1
|
Liang X, Sun Y, Chen J, Li J, Ye Y. The Complete Mitochondrial Genome of Nephropsis grandis: Insights into the Phylogeny of Nephropidae Mitochondrial Genome. Biochem Genet 2024:10.1007/s10528-024-10948-6. [PMID: 39470934 DOI: 10.1007/s10528-024-10948-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/21/2024] [Indexed: 11/01/2024]
Abstract
The systematic phylogeny of Pleocyemata species, particularly within the family Nephropidae, remains incomplete. In order to enhance the taxonomy and systematics of Nephropidae within the evolutionary context of Pleocyemata, we embarked upon a comprehensive study aiming to elucidate the phylogenetic position of Nephropsis grandis. Consequently, we determined the complete mitochondrial DNA sequence for N. grandis. The circular genome spans a length of 15,344 bp and exhibits a gene composition analogous to that observed in other metazoans, encompassing a comprehensive set of 37 genes. Additionally, the genome features an AT-rich region. The rRNAs exhibited the highest AT content among the 37 genes (70.41%), followed by tRNAs (67.42%) and protein-coding genes (PCGs) (62.76%). The absence of a dihydrouracil arm in trnS1 prevented the formation of the canonical cloverleaf secondary structure. Selective pressure analysis indicated that the PCGs underwent purifying selection. The Ka/Ks ratios for cox1, cox2, cox3, and cob were considerably lower compared to other PCGs, implying strong purifying selection acting upon these particular genes. The mitochondrial gene order in N. grandis was consistent with the reported order in ancestral Pleocyemata. Phylogenetic revealed that N. grandis forms a cluster with the genus Metanephrops, and this cluster further groups with Homarus and the genus Nephrops within the Nephropidae family. These findings provide robust support for N. grandis as an ancestral member of the Nephropidae family. This study highlights the significance of employing complete mitochondrial genomes in phylogenetic analysis and deepens our understanding of the evolution of the Nephropidae family.
Collapse
Affiliation(s)
- Xinjie Liang
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Yuman Sun
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Jian Chen
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Jiji Li
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Yingying Ye
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China.
| |
Collapse
|
2
|
Chen WT, Li M, Hu SY, Wang SH, Yuan ML. Comparative mitogenomic and evolutionary analysis of Lycaenidae (Insecta: Lepidoptera): Potential association with high-altitude adaptation. Front Genet 2023; 14:1137588. [PMID: 37144132 PMCID: PMC10151513 DOI: 10.3389/fgene.2023.1137588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/03/2023] [Indexed: 05/06/2023] Open
Abstract
Harsh environments (e.g., hypoxia and cold temperatures) of the Qinghai-Tibetan Plateau have a substantial influence on adaptive evolution in various species. Some species in Lycaenidae, a large and widely distributed family of butterflies, are adapted to the Qinghai-Tibetan Plateau. Here, we sequenced four mitogenomes of two lycaenid species in the Qinghai-Tibetan Plateau and performed a detailed comparative mitogenomic analysis including nine other lycaenid mitogenomes (nine species) to explore the molecular basis of high-altitude adaptation. Based on mitogenomic data, Bayesian inference, and maximum likelihood methods, we recovered a lycaenid phylogeny of [Curetinae + (Aphnaeinae + (Lycaeninae + (Theclinae + Polyommatinae)))]. The gene content, gene arrangement, base composition, codon usage, and transfer RNA genes (sequence and structure) were highly conserved within Lycaenidae. TrnS1 not only lacked the dihydrouridine arm but also showed anticodon and copy number diversity. The ratios of non-synonymous substitutions to synonymous substitutions of 13 protein-coding genes (PCGs) were less than 1.0, indicating that all PCGs evolved under purifying selection. However, signals of positive selection were detected in cox1 in the two Qinghai-Tibetan Plateau lycaenid species, indicating that this gene may be associated with high-altitude adaptation. Three large non-coding regions, i.e., rrnS-trnM (control region), trnQ-nad2, and trnS2-nad1, were found in the mitogenomes of all lycaenid species. Conserved motifs in three non-coding regions (trnE-trnF, trnS1-trnE, and trnP-nad6) and long sequences in two non-coding regions (nad6-cob and cob-trnS2) were detected in the Qinghai-Tibetan Plateau lycaenid species, suggesting that these non-coding regions were involved in high-altitude adaptation. In addition to the characterization of Lycaenidae mitogenomes, this study highlights the importance of both PCGs and non-coding regions in high-altitude adaptation.
Collapse
Affiliation(s)
- Wen-Ting Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Min Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Shi-Yun Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, Gansu, China
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu, China
- National Demonstration Center for Experimental Grassland Science Education, Lanzhou University, Lanzhou, Gansu, China
| | - Su-Hao Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Ming-Long Yuan
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu, China
- National Demonstration Center for Experimental Grassland Science Education, Lanzhou University, Lanzhou, Gansu, China
- *Correspondence: Ming-Long Yuan,
| |
Collapse
|
3
|
Gan HM, Grandjean F, Jenkins TL, Austin CM. Absence of evidence is not evidence of absence: Nanopore sequencing and complete assembly of the European lobster (Homarus gammarus) mitogenome uncovers the missing nad2 and a new major gene cluster duplication. BMC Genomics 2019; 20:335. [PMID: 31053062 PMCID: PMC6500004 DOI: 10.1186/s12864-019-5704-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 04/16/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The recently published complete mitogenome of the European lobster (Homarus gammarus) that was generated using long-range PCR exhibits unusual gene composition (missing nad2) and gene rearrangements among decapod crustaceans with strong implications in crustacean phylogenetics. Such atypical mitochondrial features will benefit greatly from validation with emerging long read sequencing technologies such as Oxford Nanopore that can more accurately identify structural variation. RESULTS We re-sequenced the H. gammarus mitogenome on an Oxford Nanopore Minion flowcell and performed a long-read only assembly, generating a complete mitogenome assembly for H. gammarus. In contrast to previous reporting, we found an intact mitochondrial nad2 gene in the H. gammarus mitogenome and showed that its gene organization is broadly similar to that of the American lobster (H. americanus) except for the presence of a large tandemly duplicated region with evidence of pseudogenization in one of each duplicated protein-coding genes. CONCLUSIONS Using the European lobster as an example, we demonstrate the value of Oxford Nanopore long read technology in resolving problematic mitogenome assemblies. The increasing accessibility of Oxford Nanopore technology will make it an attractive and useful tool for evolutionary biologists to verify new and existing unusual mitochondrial gene rearrangements recovered using first and second generation sequencing technologies, particularly those used to make phylogenetic inferences of evolutionary scenarios.
Collapse
Affiliation(s)
- Han Ming Gan
- Deakin Genomics Centre, Deakin University, Geelong, VIC 3220 Australia
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3220 Australia
- School of Science, Monash University Malaysia, Bandar Sunway, 47500 Petaling Jaya, Malaysia
- Monash University Malaysia Genomics Facility, Monash University, Bandar Sunway, 47500 Petaling Jaya, Malaysia
| | - Frederic Grandjean
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267 Equipe Ecologie Evolution Symbiose 5 rue Albert Turpin, 86073 Poitiers, Cedex, France
| | - Tom L. Jenkins
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Christopher Mervyn Austin
- Deakin Genomics Centre, Deakin University, Geelong, VIC 3220 Australia
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3220 Australia
- School of Science, Monash University Malaysia, Bandar Sunway, 47500 Petaling Jaya, Malaysia
- Monash University Malaysia Genomics Facility, Monash University, Bandar Sunway, 47500 Petaling Jaya, Malaysia
| |
Collapse
|
4
|
Ahn DH, Min GS, Park JK, Kim S. The complete mitochondrial genome of the red-banded lobster Metanephrops thomsoni (Crustacea, Astacidea, Nephropidae): a novel gene order. Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:2663-4. [PMID: 26258503 DOI: 10.3109/19401736.2015.1043536] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The complete mitochondrial genome (mitogenome) of the red-banded lobster, Metanephrops thomsoni (Decapoda, Astacidea, Nephropidae), is 19,835 bp in length and contains 13 protein-coding genes (PCGs), 2 ribosomal RNAs, 24 transfer RNAs (including additional copies of trnW and trnL1), and 2 control regions (CR). The mitogenome of M. thomsoni has 10 long intergenic sequences (71-237 bp) with a high AT content (70.0%). The two CRs show 59.6% similarity and have an identical sequence region with a length of 295 bp. The mitogenome of M. thomsoni shows a novel gene arrangement compared with the pancrustacean ground pattern and is identical to that of M. sibogae, except for the two additional tRNAs (trnW and trnL1). Phylogenetic tree from maximum likelihood analysis using the concatenated sequences of 13 PCGs depicted M. thomsoni as one of the members of the superfamily Nephropoidea within Astacidea.
Collapse
Affiliation(s)
- Dong-Ha Ahn
- a Department of Biological Sciences , Inha University , Incheon , South Korea
| | - Gi-Sik Min
- a Department of Biological Sciences , Inha University , Incheon , South Korea
| | - Joong-Ki Park
- b Division of EcoScience , Ewha Womans University , Seoul , South Korea , and
| | - Sanghee Kim
- c Division of Life Sciences , Korea Polar Research Institute , KIOST , Incheon , South Korea
| |
Collapse
|
5
|
Shen H, Braband A, Scholtz G. The complete mitogenomes of lobsters and crayfish (Crustacea: Decapoda: Astacidea) reveal surprising differences in closely related taxa and convergences to Priapulida. J ZOOL SYST EVOL RES 2015. [DOI: 10.1111/jzs.12106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Hong Shen
- Institut für Biologie/Vergleichende Zoologie; Humboldt-Universität zu Berlin; Berlin Germany
| | - Anke Braband
- Institut für Biologie/Vergleichende Zoologie; Humboldt-Universität zu Berlin; Berlin Germany
| | - Gerhard Scholtz
- Institut für Biologie/Vergleichende Zoologie; Humboldt-Universität zu Berlin; Berlin Germany
| |
Collapse
|