1
|
Rutkove SB, Callegari S, Concepcion H, Mourey T, Widrick J, Nagy JA, Nath AK. Electrical impedance myography detects age-related skeletal muscle atrophy in adult zebrafish. Sci Rep 2023; 13:7191. [PMID: 37137956 PMCID: PMC10156759 DOI: 10.1038/s41598-023-34119-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/25/2023] [Indexed: 05/05/2023] Open
Abstract
Age-related deficits in skeletal muscle function, termed sarcopenia, are due to loss of muscle mass and changes in the intrinsic mechanisms underlying contraction. Sarcopenia is associated with falls, functional decline, and mortality. Electrical impedance myography (EIM)-a minimally invasive, rapid electrophysiological tool-can be applied to animals and humans to monitor muscle health, thereby serving as a biomarker in both preclinical and clinical studies. EIM has been successfully employed in several species; however, the application of EIM to the assessment of zebrafish-a model organism amenable to high-throughput experimentation-has not been reported. Here, we demonstrated differences in EIM measures between the skeletal muscles of young (6 months of age) and aged (33 months of age) zebrafish. For example, EIM phase angle and reactance at 2 kHz showed significantly decreased phase angle (5.3 ± 2.1 versus 10.7 ± 1.5°; p = 0.001) and reactance (89.0 ± 3.9 versus 172.2 ± 54.8 ohms; p = 0.007) in aged versus young animals. Total muscle area, in addition to other morphometric features, was also strongly correlated to EIM 2 kHz phase angle across both groups (r = 0.7133, p = 0.01). Moreover, there was a strong correlation between 2 kHz phase angle and established metrics of zebrafish swimming performance, including turn angle, angular velocity, and lateral motion (r = 0.7253, r = 0.7308, r = 0.7857, respectively, p < 0.01 for all). In addition, the technique was shown to have high reproducibility between repeated measurements with a mean percentage difference of 5.34 ± 1.17% for phase angle. These relationships were also confirmed in a separate replication cohort. Together, these findings establish EIM as a fast, sensitive method for quantifying zebrafish muscle function and quality. Moreover, identifying the abnormalities in the bioelectrical properties of sarcopenic zebrafish provides new opportunities to evaluate potential therapeutics for age-related neuromuscular disorders and to interrogate the disease mechanisms of muscle degeneration.
Collapse
Affiliation(s)
- Seward B Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA.
- Harvard Medical School, Boston, MA, 02215, USA.
| | - Santiago Callegari
- Department of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Holly Concepcion
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Tyler Mourey
- Zebrafish Core Facility, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Jeffrey Widrick
- Harvard Medical School, Boston, MA, 02215, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Janice A Nagy
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Anjali K Nath
- Harvard Medical School, Boston, MA, 02215, USA.
- Department of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA.
- Broad Institute, Cambridge, MA, 02142, USA.
| |
Collapse
|
2
|
Gong Z, Lo WLA, Wang R, Li L. Electrical impedance myography combined with quantitative assessment techniques in paretic muscle of stroke survivors: Insights and challenges. Front Aging Neurosci 2023; 15:1130230. [PMID: 37020859 PMCID: PMC10069712 DOI: 10.3389/fnagi.2023.1130230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
Aging is a non-modifiable risk factor for stroke and the global burden of stroke is continuing to increase due to the aging society. Muscle dysfunction, common sequela of stroke, has long been of research interests. Therefore, how to accurately assess muscle function is particularly important. Electrical impedance myography (EIM) has proven to be feasible to assess muscle impairment in patients with stroke in terms of micro structures, such as muscle membrane integrity, extracellular and intracellular fluids. However, EIM alone is not sufficient to assess muscle function comprehensively given the complex contributors to paretic muscle after an insult. This article discusses the potential to combine EIM and other common quantitative methods as ways to improve the assessment of muscle function in stroke survivors. Clinically, these combined assessments provide not only a distinct advantage for greater accuracy of muscle assessment through cross-validation, but also the physiological explanation on muscle dysfunction at the micro level. Different combinations of assessments are discussed with insights for different purposes. The assessments of morphological, mechanical and contractile properties combined with EIM are focused since changes in muscle structures, tone and strength directly reflect the muscle function of stroke survivors. With advances in computational technology, finite element model and machine learning model that incorporate multi-modal evaluation parameters to enable the establishment of predictive or diagnostic model will be the next step forward to assess muscle function for individual with stroke.
Collapse
Affiliation(s)
- Ze Gong
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Wai Leung Ambrose Lo
- Department of Rehabilitation Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ruoli Wang
- KTH MoveAbility Lab, Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Le Li
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
- *Correspondence: Le Li,
| |
Collapse
|
3
|
Moharir SC, Swarup G. Optineurin deficiency induces patchy hair loss but it is not sufficient to cause amyotrophic lateral sclerosis in mice. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166470. [PMID: 35750266 DOI: 10.1016/j.bbadis.2022.166470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Shivranjani C Moharir
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India; Tata Institute for Genetics and Society, India.
| | - Ghanshyam Swarup
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India.
| |
Collapse
|
4
|
Schooling CN, Healey T, McDonough HE, French SJ, McDermott CJ, Shaw PJ, Kadirkamanathan V, Alix JJ. Tensor electrical impedance myography identifies bulbar disease progression in amyotrophic lateral sclerosis. Clin Neurophysiol 2022; 139:69-75. [DOI: 10.1016/j.clinph.2022.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/08/2022] [Accepted: 04/15/2022] [Indexed: 11/17/2022]
|
5
|
Pandeya SR, Nagy JA, Riveros D, Semple C, Taylor RS, Hu A, Sanchez B, Rutkove SB. Using machine learning algorithms to enhance the diagnostic performance of electrical impedance myography. Muscle Nerve 2022; 66:354-361. [PMID: 35727064 DOI: 10.1002/mus.27664] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 04/23/2022] [Accepted: 06/14/2022] [Indexed: 11/11/2022]
Abstract
INTRODUCTION/AIMS We assessed the classification performance of machine learning (ML) using multifrequency electrical impedance myography (EIM) values to improve upon diagnostic outcomes as compared to those based on a single EIM value. METHODS EIM data was obtained from unilateral excised gastrocnemius in eighty diseased mice (26 D2-mdx, Duchenne muscular dystrophy model, 39 SOD1G93A ALS model, and 15 db/db, a model of obesity-induced muscle atrophy) and 33 wild-type (WT) animals. We assessed the classification performance of a ML random forest algorithm incorporating all the data (multifrequency resistance, reactance and phase values) comparing it to the 50 kHz phase value alone. RESULTS ML outperformed the 50 kHz analysis as based on receiver-operating characteristic curves and measurement of the area under the curve (AUC). For example, comparing all diseases together versus WT from the test set outputs, the AUC was 0.52 for 50 kHz phase, but was 0.94 for the ML model. Similarly, when comparing ALS versus WT, the AUCs were 0.79 for 50 kHz phase and 0.99 for ML. DISCUSSION Multifrequency EIM utilizing ML improves upon classification compared to that achieved with a single-frequency value. ML approaches should be considered in all future basic and clinical diagnostic applications of EIM.
Collapse
Affiliation(s)
- Sarbesh R Pandeya
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, USA
| | - Janice A Nagy
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, USA
| | - Daniela Riveros
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, USA
| | - Carson Semple
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, USA
| | - Rebecca S Taylor
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, USA
| | | | - Benjamin Sanchez
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah
| | - Seward B Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, USA
| |
Collapse
|
6
|
Antisense oligonucleotide and adjuvant exercise therapy reverse fatigue in old mice with myotonic dystrophy. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 23:393-405. [PMID: 33473325 PMCID: PMC7787993 DOI: 10.1016/j.omtn.2020.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023]
Abstract
Patients with myotonic dystrophy type 1 (DM1) identify chronic fatigue as the most debilitating symptom, which manifests in part as prolonged recovery after exercise. Clinical features of DM1 result from pathogenic gain-of-function activity of transcripts containing an expanded microsatellite CUG repeat (CUGexp). In DM1 mice, therapies targeting the CUGexp transcripts correct the molecular phenotype, reverse myotonia, and improve muscle pathology. However, the effect of targeted molecular therapies on fatigue in DM1 is unknown. Here, we use two mouse models of DM1, age-matched wild-type controls, an exercise-activity assay, electrical impedance myography, and therapeutic antisense oligonucleotides (ASOs) to show that exaggerated exercise-induced fatigue progresses with age, is unrelated to muscle fiber size, and persists despite correction of the molecular phenotype for 3 months. In old DM1 mice, ASO treatment combined with an exercise training regimen consisting of treadmill walking 30 min per day 6 days per week for 3 months reverse all measures of fatigue. Exercise training without ASO therapy improves some measures of fatigue without correction of the molecular pathology. Our results highlight a key limitation of ASO monotherapy for this clinically important feature and support the development of moderate-intensity exercise as an adjuvant for targeted molecular therapies of DM1.
Collapse
|
7
|
Semple C, Riveros D, Sung DM, Nagy JA, Rutkove SB, Mortreux M. Using Electrical Impedance Myography as a Biomarker of Muscle Deconditioning in Rats Exposed to Micro- and Partial-Gravity Analogs. Front Physiol 2020; 11:557796. [PMID: 33041858 PMCID: PMC7522465 DOI: 10.3389/fphys.2020.557796] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
As astronauts prepare to undertake new extra-terrestrial missions, innovative diagnostic tools are needed to better assess muscle deconditioning during periods of weightlessness and partial gravity. Electrical impedance myography (EIM) has been used to detect muscle deconditioning in rodents exposed to microgravity during spaceflight or using the standard ground-based model of hindlimb unloading via tail suspension (HU). Here, we used EIM to assess muscle changes in animals exposed to two new models: hindlimb suspension using a pelvic harness (HLS) and a partial weight-bearing (PWB) model that mimics partial gravity (including Lunar and Martian gravities). We also used a simple needle array electrode in lieu of surface or ex vivo EIM approaches previously employed. Our HLS results confirmed earlier findings obtained after spaceflight and tail suspension. Indeed, one EIM measure (i.e., phase-slope) that was previously reported as highly sensitive, was significantly decreased after HLS (day 0: 14.60 ± 0.97, day 7: 11.03 ± 0.81, and day 14: 10.13 ± 0.55 | Deg/MHz|, p < 0.0001), and was associated with a significant decrease in muscle grip force. Although EIM parameters such as 50 kHz phase, reactance, and resistance remained variable over 14 days in PWB animals, we identified major PWB-dependent effects at 7 days. Moreover, the data at both 7 and 14 days correlated to previously observed changes in rear paw grip force using the same PWB model. In conclusion, our data suggest that EIM has the potential to serve as biomarker of muscle deconditioning during exposure to both micro- and partial- gravity during future human space exploration.
Collapse
Affiliation(s)
- Carson Semple
- Department of Neurology, Harvard Medical School - Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Daniela Riveros
- Department of Neurology, Harvard Medical School - Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Dong-Min Sung
- Department of Neurology, Harvard Medical School - Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Janice A Nagy
- Department of Neurology, Harvard Medical School - Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Seward B Rutkove
- Department of Neurology, Harvard Medical School - Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Marie Mortreux
- Department of Neurology, Harvard Medical School - Beth Israel Deaconess Medical Center, Boston, MA, United States
| |
Collapse
|
8
|
Longo S, Coratella G, Rampichini S, Borrelli M, Scurati R, Limonta E, Cè E, Esposito F. Local fat content and muscle quality measured by a new electrical impedance myography device: correlations with ultrasound variables. Eur J Sport Sci 2020; 21:388-399. [PMID: 32237960 DOI: 10.1080/17461391.2020.1751306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractThe present study investigated the relationship between local fat percentage (SKfat) and muscle quality (MQ) estimated by a new hand-held electrical impedance myography (hEIM) device or derived from ultrasound and strength assessments. The right anterior thigh of 90 healthy participants (mean ± SD; age=22.9 ± 2.9 years; 45 men: BMI = 23.9 ± 2.4 kgm-2; 45 women: BMI = 21.1 ± 1.9 kgm-2) was scanned by hEIM and ultrasound. Correlations between SKfat, local subcutaneous fat (SUBfat), and echo intensity (EIus) were explored. Correlations between MQ, EIus, quadriceps femoris anatomical cross-sectional area (ACSAQF), knee extensors maximum voluntary isometric torque (T), T/ACSAQF, EIus/SUBfat, and ACSAQF/SUBfat were also assessed. SKfat correlated with SUBfat (r = 0.88; p < 0.001) and EIus (r = 0.64; p < 0.001). MQ correlated with EIus (r = -0.66; p < 0.001), ACSAQF (r = 0.37; p < 0.001), EIus/SUBfat (r = 0.37; p < 0.001), and ACSAQF/SUBfat (r = 0.81; p < 0.001). Multiple regression analysis showed that SUBfat, EIus, and sex explained 86% of SKfat variance, whereas ACSAQF/SUBfat, sex and EIus explained 75% of MQ variance. In conclusion, high hEIM local fat percentage relates to greater subcutaneous fat and intramuscular non-contractile tissue content. High hEIM muscle quality relates to greater muscle-size:subcutaneous-fat ratio and contractile tissue content. Sex influences the prediction of both parameters. This hEIM device seems to be useful to estimate local thigh composition.
Collapse
Affiliation(s)
- Stefano Longo
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Giuseppe Coratella
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Susanna Rampichini
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Marta Borrelli
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Raffaele Scurati
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Eloisa Limonta
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy.,IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Emiliano Cè
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy.,IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Fabio Esposito
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy.,IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| |
Collapse
|
9
|
Wier CG, Crum AE, Reynolds AB, Iyer CC, Chugh D, Palettas MS, Heilman PL, Kline DM, Arnold WD, Kolb SJ. Muscle contractility dysfunction precedes loss of motor unit connectivity in SOD1(G93A) mice. Muscle Nerve 2018; 59:254-262. [PMID: 30370671 DOI: 10.1002/mus.26365] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/17/2018] [Accepted: 10/22/2018] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Electrophysiological measurements are used in longitudinal clinical studies to provide insight into the progression of amyotrophic lateral sclerosis (ALS) and the relationship between muscle weakness and motor unit (MU) degeneration. Here, we used a similar longitudinal approach in the Cu/Zn superoxide dismutase (SOD1[G93A]) mouse model of ALS. METHODS In vivo muscle contractility and MU connectivity assays were assessed longitudinally in SOD1(G93A) and wild type mice from postnatal days 35 to 119. RESULTS In SOD1(G93A) males, muscle contractility was reduced by day 35 and preceded MU loss. Muscle contractility and motor unit reduction were delayed in SOD1(G93A) females compared with males, but, just as with males, muscle contractility reduction preceded MU loss. DISCUSSION The longitudinal contractility and connectivity paradigm employed here provides additional insight into the SOD1(G93A) mouse model and suggests that loss of muscle contractility is an early finding that may precede loss of MUs and motor neuron death. Muscle Nerve 59:254-262, 2019.
Collapse
Affiliation(s)
- Christopher G Wier
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Alexander E Crum
- Department of Neurology, Division of Neuromuscular Medicine, The Ohio State University Wexner Medical Center, 395 West 12th Avenue, Columbus, Ohio, 43210, USA
| | - Anthony B Reynolds
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Chitra C Iyer
- Department of Neurology, Division of Neuromuscular Medicine, The Ohio State University Wexner Medical Center, 395 West 12th Avenue, Columbus, Ohio, 43210, USA
| | - Deepti Chugh
- Department of Neurology, Division of Neuromuscular Medicine, The Ohio State University Wexner Medical Center, 395 West 12th Avenue, Columbus, Ohio, 43210, USA
| | - Marilly S Palettas
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, USA
| | - Patrick L Heilman
- Department of Neurology, Division of Neuromuscular Medicine, The Ohio State University Wexner Medical Center, 395 West 12th Avenue, Columbus, Ohio, 43210, USA
| | - David M Kline
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, USA
| | - W David Arnold
- Department of Neurology, Division of Neuromuscular Medicine, The Ohio State University Wexner Medical Center, 395 West 12th Avenue, Columbus, Ohio, 43210, USA.,Department of Physical Medicine and Rehabilitation, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Stephen J Kolb
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Neurology, Division of Neuromuscular Medicine, The Ohio State University Wexner Medical Center, 395 West 12th Avenue, Columbus, Ohio, 43210, USA
| |
Collapse
|
10
|
Kapur K, Nagy JA, Taylor RS, Sanchez B, Rutkove SB. Estimating Myofiber Size With Electrical Impedance Myography: a Study In Amyotrophic Lateral Sclerosis MICE. Muscle Nerve 2018; 58:713-717. [PMID: 30175407 DOI: 10.1002/mus.26187] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/30/2018] [Accepted: 06/03/2018] [Indexed: 12/12/2022]
Abstract
INTRODUCTION A method for quantifying myofiber size noninvasively would find wide use, including primary diagnosis and evaluating response to therapy. METHODS Using prediction algorithms, including the least absolute shrinkage and selection operator, we applied multifrequency electrical impedance myography (EIM) to amyotrophic lateral sclerosis superoxide dismutase 1 G93A mice of different ages and assessed myofiber size histologically. RESULTS Multifrequency EIM data provided highly accurate predictions of myofiber size, with a root mean squared error (RMSE) of only 14% in mean myofiber area (corresponding to ± 207 µm2 for a mean area of 1,488 µm2 ) and an RMSE of only 8.8% in predicting the coefficient of variation in fiber size distribution. DISCUSSION This impedance-based approach provides predictive variables to assess myofiber size and distribution with good accuracy, particularly in diseases in which myofiber atrophy is the predominant histological feature, without the requirement for biopsy or burdensome quantification. Muscle Nerve 58: 713-717, 2018.
Collapse
Affiliation(s)
- Kush Kapur
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Janice A Nagy
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, TCC-810, Boston, Massachusetts, 02215, USA
| | - Rebecca S Taylor
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, TCC-810, Boston, Massachusetts, 02215, USA
| | - Benjamin Sanchez
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, TCC-810, Boston, Massachusetts, 02215, USA
| | - Seward B Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, TCC-810, Boston, Massachusetts, 02215, USA
| |
Collapse
|
11
|
Electrical impedance myography as a biomarker of myostatin inhibition with ActRIIB-mFc: a study in wild-type mice. Future Sci OA 2018; 4:FSO308. [PMID: 30057785 PMCID: PMC6060391 DOI: 10.4155/fsoa-2018-0002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/15/2018] [Indexed: 12/14/2022] Open
Abstract
Aim: We sought to determine the sensitivity of electrical impedance myography (EIM) to myofiber hypertrophy induced by treatment with various doses of ActRIIB-mFc, an inhibitor of myostatin signaling. Methods: Wild-type C57BL/6 J mice (n = 40, male) were treated with three different doses of ActRIIB-mFc (i.e., RAP-031) or vehicle twice weekly for 5 weeks. End point assessments included gastrocnemius EIM, force measurements, muscle mass and myofiber size quantification. Results: ActRIIB-mFc increased body mass, muscle mass and myofiber size across all doses. Alterations in EIM 50 kHz phase and center frequency (fc) were also present, with trends in a dose-dependent fashion. Significant correlations between EIM parameters and myofiber/functional data were identified. Conclusion: EIM outcomes can serve as effective biomarkers of myostatin signaling inhibition, demonstrating a dose sensitivity and correlation to standard assessments. We were interested in studying the sensitivity of a technique, called electrical impedance myography (EIM), to noninvasively assess the size of muscle fibers. In this technique a minute electrical current is used to probe the tissue. To do so, we gave a drug (ActRIIB-mFc) to mice that enlarges muscle fibers at three different doses. We were able to show that the EIM technique was able to detect this differential effect and functional changes induced by the drug correlated to the EIM data. This work suggests that EIM will be useful as a noninvasive marker muscle health.
Collapse
|
12
|
Ko FC, Li J, Brooks DJ, Rutkove SB, Bouxsein ML. Structural and functional properties of bone are compromised in amyotrophic lateral sclerosis mice. Amyotroph Lateral Scler Frontotemporal Degener 2018; 19:457-462. [PMID: 29569488 DOI: 10.1080/21678421.2018.1452946] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In addition to muscle weakness, amyotrophic lateral sclerosis (ALS) is associated with an increased incidence of skeletal fractures. The SOD1G93A mouse model recapitulates many features of human ALS. These mice also exhibit decreased bone mass. However, the functional, or biomechanical, behavior of the skeleton in SOD1G93A mice has not been investigated. To do so, we examined skeletal phenotypes in end-stage (16-week-old) SOD1G93A female mice and healthy littermate female controls (N = 9-10/group). Outcomes included trabecular and cortical bone microarchitecture by microcomputed tomography; stiffness and strength via three-point bending; resistance to crack growth by fracture toughness testing; and cortical bone matrix properties via cyclic reference point indentation. SOD1G93A mice had similar bone size, but significantly lower trabecular bone mass (-54%), thinner trabeculae (-41%) and decreased cortical bone thickness (-17%) and cortical area (-18%) compared to control mice (all p < 0.01). In line with these bone mass and microstructure deficits, SOD1G93A mice had significantly lower femoral bending stiffness (-27%) and failure moment (-41%), along with decreased fracture toughness (-18%) (all p < 0.001). This is the first study to demonstrate functional deficits in the skeleton of end-stage ALS mice, and imply multiple mechanisms for increased skeletal fragility and fracture risk in patients in ALS. Importantly, our results provide strong rationale for interventions to reduce fracture risk in ALS patients with advanced disease.
Collapse
Affiliation(s)
- Frank C Ko
- a Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center , Boston , MA , USA.,b Endocrine Unit , Massachusetts General Hospital , Boston , MA , USA
| | - Jia Li
- c Department of Neurology , Harvard Medical School , Boston , MA , USA.,d Department of Neurology , Beth Israel Deaconess Medical Center , Boston , MA , USA , and
| | - Daniel J Brooks
- a Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center , Boston , MA , USA
| | - Seward B Rutkove
- c Department of Neurology , Harvard Medical School , Boston , MA , USA.,d Department of Neurology , Beth Israel Deaconess Medical Center , Boston , MA , USA , and
| | - Mary L Bouxsein
- a Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center , Boston , MA , USA.,b Endocrine Unit , Massachusetts General Hospital , Boston , MA , USA.,e Department of Orthopedic Surgery , Harvard Medical School , Boston , MA , USA
| |
Collapse
|
13
|
Kapur K, Taylor RS, Qi K, Nagy JA, Li J, Sanchez B, Rutkove SB. Predicting myofiber size with electrical impedance myography: A study in immature mice. Muscle Nerve 2018; 58:10.1002/mus.26111. [PMID: 29476692 PMCID: PMC6108958 DOI: 10.1002/mus.26111] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2018] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Electrical impedance can be used to estimate cellular characteristics. We sought to determine whether it could be used to approximate myofiber size using standard prediction modeling approaches. METHODS Forty-four C57BL/6J wild-type immature mice of varying ages underwent electrical impedance myography (EIM) with a needle electrode array placed in the gastrocnemius. Animals were then humanely killed and muscle fixed, stained, and myofiber size quantified. Two different statistical prediction models were then applied. RESULTS Impedance parameters showed major variation with increasing myofiber size. The prediction models based on EIM data alone were able to predict fiber size, with errors in the range of ±69.05-78.44 µm2 (16.19%-18.40% with respect to the average myofiber size). DISCUSSION By using well-established statistical models, EIM data alone can provide a satisfactory estimate of myofiber size. Additional study of this approach for approximating myofiber size without the requirement of removing tissue for histological analysis is warranted. Muscle Nerve, 2018.
Collapse
Affiliation(s)
- Kush Kapur
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Rebecca S Taylor
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, TCC-810 Boston, Massachusetts, 02215, USA
| | - Kristin Qi
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, TCC-810 Boston, Massachusetts, 02215, USA
| | - Janice A Nagy
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, TCC-810 Boston, Massachusetts, 02215, USA
| | - Jia Li
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, TCC-810 Boston, Massachusetts, 02215, USA
| | - Benjamin Sanchez
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, TCC-810 Boston, Massachusetts, 02215, USA
| | - Seward B Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, TCC-810 Boston, Massachusetts, 02215, USA
| |
Collapse
|
14
|
Li L, Shin H, Stampas A, Li X, Zhou P. Electrical impedance myography changes after incomplete cervical spinal cord injury: An examination of hand muscles. Clin Neurophysiol 2017; 128:2242-2247. [DOI: 10.1016/j.clinph.2017.08.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 08/01/2017] [Accepted: 08/20/2017] [Indexed: 12/14/2022]
|
15
|
Arnold WD, Taylor RS, Li J, Nagy JA, Sanchez B, Rutkove SB. Electrical impedance myography detects age-related muscle change in mice. PLoS One 2017; 12:e0185614. [PMID: 29049394 PMCID: PMC5648130 DOI: 10.1371/journal.pone.0185614] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/16/2017] [Indexed: 12/14/2022] Open
Abstract
Loss of muscle mass and strength represents one of the most significant contributors to impaired function in older adults. Convenient and non-invasive biomarkers are needed that can readily identify and track age-related muscle change. Previous data has suggested electrical impedance myography (EIM) has the potential to serve in this capacity. In this study we investigated how changes in EIM compared with other standard measures of muscle structure and function in aged compared with young mice. A total of 19 male mice aged approximately 25 months and 19 male mice aged 3 months underwent surface multifrequency EIM of the right gastrocnemius muscle using standard methods. Fore and hind limb grip strength, sciatic compound muscle action potential amplitude, and in-situ force of the gastrocnemius were also measured; after sacrifice, gastrocnemius myofiber size was assessed using standard histology. Spearman correlation coefficients were calculated to investigate the association between EIM and muscle characteristics. EIM in aged animals demonstrated significantly lower 50 kHz impedance phase (p<0.001) and reactance (p<0.01) values as well as reduced multifrequency parameters. In contrast, absolute gastrocnemius muscle mass was no different between young and aged mice (p = 0.58) but was reduced in aged mice after normalization to body mass (p<0.001). Median myofiber size in the aged mice was not different from that of young mice (p = 0.72). Aged mice showed reduced muscle function on the basis of normalized fore limb (p<0.001) and normalized hind limb (p<0.001) grip strength, as well as normalized gastrocnemius twitch (p<0.001) and normalized maximal isometric force (p<0.001). Sciatic compound muscle action potential amplitude was reduced in aged mice (p<0.05). EIM parameters showed good correlation with reduced standard physiological and electrophysiological measures of muscle health. Our study suggests that EIM is sensitive to aged-related muscle change and may represent a convenient and valuable method of quantifying loss of muscle health.
Collapse
Affiliation(s)
- W. David Arnold
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Rebecca S. Taylor
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jia Li
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Janice A. Nagy
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Benjamin Sanchez
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Seward B. Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
16
|
Present Uses, Future Applications, and Technical Underpinnings of Electrical Impedance Myography. Curr Neurol Neurosci Rep 2017; 17:86. [DOI: 10.1007/s11910-017-0793-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Hakim CH, Mijailovic A, Lessa TB, Coates JR, Shin C, Rutkove SB, Duan D. Non-invasive evaluation of muscle disease in the canine model of Duchenne muscular dystrophy by electrical impedance myography. PLoS One 2017; 12:e0173557. [PMID: 28339469 PMCID: PMC5365102 DOI: 10.1371/journal.pone.0173557] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/23/2017] [Indexed: 02/07/2023] Open
Abstract
Dystrophin-deficient dogs are by far the best available large animal models for Duchenne muscular dystrophy (DMD), the most common lethal childhood muscle degenerative disease. The use of the canine DMD model in basic disease mechanism research and translational studies will be greatly enhanced with the development of reliable outcome measures. Electrical impedance myography (EIM) is a non-invasive painless procedure that provides quantitative data relating to muscle composition and histology. EIM has been extensively used in neuromuscular disease research in both human patients and rodent models. Recent studies suggest that EIM may represent a highly reliable and convenient outcome measure in DMD patients and the mdx mouse model of DMD. To determine whether EIM can be used as a biomarker of disease severity in the canine model, we performed the assay in fourteen young (~6.6-m-old; 6 normal and 8 affected) and ten mature (~16.9-m-old; 4 normal and 6 affected) dogs of mixed background breeds. EIM was well tolerated with good inter-rater reliability. Affected dogs showed higher resistance, lower reactance and phase. The difference became more straightforward in mature dogs. Importantly, we observed a statistically significant correlation between the EIM data and muscle fibrosis. Our results suggest that EIM is a valuable objective measurement in the canine DMD model.
Collapse
Affiliation(s)
- Chady H. Hakim
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, United States of America
| | - Alex Mijailovic
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
| | - Thais B. Lessa
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, United States of America
| | - Joan R. Coates
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States of America
| | - Carmen Shin
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
| | - Seward B. Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, United States of America
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States of America
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, United States of America
- Department of Bioengineering, University of Missouri, Columbia, MO, United States of America
| |
Collapse
|
18
|
Sanchez B, Rutkove SB. Electrical Impedance Myography and Its Applications in Neuromuscular Disorders. Neurotherapeutics 2017; 14:107-118. [PMID: 27812921 PMCID: PMC5233633 DOI: 10.1007/s13311-016-0491-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Electrical impedance myography (EIM) refers to the specific application of electrical bioimpedance techniques for the assessment of neuromuscular disorders. In EIM, a weak, high-frequency electrical current is applied to a muscle or muscle group of interest and the resulting voltages measured. Among its advantages, the technique can be used noninvasively across a variety of disorders and requires limited subject cooperation and evaluator training to obtain accurate and repeatable data. Studies in both animals and human subjects support its potential utility as a primary diagnostic tool, as well as a biomarker for clinical trial or individual patient use. This review begins by providing an overview of the current state and technological advances in electrical impedance myography and its specific application to the study of muscle. We then provide a summary of the clinical and preclinical applications of EIM for neuromuscular conditions, and conclude with an evaluation of ongoing research efforts and future developments.
Collapse
Affiliation(s)
- Benjamin Sanchez
- Department of Neurology, Division of Neuromuscular Disease, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Seward B Rutkove
- Department of Neurology, Division of Neuromuscular Disease, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|