse
|
40
|
Di Giovanni G, Svob Strac D, Sole M, Unzeta M, Tipton KF, Mück-Šeler D, Bolea I, Della Corte L, Nikolac Perkovic M, Pivac N, Smolders IJ, Stasiak A, Fogel WA, De Deurwaerdère P. Monoaminergic and Histaminergic Strategies and Treatments in Brain Diseases. Front Neurosci 2016; 10:541. [PMID: 27932945 PMCID: PMC5121249 DOI: 10.3389/fnins.2016.00541] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 11/07/2016] [Indexed: 12/18/2022] Open
Abstract
The monoaminergic systems are the target of several drugs for the treatment of mood, motor and cognitive disorders as well as neurological conditions. In most cases, advances have occurred through serendipity, except for Parkinson's disease where the pathophysiology led almost immediately to the introduction of dopamine restoring agents. Extensive neuropharmacological studies first showed that the primary target of antipsychotics, antidepressants, and anxiolytic drugs were specific components of the monoaminergic systems. Later, some dramatic side effects associated with older medicines were shown to disappear with new chemical compounds targeting the origin of the therapeutic benefit more specifically. The increased knowledge regarding the function and interaction of the monoaminergic systems in the brain resulting from in vivo neurochemical and neurophysiological studies indicated new monoaminergic targets that could achieve the efficacy of the older medicines with fewer side-effects. Yet, this accumulated knowledge regarding monoamines did not produce valuable strategies for diseases where no monoaminergic drug has been shown to be effective. Here, we emphasize the new therapeutic and monoaminergic-based strategies for the treatment of psychiatric diseases. We will consider three main groups of diseases, based on the evidence of monoamines involvement (schizophrenia, depression, obesity), the identification of monoamines in the diseases processes (Parkinson's disease, addiction) and the prospect of the involvement of monoaminergic mechanisms (epilepsy, Alzheimer's disease, stroke). In most cases, the clinically available monoaminergic drugs induce widespread modifications of amine tone or excitability through neurobiological networks and exemplify the overlap between therapeutic approaches to psychiatric and neurological conditions. More recent developments that have resulted in improved drug specificity and responses will be discussed in this review.
Collapse
Affiliation(s)
| | | | - Montse Sole
- Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Institut de Neurociències, Universitat Autònoma de BarcelonaBarcelona, Spain
| | - Mercedes Unzeta
- Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Institut de Neurociències, Universitat Autònoma de BarcelonaBarcelona, Spain
| | - Keith F. Tipton
- School of Biochemistry and Immunology, Trinity College DublinDublin, Ireland
| | - Dorotea Mück-Šeler
- Division of Molecular Medicine, Rudjer Boskovic InstituteZagreb, Croatia
| | - Irene Bolea
- Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Institut de Neurociències, Universitat Autònoma de BarcelonaBarcelona, Spain
| | | | | | - Nela Pivac
- Division of Molecular Medicine, Rudjer Boskovic InstituteZagreb, Croatia
| | - Ilse J. Smolders
- Department of Pharmaceutical Chemistry and Drug Analysis, Vrije Universiteit BrusselBrussels, Belgium
| | - Anna Stasiak
- Department of Hormone Biochemistry, Medical University of LodzLodz, Poland
| | - Wieslawa A. Fogel
- Department of Hormone Biochemistry, Medical University of LodzLodz, Poland
| | - Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5293), Institut of Neurodegenerative DiseasesBordeaux Cedex, France
| |
Collapse
|
41
|
Abstract
Increasing recognition that apathy is one of the most prevalent behavioral and psychological symptoms of dementia and causes substantial caregiver distress has led to trials evaluating psychosocial and pharmacological treatments of apathy in dementia. We evaluated evidence of the efficacy of pharmacotherapies for apathy in dementia from studies since 2013. Previously reported benefits of acetylcholinesterase inhibitors and memantine were not replicated in recent studies. Antidepressants had mixed results with positive effects for apathy shown only for agomelatine, while stimulants, analgesics, and oxytocin study results were inconclusive. For some approaches, such as antipsychotic review, positive effects were found only in combination with nonpharmacological approaches. Relatively few studies assessed apathy outcomes specifically, complicating interpretation of potentially positive treatment effects; none dissected outcomes for emotional, motivational and behavioral components of apathy. Better trial design and more detailed analysis are needed in order to evaluate outcomes of pharmacological treatments for apathy.
Collapse
|
42
|
Bergamini G, Cathomas F, Auer S, Sigrist H, Seifritz E, Patterson M, Gabriel C, Pryce CR. Mouse psychosocial stress reduces motivation and cognitive function in operant reward tests: A model for reward pathology with effects of agomelatine. Eur Neuropsychopharmacol 2016; 26:1448-1464. [PMID: 27422761 DOI: 10.1016/j.euroneuro.2016.06.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/20/2016] [Accepted: 06/18/2016] [Indexed: 12/31/2022]
Abstract
A major domain of depression is decreased motivation for reward. Translational automated tests can be applied in humans and animals to study operant reward behaviour, aetio-pathophysiology underlying deficits therein, and effects of antidepressant treatment. Three inter-related experiments were conducted to investigate depression-relevant effects of chronic psychosocial stress on operant behaviour in mice. (A) Non-manipulated mice were trained on a complex reversal learning (CRL) test with sucrose reinforcement; relative to vehicle (VEH), acute antidepressant agomelatine (AGO, 25mg/kg p.o.) increased reversals. (B) Mice underwent chronic social defeat (CSD) or control handling (CON) on days 1-15, and were administered AGO or VEH on days 10-22. In a progressive ratio schedule motivation test for sucrose on day 15, CSD mice made fewer responses; AGO tended to reverse this effect. In a CRL test on day 22, CSD mice completed fewer reversals; AGO tended to increase reversals in CSD mice associated with an adaptive increase in perseveration. (C) Mice with continuous operant access to water and saccharin solution in the home cage were exposed to CSD or CON; CSD mice made fewer responses for saccharin and water and drank less saccharin in the active period, and drank more water in the inactive period. In a separate CSD cohort, repeated AGO was without effect on these home cage operant and consummatory changes. Overall, this study demonstrates that psychosocial stress in mice leads to depression-relevant decreases in motivation and cognition in operant reward tests; partial reversal of these deficits by AGO provides evidence for predictive validity.
Collapse
Affiliation(s)
- Giorgio Bergamini
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy & Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland; Neuroscience Center, University and ETH Zurich, Zurich, Switzerland
| | - Flurin Cathomas
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy & Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland; Department of Psychiatry, Psychotherapy & Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland
| | - Sandra Auer
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy & Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland
| | - Hannes Sigrist
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy & Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland
| | - Erich Seifritz
- Neuroscience Center, University and ETH Zurich, Zurich, Switzerland; Department of Psychiatry, Psychotherapy & Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland
| | - Michael Patterson
- Department of Life Sciences, University of Roehampton, London, United Kingdom
| | - Cecilia Gabriel
- Institut de Recherches Internationales Servier (IRIS), Suresnes, France
| | - Christopher R Pryce
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy & Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland; Neuroscience Center, University and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
43
|
Jockers R, Delagrange P, Dubocovich ML, Markus RP, Renault N, Tosini G, Cecon E, Zlotos DP. Update on melatonin receptors: IUPHAR Review 20. Br J Pharmacol 2016; 173:2702-25. [PMID: 27314810 DOI: 10.1111/bph.13536] [Citation(s) in RCA: 298] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/15/2016] [Accepted: 05/19/2016] [Indexed: 02/06/2023] Open
Abstract
Melatonin receptors are seven transmembrane-spanning proteins belonging to the GPCR superfamily. In mammals, two melatonin receptor subtypes exist - MT1 and MT2 - encoded by the MTNR1A and MTNR1B genes respectively. The current review provides an update on melatonin receptors by the corresponding subcommittee of the International Union of Basic and Clinical Pharmacology. We will highlight recent developments of melatonin receptor ligands, including radioligands, and give an update on the latest phenotyping results of melatonin receptor knockout mice. The current status and perspectives of the structure of melatonin receptor will be summarized. The physiological importance of melatonin receptor dimers and biologically important and type 2 diabetes-associated genetic variants of melatonin receptors will be discussed. The role of melatonin receptors in physiology and disease will be further exemplified by their functions in the immune system and the CNS. Finally, antioxidant and free radical scavenger properties of melatonin and its relation to melatonin receptors will be critically addressed.
Collapse
Affiliation(s)
- Ralf Jockers
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,University Paris Descartes, Paris, France
| | | | - Margarita L Dubocovich
- Department Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Science, University at Buffalo (SUNY), Buffalo, USA
| | - Regina P Markus
- Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | | | - Gianluca Tosini
- Neuroscience Institute and Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Erika Cecon
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,University Paris Descartes, Paris, France
| | - Darius P Zlotos
- Department of Pharmaceutical Chemistry, The German University in Cairo, New Cairo City, Cairo, Egypt
| |
Collapse
|
44
|
Salardini E, Zeinoddini A, Kohi A, Mohammadi MR, Mohammadinejad P, Khiabany M, Shahriari M, Akhondzadeh S. Agomelatine as a Treatment for Attention-Deficit/Hyperactivity Disorder in Children and Adolescents: A Double-Blind, Randomized Clinical Trial. J Child Adolesc Psychopharmacol 2016; 26:513-9. [PMID: 27286139 DOI: 10.1089/cap.2016.0024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Attention-deficit/hyperactivity disorder (ADHD) is a chronic neurodevelopmental disorder. Due to lack of response to the medication and significant side effects of the treatment with stimulants, alternative medications should be considered. The aim of this study is to evaluate efficacy of agomelatine in treatment of ADHD. METHODS Fifty-four outpatients, children 6-15 years old, with diagnosis of ADHD according to Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision (DSM-IV-TR) diagnostic criteria participated in a 6-week, parallel, double-blind, randomized clinical trial. Fifty patients completed 6 weeks of treatment with either ritalin (methylphenidate hydrochloride [MPH]) (20 mg/day in participants below 30 kg and 30 mg/day in patients with weight ≥30 kg) or agomelatine (15 mg/day in patients with weight ≥30 kg and 25 mg/day in patients with weight ≥45 kg). Participants were assessed using Parent and Teacher ADHD Rating Scale-IV at baseline and at weeks 3 and 6. RESULTS General linear model repeated measures showed no significant differences between the two groups on Parent and Teacher Rating Scale scores (F = 1.13, df = 1.26, p = 0.305, and F = 0.95, df = 1.25, p = 0.353, respectively). Changes in Teacher and Parent ADHD Rating Scale scores from baseline to the study end were not significantly different between the agomelatine group (9.28 ± 8.72 and 24.12 ± 7.04, respectively) and the MPH group (6.64 ± 11.04 and 25.76 ± 7.82, respectively) (p = 0.46 and p = 0.44, respectively). There was a trend for less insomnia in the agomelatine group versus MPH-treated group (4% vs. 24%, p = 0.09). CONCLUSIONS A treatment course of 6 weeks with agomelatine demonstrated a favorable safety and efficacy profile in children and adolescents with ADHD. Nonetheless, larger controlled studies with longer treatment periods are necessary.
Collapse
Affiliation(s)
- Elaheh Salardini
- 1 Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences , Tehran, Iran
| | - Atefeh Zeinoddini
- 1 Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences , Tehran, Iran
| | - Asghar Kohi
- 1 Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences , Tehran, Iran
| | - Mohammad-Reza Mohammadi
- 1 Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences , Tehran, Iran
| | - Payam Mohammadinejad
- 1 Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences , Tehran, Iran
| | - Mohammad Khiabany
- 1 Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences , Tehran, Iran
| | - Mona Shahriari
- 1 Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences , Tehran, Iran
| | - Shahin Akhondzadeh
- 1 Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences , Tehran, Iran
| |
Collapse
|
45
|
Yang J, Jin HJ, Mocaër E, Seguin L, Zhao H, Rusak B. Agomelatine affects rat suprachiasmatic nucleus neurons via melatonin and serotonin receptors. Life Sci 2016; 155:147-54. [DOI: 10.1016/j.lfs.2016.04.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/17/2016] [Accepted: 04/29/2016] [Indexed: 10/21/2022]
|
46
|
Santana N, Artigas F. Expression of Serotonin2CReceptors in Pyramidal and GABAergic Neurons of Rat Prefrontal Cortex: A Comparison with Striatum. Cereb Cortex 2016; 27:3125-3139. [DOI: 10.1093/cercor/bhw148] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
47
|
Callegari I, Mattei C, Benassi F, Krueger F, Grafman J, Yaldizli Ö, Sassos D, Massucco D, Scialò C, Nobili F, Serrati C, Amore M, Cocito L, Emberti Gialloreti L, Pardini M. Agomelatine Improves Apathy in Frontotemporal Dementia. NEURODEGENER DIS 2016; 16:352-6. [PMID: 27229348 DOI: 10.1159/000445873] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/01/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Apathy is the most common initial symptom of frontotemporal dementia (FTD) and has been linked to frontal-subcortical dopaminergic system dysfunction. No pharmacological therapy has been approved for the treatment of apathy, but, on the basis of its physiopathological mechanism, we suspected that increasing prefrontal dopaminergic innervation could improve this disabling symptom. METHODS We evaluated a group of 24 nondepressed patients with a diagnosis of the behavioral variant of FTD, in order to determine the effectiveness on apathy of agomelatine, an antidepressant with MT1 and MT2 receptor agonism and 5-HT2C receptor antagonism; the latter leads to an increase in prefrontal dopaminergic and noradrenergic tone. To try to tease out the effects of 5-HT2C antagonism on apathy, patients were randomized, using a cross-over design, to receive either agomelatine 50 mg/day or sustained release melatonin 10 mg/day for 10 weeks in a double-blind procedure. At the end of the follow-up period, subjects receiving melatonin switched to agomelatine for the following 10 weeks. RESULTS Agomelatine, but not melatonin, was associated with a significant reduction of apathy in FTD subjects and of caregiver distress due to patients' apathy. The switch from melatonin to agomelatine was associated with a reduction in apathetic behavior. Agomelatine was well-tolerated by all enrolled subjects. CONCLUSIONS Our data, albeit preliminary, suggest that agomelatine could represent a novel useful approach to the treatment of apathy in FTD patients.
Collapse
Affiliation(s)
- Ilaria Callegari
- C. Mondino National Neurological Institute, and Neuroscience Consortium, University of Pavia, Monza Policlinico and Pavia Mondino, Pavia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Chagraoui A, Thibaut F, Skiba M, Thuillez C, Bourin M. 5-HT2C receptors in psychiatric disorders: A review. Prog Neuropsychopharmacol Biol Psychiatry 2016; 66:120-135. [PMID: 26739950 DOI: 10.1016/j.pnpbp.2015.12.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/25/2015] [Accepted: 12/26/2015] [Indexed: 12/26/2022]
Abstract
5-HT2Rs have a different genomic organization from other 5-HT2Rs. 5HT2CR undergoes post-transcriptional pre-mRNA editing generating diversity among RNA transcripts. Selective post-transcriptional editing could be involved in the pathophysiology of psychiatric disorders through impairment in G-protein interactions. Moreover, it may influence the therapeutic response to agents such as atypical antipsychotic drugs. Additionally, 5-HT2CR exhibits alternative splicing. Central serotonergic and dopaminergic systems interact to modulate normal and abnormal behaviors. Thus, 5HT2CR plays a crucial role in psychiatric disorders. 5HT2CR could be a relevant pharmacological target in the treatment of neuropsychiatric disorders. The development of drugs that specifically target 5-HT2C receptors will allow for better understanding of their involvement in the pathophysiology of psychiatric disorders including schizophrenia, anxiety, and depression. Among therapeutic means currently available, most drugs used to treat highly morbid psychiatric diseases interact at least partly with 5-HT2CRs. Pharmacologically, 5HT2CRs, have the ability to generate differentially distinct response signal transduction pathways depending on the type of 5HT2CR agonist. Although this receptor property has been clearly demonstrated, in vitro, the eventual beneficial impact of this property opens new perspectives in the development of agonists that could activate signal transduction pathways leading to better therapeutic efficiency with fewer adverse effects.
Collapse
Affiliation(s)
- A Chagraoui
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Normandy University, France; Department of Medical Biochemistry, Rouen University Hospital, Rouen, France.
| | - F Thibaut
- Department of Psychiatry, University Hospital Cochin (site Tarnier), University of Paris-Descartes and INSERM U 894 Laboratory of Psychiatry and Neurosciences, Paris, France
| | - M Skiba
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Normandy University, France
| | - C Thuillez
- Department of Pharmacology, Rouen University Hospital, Rouen, France; INSERM U1096, Laboratory of New Pharmacological Targets for Endothelial Protection and Heart Failure, Institute for Research and Innovation in Biomedicine, Normandy University, France
| | - M Bourin
- EA 3256 Neurobiology of Anxiety and Depression, Faculté de Médecine, BP 53508, 1 rue Gaston Veil, F44035 Nantes Cedex 01, France
| |
Collapse
|
49
|
Yucel A, Yucel N, Ozkanlar S, Polat E, Kara A, Ozcan H, Gulec M. Effect of agomelatine on adult hippocampus apoptosis and neurogenesis using the stress model of rats. Acta Histochem 2016; 118:299-304. [PMID: 26970810 DOI: 10.1016/j.acthis.2016.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 02/29/2016] [Accepted: 02/29/2016] [Indexed: 12/23/2022]
Abstract
Agomelatine (AG) is an agonist of melatonin receptors and an antagonist of the 5-HT2C-receptor subtype. The chronobiotic properties of AG are of significant interest due to the disorganization of internal rhythms, which might play a role in the pathophysiology of depression. The present study was designed to assess the effects of the antidepressant-like activity of AG, a new antidepressant drug, on adult neurogenesis and apoptosis using stress-exposed rat brains. Over the period of 1 week, the rats were exposed to light stress twice a day for 1h. After a period of 1 week, the rats were given AG treatment at a dose of either 10mg/kg or 40mg/kg for 15 days. The animals were then scarified, and the obtained tissue sections were stained with immuno-histochemical anti-BrdU, Caspase-3, and Bcl-2 antibodies. Serum brain-derived neurotrophic factor (BDNF) concentrations were measured biochemically using a BDNF Elisa kit. Biochemical BDNF analysis revealed a high concentration of BDNF in the serum of the stress-exposed group, but the concentrations of BDNF were much lower those of the AG-treated groups. Immuno-histochemical analysis revealed that AG treatment decreased the BrdU-positive and Bcl-2-positive cell densities and increased the Caspase-3-positive cell density in the hippocampus of stress-induced rats as compared to those of the stress group. The results of the study demonstrated that AG treatment ameliorated the hippocampal apoptotic cells and increased hippocampal neurogenesis. These results also strengthen the possible relationship between depression and adult neurogenesis, which must be studied further.
Collapse
Affiliation(s)
- Atakan Yucel
- Department of Psychiatry, Erzurum Regional Education and Research Hospital, Erzurum, Turkey
| | - Nermin Yucel
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Ataturk University, Erzurum, Turkey.
| | - Seckin Ozkanlar
- Department of Biochemistry, Faculty of Veterinary, Ataturk University, Erzurum, Turkey
| | - Elif Polat
- Department of Histology and Embryology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Adem Kara
- Department of Histology and Embryology, Faculty of Veterinary, Ataturk University, Erzurum, Turkey
| | - Halil Ozcan
- Department of Psychiatry, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Mustafa Gulec
- Department of Psychiatry, Faculty of Medicine, Izmir Katip Celebi University, Izmir, Turkey
| |
Collapse
|
50
|
Martinotti G, Pettorruso M, De Berardis D, Varasano PA, Lucidi Pressanti G, De Remigis V, Valchera A, Ricci V, Di Nicola M, Janiri L, Biggio G, Di Giannantonio M. Agomelatine Increases BDNF Serum Levels in Depressed Patients in Correlation with the Improvement of Depressive Symptoms. Int J Neuropsychopharmacol 2016; 19:pyw003. [PMID: 26775293 PMCID: PMC4886672 DOI: 10.1093/ijnp/pyw003] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 01/11/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Agomelatine modulates brain-derived neurotrophic factor expression via its interaction with melatonergic and serotonergic receptors and has shown promising results in terms of brain-derived neurotrophic factor increase in animal models. METHODS Twenty-seven patients were started on agomelatine (25mg/d). Venous blood was collected and brain-derived neurotrophic factor serum levels were measured at baseline and after 2 and 8 weeks along with a clinical assessment, including Hamilton Depression Rating Scale and Snaith-Hamilton Pleasure Scale. RESULTS Brain-derived neurotrophic factor serum concentration increased after agomelatine treatment. Responders showed a significant increase in brain-derived neurotrophic factor levels after 2 weeks of agomelatine treatment; no difference was observed in nonresponders. Linear regression analysis showed that more prominent brain-derived neurotrophic factor level variation was associated with lower baseline BDNF levels and greater anhedonic features at baseline. CONCLUSIONS Patients affected by depressive disorders showed an increase of brain-derived neurotrophic factor serum concentration after a 2-week treatment with agomelatine. The increase of brain-derived neurotrophic factor levels was found to be greater in patients with lower brain-derived neurotrophic factor levels and marked anhedonia at baseline.
Collapse
Affiliation(s)
- Giovanni Martinotti
- Department of Neuroscience, Imaging, and Clinical Sciences, University "G.d'Annunzio", Chieti, Italy (Drs Martinotti, De Berardis, and Di Giannantonio); Institute of Psychiatry and Psychology, Catholic University of the Sacred Hearth, Rome, Italy (Drs Pettorruso, Di Nicola, and Janiri); Department of Immunohematology and Transfusional Medicine, "G. Mazzini" Hospital, Teramo, Italy (Drs Varasano, Lucidi Pressanti, and De Remigis); Hermanas Hospitalarias, FoRiPsi, Villa S. Giuseppe Hospital, Ascoli Piceno, Italy (Dr Valchera); Department of Psychiatry, ASL Valle d'Aosta, Italy (Dr Ricci); Department of Life and Environmental Sciences, Institute of Neuroscience, CNR, University of Cagliari, Cagliari, Italy (Dr Biggio).
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|