1
|
Ji Y, Wang Y, Wang X, Lv C, Zhou Q, Jiang G, Yan B, Chen L. Beyond the promise: Exploring the complex interactions of nanoparticles within biological systems. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133800. [PMID: 38368688 DOI: 10.1016/j.jhazmat.2024.133800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/04/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
The exploration of nanoparticle applications is filled with promise, but their impact on the environment and human health raises growing concerns. These tiny environmental particles can enter the human body through various routes, such as the respiratory system, digestive tract, skin absorption, intravenous injection, and implantation. Once inside, they can travel to distant organs via the bloodstream and lymphatic system. This journey often results in nanoparticles adhering to cell surfaces and being internalized. Upon entering cells, nanoparticles can provoke significant structural and functional changes. They can potentially disrupt critical cellular processes, including damaging cell membranes and cytoskeletons, impairing mitochondrial function, altering nuclear structures, and inhibiting ion channels. These disruptions can lead to widespread alterations by interfering with complex cellular signaling pathways, potentially causing cellular, organ, and systemic impairments. This article delves into the factors influencing how nanoparticles behave in biological systems. These factors include the nanoparticles' size, shape, charge, and chemical composition, as well as the characteristics of the cells and their surrounding environment. It also provides an overview of the impact of nanoparticles on cells, organs, and physiological systems and discusses possible mechanisms behind these adverse effects. Understanding the toxic effects of nanoparticles on physiological systems is crucial for developing safer, more effective nanoparticle-based technologies.
Collapse
Affiliation(s)
- Yunxia Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Changjun Lv
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bing Yan
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
2
|
Miguel Pereira Souza L, Camacho Lima M, Filipe Silva Bezerra L, Silva Pimentel A. Transposition of polymer-encapsulated small interfering RNA through lung surfactant models at the air-water interface. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Effects of Workers Exposure to Nanoparticles Studied by NMR Metabolomics. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11146601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this study, the effects of occupational exposure to nanoparticles (NPs) were studied by NMR metabolomics. Exhaled breath condensate (EBC) and blood plasma samples were obtained from a research nanoparticles-processing unit at a national research university. The samples were taken from three groups of subjects: samples from workers exposed to nanoparticles collected before and after shift, and from controls not exposed to NPs. Altogether, 60 1H NMR spectra of exhaled breath condensate (EBC) samples and 60 1H NMR spectra of blood plasma samples were analysed, 20 in each group. The metabolites identified together with binning data were subjected to multivariate statistical analysis, which provided clear discrimination of the groups studied. Statistically significant metabolites responsible for group separation served as a foundation for analysis of impaired metabolic pathways. It was found that the acute effect of NPs exposure is mainly reflected in the pathways related to the production of antioxidants and other protective species, while the chronic effect is manifested mainly in the alteration of glutamine and glutamate metabolism, and the purine metabolism pathway.
Collapse
|
4
|
Billing AM, Knudsen KB, Chetwynd AJ, Ellis LJA, Tang SVY, Berthing T, Wallin H, Lynch I, Vogel U, Kjeldsen F. Fast and Robust Proteome Screening Platform Identifies Neutrophil Extracellular Trap Formation in the Lung in Response to Cobalt Ferrite Nanoparticles. ACS NANO 2020; 14:4096-4110. [PMID: 32167280 PMCID: PMC7498156 DOI: 10.1021/acsnano.9b08818] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/13/2020] [Indexed: 05/28/2023]
Abstract
Despite broad application of magnetic nanoparticles in biomedicine and electronics, only a few in vivo studies on biocompatibility are available. In this study, toxicity of magnetic metal oxide nanoparticles on the respiratory system was examined in vivo by single intratracheal instillation in mice. Bronchoalveolar lavage fluid (BALF) samples were collected for proteome analyses by LC-MS/MS, testing Fe3O4 nanoparticles doped with increasing amounts of cobalt (Fe3O4, CoFe2O4 with an iron to cobalt ratio 5:1, 3:1, 1:3, Co3O4) at two doses (54 μg, 162 μg per animal) and two time points (day 1 and 3 days postinstillation). In discovery phase, in-depth proteome profiling of a few representative samples allowed for comprehensive pathway analyses. Clustering of the 681 differentially expressed proteins (FDR < 0.05) revealed general as well as metal oxide specific responses with an overall strong induction of innate immunity and activation of the complement system. The highest expression increase could be found for a cluster of 39 proteins, which displayed strong dose-dependency to iron oxide and can be attributed to neutrophil extracellular trap (NET) formation. In-depth proteome analysis expanded the knowledge of in vivo NET formation. During screening, all BALF samples of the study (n = 166) were measured label-free as single-injections after a short gradient (21 min) LC separation using the Evosep One system, validating the findings from the discovery and defining protein signatures which enable discrimination of lung inflammation. We demonstrate a proteomics-based toxicity screening with high sample throughput easily transferrable to other nanoparticle types. Data are available via ProteomeXchange with identifier PXD016148.
Collapse
Affiliation(s)
- Anja M. Billing
- Department
of Biochemistry and Molecular Biology, University
of Southern Denmark, Odense 5230, Denmark
| | - Kristina B. Knudsen
- National
Research Centre for the Working Environment, Copenhagen 2100, Denmark
| | - Andrew J. Chetwynd
- School
of Geography Earth and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Laura-Jayne A. Ellis
- School
of Geography Earth and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | | | - Trine Berthing
- National
Research Centre for the Working Environment, Copenhagen 2100, Denmark
| | - Håkan Wallin
- National
Research Centre for the Working Environment, Copenhagen 2100, Denmark
| | - Iseult Lynch
- School
of Geography Earth and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Ulla Vogel
- National
Research Centre for the Working Environment, Copenhagen 2100, Denmark
- Department
of Health Technology, Technical University
of Denmark, Lyngby 2800, Denmark
| | - Frank Kjeldsen
- Department
of Biochemistry and Molecular Biology, University
of Southern Denmark, Odense 5230, Denmark
| |
Collapse
|
5
|
Sun H, Jiang C, Wu L, Bai X, Zhai S. Cytotoxicity-Related Bioeffects Induced by Nanoparticles: The Role of Surface Chemistry. Front Bioeng Biotechnol 2019; 7:414. [PMID: 31921818 PMCID: PMC6920110 DOI: 10.3389/fbioe.2019.00414] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 11/28/2019] [Indexed: 01/08/2023] Open
Abstract
Nanoparticles (NPs) are widely used in a variety of fields, including those related to consumer products, architecture, energy, and biomedicine. Once they enter the human body, NPs contact proteins in the blood and interact with cells in organs, which may induce cytotoxicity. Among the various factors of NP surface chemistry, surface charges, hydrophobicity levels and combinatorial decorations are found to play key roles inregulating typical cytotoxicity-related bioeffects, including protein binding, cellular uptake, oxidative stress, autophagy, inflammation, and apoptosis. In this review, we summarize the recent progress made in directing the levels and molecular pathways of these cytotoxicity-related effects by the purposeful design of NP surface charge, hydrophobicity, and combinatorial decorations.
Collapse
Affiliation(s)
- Hainan Sun
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
- Shandong Vocational College of Light Industry, Zibo, China
| | - Cuijuan Jiang
- School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Ling Wu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Xue Bai
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Shumei Zhai
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| |
Collapse
|
6
|
Cleary SJ, Page CP. Gustav Born: pioneer in imaging platelet and leukocyte biology. Platelets 2018; 29:766-770. [PMID: 30411649 DOI: 10.1080/09537104.2018.1535001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Gustav Born achieved scientific fame for his application of light transmission aggregometry to the study of platelet function, but also led interdisciplinary research teams in pioneering quantitative in vivo imaging studies of platelet aggregation and leukocyte adhesion, and in conducting the first research into the biomechanical factors underlying atherosclerotic plaque rupture. Gus Born also communicated both current research findings and an integrated understanding of cardiovascular biology to a wide audience through acting as scientific advisor on several television productions. Using footage from two of these films, we discuss Gustav Born's scientific achievements and legacy.
Collapse
Affiliation(s)
- Simon J Cleary
- a Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science , King's College London , London , UK.,b Department of Medicine , University of California San Francisco , San Francisco , CA , USA
| | - Clive P Page
- a Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science , King's College London , London , UK
| |
Collapse
|
7
|
Maltesen RG, Buggeskov KB, Andersen CB, Plovsing R, Wimmer R, Ravn HB, Rasmussen BS. Lung Protection Strategies during Cardiopulmonary Bypass Affect the Composition of Bronchoalveolar Fluid and Lung Tissue in Cardiac Surgery Patients. Metabolites 2018; 8:metabo8040054. [PMID: 30241409 PMCID: PMC6316472 DOI: 10.3390/metabo8040054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/31/2018] [Accepted: 09/19/2018] [Indexed: 11/18/2022] Open
Abstract
Pulmonary dysfunction is among the most frequent complications to cardiac surgeries. Exposure of blood to the cardiopulmonary bypass (CPB) circuit with subsequent lung ischemia-reperfusion leads to the production of inflammatory mediators and increases in microvascular permeability. The study aimed to elucidate histological, cellular, and metabolite changes following two lung protective regimens during CPB with Histidine-Tryptophan-Ketoglutarate (HTK) enriched or warm oxygenated blood pulmonary perfusion compared to standard regimen with no pulmonary perfusion. A total of 90 patients undergoing CPB were randomized to receiving HTK, oxygenated blood or standard regimen. Of these, bronchoalveolar lavage fluid (BALF) and lung tissue biopsies were obtained before and after CPB from 47 and 25 patients, respectively. Histopathological scores, BALF cell counts and metabolite screening were assessed. Multivariate and univariate analyses were performed. Profound histological, cellular, and metabolic changes were identified in all patients after CPB. Histological and cellular changes were similar in the three groups; however, some metabolite profiles were different in the HTK patients. While all patients presented an increase in inflammatory cells, metabolic acidosis, protease activity and oxidative stress, HTK patients seemed to be protected against severe acidosis, excessive fatty acid oxidation, and inflammation during ischemia-reperfusion. Additional studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Raluca G Maltesen
- Department of Anesthesia and Intensive Care Medicine, Aalborg University Hospital, 9000 Aalborg, Denmark.
| | - Katrine B Buggeskov
- Department of Cardiothoracic Anesthesia, Heart Centre, Rigshospitalet, 2100 Copenhagen, Denmark.
| | - Claus B Andersen
- Department of Forensic Medicine, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Ronni Plovsing
- Department of Intensive Care, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark.
- Department of Anesthesiology, Hvidovre Hospital, University of Copenhagen, 2650 Hvidovre, Denmark.
| | - Reinhard Wimmer
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark.
| | - Hanne B Ravn
- Department of Cardiothoracic Anesthesia, Heart Centre, Rigshospitalet, 2100 Copenhagen, Denmark.
| | - Bodil S Rasmussen
- Department of Anesthesia and Intensive Care Medicine, Aalborg University Hospital, 9000 Aalborg, Denmark.
- Department of Clinical Medicine, School of Medicine and Health, Aalborg University, 9220 Aalborg, Denmark.
| |
Collapse
|
8
|
Walmsley S, Cruickshank-Quinn C, Quinn K, Zhang X, Petrache I, Bowler RP, Reisdorph R, Reisdorph N. A prototypic small molecule database for bronchoalveolar lavage-based metabolomics. Sci Data 2018; 5:180060. [PMID: 29664467 PMCID: PMC5903367 DOI: 10.1038/sdata.2018.60] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 02/09/2018] [Indexed: 02/06/2023] Open
Abstract
The analysis of bronchoalveolar lavage fluid (BALF) using mass spectrometry-based metabolomics can provide insight into lung diseases, such as asthma. However, the important step of compound identification is hindered by the lack of a small molecule database that is specific for BALF. Here we describe prototypic, small molecule databases derived from human BALF samples (n=117). Human BALF was extracted into lipid and aqueous fractions and analyzed using liquid chromatography mass spectrometry. Following filtering to reduce contaminants and artifacts, the resulting BALF databases (BALF-DBs) contain 11,736 lipid and 658 aqueous compounds. Over 10% of these were found in 100% of samples. Testing the BALF-DBs using nested test sets produced a 99% match rate for lipids and 47% match rate for aqueous molecules. Searching an independent dataset resulted in 45% matching to the lipid BALF-DB compared to<25% when general databases are searched. The BALF-DBs are available for download from MetaboLights. Overall, the BALF-DBs can reduce false positives and improve confidence in compound identification compared to when general databases are used.
Collapse
Affiliation(s)
- Scott Walmsley
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.,Computational Bioscience Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Charmion Cruickshank-Quinn
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kevin Quinn
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Xing Zhang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Irina Petrache
- Department of Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Russell P Bowler
- Department of Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Richard Reisdorph
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nichole Reisdorph
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
9
|
Hureaux J, Lacoeuille F, Lagarce F, Rousselet MC, Contini A, Saulnier P, Benoit JP, Urban T. Absence of lung fibrosis after a single pulmonary delivery of lipid nanocapsules in rats. Int J Nanomedicine 2017; 12:8159-8170. [PMID: 29184405 PMCID: PMC5687496 DOI: 10.2147/ijn.s146740] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Lipid nanocapsules (LNCs) are potential drug carriers for pulmonary delivery since they can be nebulized without any structural or functional changes, and the aerosols produced are highly compatible with pulmonary drug delivery in human beings. The alveolar surface tension, in vitro cytotoxicity, biodistribution and pulmonary toxicity in rats of a single endotracheal spray of LNCs or paclitaxel-loaded LNCs were studied. In vitro cytotoxicity of LNCs after a spray remained unchanged. Biodistribution study showed a homogeneous repartition in the lungs in rats with an improvement in lung retention of the radiolabeled tracer loaded in LNCs compared to the absence of LNCs with a lung half-time of 8.8±0.7 hours. Bronchoalveolar fluid analysis revealed transient 7-day alveolar inflammation, reaching a maximum between days 2 and 4, characterized by a peak of granulocytes at day 1 followed by a peak of lymphocytes at day 3. Alveolar protein levels were increased at days 3 and 7. Acute inflammation was increased with paclitaxel-loaded LNCs in comparison with blank LNCs but dropped out at day 7. No histological pulmonary lesion was observed at day 60. LNCs lowered surface tension to a greater degree than Curosurf® in a physicochemical model of the pulmonary alveolus. A single pulmonary delivery of LNCs induces a short-term alveolar inflammation with no residual lesions in rats at day 60. These data permit to start the study of LNCs in surfactant replacement therapy.
Collapse
Affiliation(s)
- José Hureaux
- Unité Micro et Nanomédecines Biomimétiques (MINT), Université d'Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire.,Université d'Angers, CHU, Pôle Hippocrate, Service de Pneumologie
| | - Franck Lacoeuille
- Université d'Angers, CHU, Pôle Signal Image Stérilisation, Service de Médecine nucléaire.,CRCINA, Université Nantes Université Angers
| | - Frédéric Lagarce
- Unité Micro et Nanomédecines Biomimétiques (MINT), Université d'Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire.,Université d'Angers, CHU, Pôle Hippocrate, Pharmacie
| | - Marie-Christine Rousselet
- Université d'Angers, CHU, Pôle de Biologie-Pathologie, Département de Cytologie et d'Histologie Pathologique
| | - Aurélien Contini
- Université d'Angers, CHU, Pôle Signal Image Stérilisation, Service de Médecine nucléaire.,CRCINA, Université Nantes Université Angers
| | - Patrick Saulnier
- Unité Micro et Nanomédecines Biomimétiques (MINT), Université d'Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire.,Université d'Angers, CHU, Service la Recherche Clinique et Innovation, Angers, France
| | - Jean-Pierre Benoit
- Unité Micro et Nanomédecines Biomimétiques (MINT), Université d'Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire.,Université d'Angers, CHU, Pôle Hippocrate, Pharmacie
| | - Thierry Urban
- Unité Micro et Nanomédecines Biomimétiques (MINT), Université d'Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire.,Université d'Angers, CHU, Pôle Hippocrate, Service de Pneumologie
| |
Collapse
|
10
|
Fröhlich E. Role of omics techniques in the toxicity testing of nanoparticles. J Nanobiotechnology 2017; 15:84. [PMID: 29157261 PMCID: PMC5697164 DOI: 10.1186/s12951-017-0320-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/12/2017] [Indexed: 12/22/2022] Open
Abstract
Nanotechnology is regarded as a key technology of the twenty-first century. Despite the many advantages of nanotechnology it is also known that engineered nanoparticles (NPs) may cause adverse health effects in humans. Reports on toxic effects of NPs relay mainly on conventional (phenotypic) testing but studies of changes in epigenome, transcriptome, proteome, and metabolome induced by NPs have also been performed. NPs most relevant for human exposure in consumer, health and food products are metal, metal oxide and carbon-based NPs. They were also studied quite frequently with omics technologies and an overview of the study results can serve to answer the question if screening for established targets of nanotoxicity (e.g. cell death, proliferation, oxidative stress, and inflammation) is sufficient or if omics techniques are needed to reveal new targets. Regulated pathways identified by omics techniques were confirmed by phenotypic assays performed in the same study and comparison of particle types and cells by the same group indicated a more cell/organ-specific than particle specific regulation pattern. Between different studies moderate overlap of the regulated pathways was observed and cell-specific regulation is less obvious. The lack of standardization in particle exposure, in omics technologies, difficulties to translate mechanistic data to phenotypes and comparison with human in vivo data currently limit the use of these technologies in the prediction of toxic effects by NPs.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, Stiftingtalstr. 24, 8010, Graz, Austria.
| |
Collapse
|
11
|
Hu Q, Bai X, Hu G, Zuo YY. Unveiling the Molecular Structure of Pulmonary Surfactant Corona on Nanoparticles. ACS NANO 2017; 11:6832-6842. [PMID: 28541666 DOI: 10.1021/acsnano.7b01873] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The growing risk of human exposure to airborne nanoparticles (NPs) causes a general concern on the biosafety of nanotechnology. Inhaled NPs can deposit in the deep lung at which they interact with the pulmonary surfactant (PS). Despite the increasing study of nano-bio interactions, detailed molecular mechanisms by which inhaled NPs interact with the natural PS system remain unclear. Using coarse-grained molecular dynamics simulation, we studied the interaction between NPs and the PS system in the alveolar fluid. It was found that regardless of different physicochemical properties, upon contacting the PS, both silver and polystyrene NPs are immediately coated with a biomolecular corona that consists of both lipids and proteins. Structure and molecular conformation of the PS corona depend on the hydrophobicity of the pristine NPs. Quantitative analysis revealed that lipid composition of the corona formed on different NPs is relatively conserved and is similar to that of the bulk phase PS. However, relative abundance of the surfactant-associated proteins, SP-A, SP-B, and SP-C, is notably affected by the hydrophobicity of the NP. The PS corona provides the NPs with a physicochemical barrier against the environment, equalizes the hydrophobicity of the pristine NPs, and may enhance biorecognition of the NPs. These modifications in physicochemical properties may play a crucial role in affecting the biological identity of the NPs and hence alter their subsequent interactions with cells and other biological entities. Our results suggest that all studies of inhalation nanotoxicology or NP-based pulmonary drug delivery should consider the influence of the PS corona.
Collapse
Affiliation(s)
- Qinglin Hu
- The State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences , Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences , Beijing 100049, China
| | - Xuan Bai
- The State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences , Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences , Beijing 100049, China
| | - Guoqing Hu
- The State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences , Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences , Beijing 100049, China
| | - Yi Y Zuo
- Department of Mechanical Engineering, University of Hawaii at Manoa , Honolulu, Hawaii 96822, United States
- Department of Pediatrics, John A. Burns School of Medicine, University of Hawaii , Honolulu, Hawaii 96826, United States
| |
Collapse
|
12
|
Riebeling C, Jungnickel H, Luch A, Haase A. Systems Biology to Support Nanomaterial Grouping. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 947:143-171. [PMID: 28168668 DOI: 10.1007/978-3-319-47754-1_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The assessment of potential health risks of engineered nanomaterials (ENMs) is a challenging task due to the high number and great variety of already existing and newly emerging ENMs. Reliable grouping or categorization of ENMs with respect to hazards could help to facilitate prioritization and decision making for regulatory purposes. The development of grouping criteria, however, requires a broad and comprehensive data basis. A promising platform addressing this challenge is the systems biology approach. The different areas of systems biology, most prominently transcriptomics, proteomics and metabolomics, each of which provide a wealth of data that can be used to reveal novel biomarkers and biological pathways involved in the mode-of-action of ENMs. Combining such data with classical toxicological data would enable a more comprehensive understanding and hence might lead to more powerful and reliable prediction models. Physico-chemical data provide crucial information on the ENMs and need to be integrated, too. Overall statistical analysis should reveal robust grouping and categorization criteria and may ultimately help to identify meaningful biomarkers and biological pathways that sufficiently characterize the corresponding ENM subgroups. This chapter aims to give an overview on the different systems biology technologies and their current applications in the field of nanotoxicology, as well as to identify the existing challenges.
Collapse
Affiliation(s)
- Christian Riebeling
- German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Berlin, Germany
| | - Harald Jungnickel
- German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Berlin, Germany
| | - Andreas Luch
- German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Berlin, Germany
| | - Andrea Haase
- German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Berlin, Germany.
| |
Collapse
|
13
|
Khanbeigi RA, Hashim Z, Abelha TF, Pitchford S, Collins H, Green M, Dailey LA. Interactions of stealth conjugated polymer nanoparticles with human whole blood. J Mater Chem B 2015; 3:2463-2471. [DOI: 10.1039/c4tb01822b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoluminescent conjugated polymeric nanoparticles (CPNs) exhibit favourable properties as fluorescent probes due to their brightness, high photostability, tunable emission spectra and ease of surface modification.
Collapse
Affiliation(s)
| | - Zeina Hashim
- Department of Physics
- King's College London
- London WC2R 2LS
- UK
| | | | - Simon Pitchford
- Institute of Pharmaceutical Science
- King's College London
- London SE1 9NH
- UK
| | - Helen Collins
- Division of Immunology
- Infection and Inflammatory Diseases
- King's College London
- London SE1 1UL
- UK
| | - Mark Green
- Department of Physics
- King's College London
- London WC2R 2LS
- UK
| | - Lea Ann Dailey
- Institute of Pharmaceutical Science
- King's College London
- London SE1 9NH
- UK
| |
Collapse
|