1
|
Wesle A, Moraes Ribeiro E, Schairer R, Keppeler H, Korkmaz F, Radszuweit P, Bieber K, Lengerke C, Schneidawind D, Schneidawind C. CD19-chimeric antigen receptor-invariant natural killer T cells transactivate NK cells and reduce alloreactivity. Cytotherapy 2025; 27:7-15. [PMID: 39269404 DOI: 10.1016/j.jcyt.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/23/2024] [Accepted: 08/05/2024] [Indexed: 09/15/2024]
Abstract
Invariant natural killer T (iNKT) cells are a small fraction of T lymphocytes with strong cytotoxic and immunoregulatory properties. We previously showed that human culture-expanded iNKT cells prevent alloreactivity and lyse primary leukemia blasts. Here, iNKT cells have several advantages over T cells based on their immunoregulatory capabilities. Since chimeric antigen receptors (CARs) increase the benefit of immune effector cells, they play a crucial role in improvement of cytotoxic abilities of novel cellular therapeutics such as iNKT cells. In the present study, we investigated transactivation of NK cells and prevention of alloreactivity through iNKT cells transduced with a CD19-directed CAR. iNKT cells were isolated by magnetic cell separation from peripheral blood mononuclear cells and transduced with a CD19-CAR retrovirus. Transduction efficiency, purity and cell subsets were measured by flow cytometry. Transactivation and cytotoxicity assays have been established to investigate the ability of CD19-CAR-iNKT cells to transactivate primary NK cells. A mixed lymphocyte reaction (MLR) was performed to explore the inhibition of alloreactive CD3+ T cells by CD19-CAR-iNKT cells. CD19-CAR-iNKT cells are able to transactivate NK cells independent of cell contact: The expression of activation marker CD69 was significantly increased and also production of the proinflammatory cytokine interferon-gamma was higher in NK cells pretreated with CD19-CAR-iNKT cells. Consequently, the cytotoxic activity of such NK cells was significantly increased being able to lyse leukemia cells more effectively than without prior transactivation. Adding CD19-CAR-iNKT cells to an MLR resulted in a decreased expression of the T cell activation marker CD25 on alloreactive CD3+ T lymphocytes stimulated with HLA mismatched dendritic cells. Also, the proliferation of alloreactive CD3+ T lymphocytes was significantly reduced in this setting. We demonstrate that CD19-CAR-iNKT cells keep their immunoregulatory properties despite transduction with a CAR making them an attractive effector cell population for application after allogeneic hematopoietic cell transplantation. By transactivating NK cells, increasing their cytotoxic activity and suppressing alloreactive T cells, they might further improve outcomes through prevention of both relapse and graft-versus-host disease.
Collapse
MESH Headings
- Humans
- Killer Cells, Natural/immunology
- Antigens, CD19/immunology
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/genetics
- Natural Killer T-Cells/immunology
- Cytotoxicity, Immunologic
- Transcriptional Activation
- Lymphocyte Activation/immunology
- Immunotherapy, Adoptive/methods
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Antigens, Differentiation, T-Lymphocyte/immunology
- Lymphocyte Culture Test, Mixed
- Antigens, CD/metabolism
- Antigens, CD/immunology
Collapse
Affiliation(s)
- Anton Wesle
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Emmanuelle Moraes Ribeiro
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Rebekka Schairer
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Hildegard Keppeler
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Fulya Korkmaz
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Pia Radszuweit
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany; Department of Medical Oncology and Hematology, University Hospital Zürich, Zürich, Switzerland
| | - Kristin Bieber
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Claudia Lengerke
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Dominik Schneidawind
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany; Department of Medical Oncology and Hematology, University Hospital Zürich, Zürich, Switzerland
| | - Corina Schneidawind
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany; Department of Medical Oncology and Hematology, University Hospital Zürich, Zürich, Switzerland.
| |
Collapse
|
2
|
Durmus E, Ozman Z, Ceyran IH, Pasin O, Kocyigit A. Chrysin Enhances Anti-Cancer Activity of Jurkat T Cell and NK-92 Cells Against Human Breast Cancer Cell Lines. Chem Biodivers 2024; 21:e202400806. [PMID: 38990829 DOI: 10.1002/cbdv.202400806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 07/13/2024]
Abstract
Chrysin, a naturally occurring flavonoid in plant and bee products, demonstrates notable biological activities, including anti-cancer effects. These properties are partially attributed to its capability to activate immune cells. This study focused on exploring the immunomodulatory potential of chrysin on NK-92 and Jurkat-T cells targeting breast cancer cells (BCC). Chrysin leads to activation of NK-92 and T cells facilitated by the addition of human recombinant IL-2 and PHA-M. The anti-cancer efficacy of chrysin on these immune cells was evaluated in a co-culture setup with EGF-stimulated MCF-7 and MDA-MB-231 cells. Findings revealed that chrysin notably increased the cytotoxicity of NK-92 and T cells towards MCF-7 and MDA-MB-231 cells, with the most significant impact observed on MCF-7 cells (20 %). The activation of NK-92 cells, marked by increased IFN-γ production and CD56 expression, correlated with enhanced secretion of cytokines. Additionally, the activation of these cells against BCC was linked with elevated levels of granzyme-B, TNF-α, and nitric oxide (NO). Similarly, the cytotoxic activation of Jurkat-T cells against BCC was characterized by increased production of granzyme-B, IL-2, and IFN-γ. Consequently, these results support the hypothesis that chrysin significantly contributes to the activation and functional enhancement of NK-92 and T-cells against two distinct BCC lines.
Collapse
Affiliation(s)
- Ezgi Durmus
- Department of Medical Biochemistry, Institute of Health Sciences, Bezmialem Vakif University, 34093, Istanbul, Turkey
- Department of Medical Biochemistry, Faculty of Medicine, Bezmialem Vakif University, 34093, Istanbul, Turkey
| | - Zeynep Ozman
- Department of Medical Biochemistry, Institute of Health Sciences, Bezmialem Vakif University, 34093, Istanbul, Turkey
- Department of Medical Biochemistry, Faculty of Medicine, Bezmialem Vakif University, 34093, Istanbul, Turkey
| | - Ibrahim Halil Ceyran
- Department of Molecular Biology and Genetics, Faculty of Science, Yildiz Technical University, Istanbul, Turkey
| | - Ozge Pasin
- Department of Biostatistics, Faculty of Medicine, Bezmialem Vakif University, 34093, Istanbul, Turkey
| | - Abdurrahim Kocyigit
- Department of Medical Biochemistry, Faculty of Medicine, Bezmialem Vakif University, 34093, Istanbul, Turkey
- Traditional and Complementary Medicine Advanced Research Applications and Research Center, Bezmialem Vakif University, 34093, Istanbul, Turkey
| |
Collapse
|
3
|
Rosenkranz M, Fürle K, Hibbert J, Ulmer A, Ali A, Giese T, Blank A, Haefeli WE, Böhnlein E, Lanzer M, Thomson-Luque R. Multifunctional IgG/IgM antibodies and cellular cytotoxicity are elicited by the full-length MSP1 SumayaVac-1 malaria vaccine. NPJ Vaccines 2023; 8:112. [PMID: 37558673 PMCID: PMC10412566 DOI: 10.1038/s41541-023-00701-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/27/2023] [Indexed: 08/11/2023] Open
Abstract
Radical control of malaria likely requires a vaccine that targets both the asymptomatic liver stages and the disease-causing blood stages of the human malaria parasite Plasmodium falciparum. While substantial progress has been made towards liver stage vaccines, the development of a blood stage vaccine is lagging behind. We have recently conducted a first-in-human clinical trial to evaluate the safety and immunogenicity of the recombinant, full-length merozoite surface protein 1 (MSP1FL) formulated with GLA-SE as adjuvant. Here, we show that the vaccine, termed SumayaVac-1, elicited both a humoral and cellular immune response as well as a recall T cell memory. The induced IgG and IgM antibodies were able to stimulate various Fc-mediated effector mechanisms associated with protection against malaria, including phagocytosis, release of reactive oxygen species, production of IFN-γ as well as complement activation and fixation. The multifunctional activity of the humoral immune response remained for at least 6 months after vaccination and was comparable to that of naturally acquired anti-MSP1 antibodies from semi-immune adults from Kenya. We further present evidence of SumayaVac-1 eliciting a recallable cellular cytotoxicity by IFN-γ producing CD8+ T cells. Our study revitalizes MSP1FL as a relevant blood stage vaccine candidate and warrants further evaluation of SumayaVac-1 in a phase II efficacy trial.
Collapse
Affiliation(s)
- Micha Rosenkranz
- Center for Infectious Diseases-Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Kristin Fürle
- Center for Infectious Diseases-Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Julia Hibbert
- Center for Infectious Diseases-Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Anne Ulmer
- Center for Infectious Diseases-Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Arin Ali
- Center for Infectious Diseases-Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Giese
- Institute for Immunology, Heidelberg University Hospital and German Center for Infection Research (DZIF), Heidelberg, Germany
| | - Antje Blank
- Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Walter E Haefeli
- Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Michael Lanzer
- Center for Infectious Diseases-Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Richard Thomson-Luque
- Center for Infectious Diseases-Parasitology, Heidelberg University Hospital, Heidelberg, Germany.
- Sumaya-Biotech GmbH & Co. KG, Heidelberg, Germany.
| |
Collapse
|
4
|
α-Pinene Enhances the Anticancer Activity of Natural Killer Cells via ERK/AKT Pathway. Int J Mol Sci 2021; 22:ijms22020656. [PMID: 33440866 PMCID: PMC7826552 DOI: 10.3390/ijms22020656] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 12/22/2022] Open
Abstract
Natural killer (NK) cells are lymphocytes that can directly destroy cancer cells. When NK cells are activated, CD56 and CD107a markers are able to recognize cancer cells and release perforin and granzyme B proteins that induce apoptosis in the targeted cells. In this study, we focused on the role of phytoncides in activating NK cells and promoting anticancer effects. We tested the effects of several phytoncide compounds on NK-92mi cells and demonstrated that α-pinene treatment exhibited higher anticancer effects, as observed by the increased levels of perforin, granzyme B, CD56 and CD107a. Furthermore, α-pinene treatment in NK-92mi cells increased NK cell cytotoxicity in two different cell lines, and immunoblot assays revealed that the ERK/AKT pathway is involved in NK cell cytotoxicity in response to phytoncides. Furthermore, CT-26 colon cancer cells were allografted subcutaneously into BALB/c mice, and α-pinene treatment then inhibited allografted tumor growth. Our findings demonstrate that α-pinene activates NK cells and increases NK cell cytotoxicity, suggesting it is a potential compound for cancer immunotherapy.
Collapse
|
5
|
Menaldo DL, Costa TR, Ribeiro DL, Zambuzi FA, Antunes LM, Castro FA, Frantz FG, Sampaio SV. Immunomodulatory actions and epigenetic alterations induced by proteases from Bothrops snake venoms in human immune cells. Toxicol In Vitro 2019; 61:104586. [DOI: 10.1016/j.tiv.2019.06.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 12/25/2022]
|
6
|
Sinha D, Kumar A, Kumar H, Bandyopadhyay S, Sengupta D. dropClust: efficient clustering of ultra-large scRNA-seq data. Nucleic Acids Res 2019; 46:e36. [PMID: 29361178 PMCID: PMC5888655 DOI: 10.1093/nar/gky007] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 01/07/2018] [Indexed: 11/18/2022] Open
Abstract
Droplet based single cell transcriptomics has recently enabled parallel screening of tens of thousands of single cells. Clustering methods that scale for such high dimensional data without compromising accuracy are scarce. We exploit Locality Sensitive Hashing, an approximate nearest neighbour search technique to develop a de novo clustering algorithm for large-scale single cell data. On a number of real datasets, dropClust outperformed the existing best practice methods in terms of execution time, clustering accuracy and detectability of minor cell sub-types.
Collapse
Affiliation(s)
- Debajyoti Sinha
- Machine Intelligence Unit, Indian Statistical Institute, Kolkata 700108, West Bengal, India.,Department of Computer Science and Engineering, University of Calcutta, Kolkata 700098, West Bengal, India
| | - Akhilesh Kumar
- Laboratory of Immunology and Infectious Disease Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, Madhya Pradesh, India
| | - Himanshu Kumar
- Laboratory of Immunology and Infectious Disease Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, Madhya Pradesh, India
| | | | - Debarka Sengupta
- Center for Computational Biology and Department of Computer Science and Engineering, Indraprastha Institute of Information Technology, Delhi 110020, India
| |
Collapse
|
7
|
Lucinda N, Figueiredo MM, Pessoa NL, Santos BSÁDS, Lima GK, Freitas AM, Machado AMV, Kroon EG, Antonelli LRDV, Campos MA. Dendritic cells, macrophages, NK and CD8 + T lymphocytes play pivotal roles in controlling HSV-1 in the trigeminal ganglia by producing IL1-beta, iNOS and granzyme B. Virol J 2017; 14:37. [PMID: 28222752 PMCID: PMC5320739 DOI: 10.1186/s12985-017-0692-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 01/18/2017] [Indexed: 02/06/2023] Open
Abstract
Background Herpes simplex virus type 1 (HSV-1) cause not only mild symptoms but also blindness and encephalitis. It was previously shown that the immune response against HSV-1 occurs mainly in the trigeminal ganglia (TG) and that Toll-like receptors 2 and 9 (TLR2/9) are important in mediating this response. It was also demonstrated that iNOS (nitric oxide synthase) and interleukin 1 beta (IL-1β) play an essential role in the defense against HSV-1 infection. Importantly, the present work aimed to identify the primary cells responsible for iNOS and IL-1β production and search for other important molecules and cells that might or might not depend on TLR2/9 receptors to mediate the immune response against HSV-1. Methods C57BL/6 (wild type, WT) and TLR2/9−/− mice were infected by the intranasal route with HSV-1 (1 × 106 p.f.u.). Cells were obtained from the TG and spleen tissues and the profile of immune cells was determined by flow cytometry in infected and mock infected WT and knockout mice. The percentage of cells producing iNOS, IL-1β, granzyme B and perforin was also determined by flow cytometry. Chemokine monocyte chemoattractant protein-1 (MCP1) was measured by Cytometric Bead Array (CBA) in the TG, spleen and lung. Expression of type I interferons (IFNs), interleukins (IL) 5 and 10, IL-1β and granzyme B were quantified by real time PCR. Results The results indicate that dendritic cells (DCs) and monocytes/macrophages (Mo/Mϕ) were the main sources of IL-1β and iNOS, respectively, which, together with type I IFNs, were essential for the immune response against HSV-1. Additionally, we showed that granzyme B produced by CD8+ T and NK lymphocytes and MCP-1 were also important for this immune response. Moreover, our data indicate that the robust production of MCP-1 and granzyme B is either TLR-independent or down regulated by TLRs and occurs in the TG of TLR2/9−/− infected mice. Conclusion Taken together, our data provide strong evidence that the responses mediated by DCs, Mo/Mϕ, NK and CD8+ T lymphocytes through IL-1β, iNOS and granzyme B production, respectively, together with the production of type I IFN early in the infection, are crucial to host defense against HSV-1. Electronic supplementary material The online version of this article (doi:10.1186/s12985-017-0692-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Natália Lucinda
- Imunologia de Doenças Virais, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Fiocruz, Avenida Augusto de Lima 1715, Belo Horizonte, 30190-002, MG, Brazil
| | - Maria Marta Figueiredo
- Imunologia de Doenças Virais, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Fiocruz, Avenida Augusto de Lima 1715, Belo Horizonte, 30190-002, MG, Brazil
| | - Natália Lima Pessoa
- Imunologia de Doenças Virais, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Fiocruz, Avenida Augusto de Lima 1715, Belo Horizonte, 30190-002, MG, Brazil
| | - Beatriz Senra Álvares da Silva Santos
- Imunologia de Doenças Virais, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Fiocruz, Avenida Augusto de Lima 1715, Belo Horizonte, 30190-002, MG, Brazil
| | - Graciela Kunrath Lima
- Escola de Veterinária, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, 31270-901, MG, Brazil
| | - Arthur Molinari Freitas
- Imunologia de Doenças Virais, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Fiocruz, Avenida Augusto de Lima 1715, Belo Horizonte, 30190-002, MG, Brazil
| | - Alexandre Magalhães Vieira Machado
- Imunologia de Doenças Virais, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Fiocruz, Avenida Augusto de Lima 1715, Belo Horizonte, 30190-002, MG, Brazil
| | - Erna Geessien Kroon
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, 31270-901, MG, Brazil
| | - Lis Ribeiro do Valle Antonelli
- Biologia e Imunologia Parasitária, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Fiocruz, Avenida Augusto de Lima 1715, Belo Horizonte, 30190-002, MG, Brazil
| | - Marco Antônio Campos
- Imunologia de Doenças Virais, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Fiocruz, Avenida Augusto de Lima 1715, Belo Horizonte, 30190-002, MG, Brazil.
| |
Collapse
|
8
|
Aramaki T, Ida H, Izumi Y, Fujikawa K, Huang M, Arima K, Tamai M, Kamachi M, Nakamura H, Kawakami A, Origuchi T, Matsuoka N, Eguchi K. A significantly impaired natural killer cell activity due to a low activity on a per-cell basis in rheumatoid arthritis. Mod Rheumatol 2014. [DOI: 10.3109/s10165-009-0160-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
Yeap SK, Omar AR, Ho WY, Beh BK, Ali AM, Alitheen NB. Rhaphidophora korthalsii modulates peripheral blood natural killer cell proliferation, cytokine secretion and cytotoxicity. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 13:145. [PMID: 23800124 PMCID: PMC3701493 DOI: 10.1186/1472-6882-13-145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 06/10/2013] [Indexed: 11/10/2022]
Abstract
Background Rhaphidophora korthalsii (Araceae) is a root-climber plant which has been widely used in Chinese traditional medicine for cancer and skin disease treatment. Previous reports have recorded its immunomodulatory effects on mice splenocyte and human peripheral blood. This study investigated the potential immunostimulatory effect of Rhaphidophora korthalsii on human PBMC enriched NK cell. Methods PBMC was exposed to various concentrations of R. korthalsii extract and the T and NK cell population in the control and extract treated PBMC were identified by immunophenotyping. Intracellular perforin and granzyme B expressions were detected by flow cytometry and extra-cellular Granzyme B, IFN-γ and TNF-α production in the isolated NK cells were determined by ELISA. The cytotoxicity of effector NK cell towards target K562 cell was assessed by CytoTox 96 assay. Results Rhaphidophora korthalsii methanol extract significantly increased PBMC NK cell population and intracellular perforin and granzyme B expressions. Moreover, the extract also enhanced the secretion of IFN-γ and TNF-α which subsequently enhanced the cytotoxicity of NK cell against the NK sensitive target K562 cell line. NK cell enriched with extract treated PBMC showed better activation than NK cell directly treated with the extract. Conclusion Our findings indicated a potential IL-2 free immunotherapy through direct and indirect R. korthalsii stimulation on NK cell activation.
Collapse
|
10
|
Abstract
Perforin (Prf1) and granzyme B (GzmB) are essential effector molecules for natural killer (NK)-cell cytotoxicity, but how Prf1 and GzmB expression is regulated during arming of NK cells is poorly defined. We show that human microRNA (miR)-27a* is a negative regulator of NK-cell cytotoxicity by silencing Prf1 and GzmB expression. Human miR-27a* specifically bound to the 3' untranslated regions of Prf1 and GzmB, down-regulating expression in both resting and activated NK cells, and it functioned as a fine-tuner for homeostasis of the net amount of the effector proteins. Consistent with miR-27a* having an inhibitory role, knockdown of miR-27a* in NK cells dramatically increased cytotoxicity in vitro and decreased tumor growth in a human tumor xenograft model. Thus, NK-cell cytotoxicity is regulated, in part, by microRNA, and modulating endogenous miR-27a* levels in NK cells represents a potential immunotherapeutic strategy.
Collapse
|
11
|
Zhang R, Shah MV, Loughran TP. The root of many evils: indolent large granular lymphocyte leukaemia and associated disorders. Hematol Oncol 2010; 28:105-17. [PMID: 19645074 PMCID: PMC4377226 DOI: 10.1002/hon.917] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Large granular lymphocytes (LGL) leukaemia can arise from either natural killer (NK) cells or cytotoxic T lymphocytes (CTL). The T-cell form of LGL leukaemia has significant overlap with other haematological disorders and autoimmune diseases. Here we provide an overview of LGL biology. We also focus discussion on the indolent LGL leukaemia related disorders and their causal relationships. We then discuss the potential relationships and distinctions between indolent LGL leukaemia and non-malignant clonal lymphocyte expansion that occur in otherwise healthy individuals, especially elder people.
Collapse
Affiliation(s)
- Ranran Zhang
- Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | |
Collapse
|
12
|
Effect of Dehydroepiandrosterone Sulfate on Maturation and Functional Properties of Interferon-α-Induced Dendritic Cells. Bull Exp Biol Med 2009; 148:68-71. [DOI: 10.1007/s10517-009-0619-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Aramaki T, Ida H, Izumi Y, Fujikawa K, Huang M, Arima K, Tamai M, Kamachi M, Nakamura H, Kawakami A, Origuchi T, Matsuoka N, Eguchi K. A significantly impaired natural killer cell activity due to a low activity on a per-cell basis in rheumatoid arthritis. Mod Rheumatol 2009; 19:245-52. [PMID: 19283441 DOI: 10.1007/s10165-009-0160-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 02/06/2009] [Indexed: 11/26/2022]
Abstract
To elucidate the characterization of peripheral natural killer (NK) cells in patients with rheumatoid arthritis (RA), we investigated the NK cell activity, the expression of NK cell activating receptors and intracellular molecules. The NK activity was analyzed in 27 RA patients, 22 primary Sjögren's syndrome (SS) patients, and 15 healthy individuals using the (51)Chrominium release assay. The expression of NK cell activating receptors (NKG2D, CD244, CD2, and CD16) and intracellular molecules (granzyme B, perforin, and TCR zeta chain) in CD3-CD56+ cells were characterized by flow cytometry. The serum cytokine levels (IL-6, TNFalpha, and IL-18) were measured using ELISA. Both the NK cell activity and the activity on a per-cell basis were observed to significantly decrease in the RA patients in comparison to the controls. The expression of NKG2D and CD244 also significantly decreased in both the RA and primary SS patients, whereas the significant decrease in the CD16 expression was only observed in the RA patients. The titer of the serum IL-6, TNFalpha, and IL-18 was significantly higher in the RA patients than in the controls. These data suggest that a low NK activity on a per-cell basis might therefore contribute to an impaired NK activity in the patients with RA.
Collapse
Affiliation(s)
- Toshiyuki Aramaki
- First Department of Internal Medicine, Nagasaki University Hospital of Medicine and Dentistry, Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto, Nagasaki, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
The cytotoxic granzyme B (GrB)/perforin pathway has been traditionally viewed as a primary mechanism that is used by cytotoxic lymphocytes to eliminate allogeneic, virally infected and/or transformed cells. Although originally proposed to have intracellular and extracellular functions, upon the discovery that perforin, in combination with GrB, could induce apoptosis, other potential functions for this protease were, for the most part, disregarded. As there are 5 granzymes in humans and 11 granzymes in mice, many studies used perforin knockout mice as an initial screen to evaluate the role of granzymes in disease. However, in recent years, emerging clinical and biochemical evidence has shown that the latter approach may have overlooked a critical perforin-independent, pathogenic role for these proteases in disease. This review focuses on GrB, the most characterized of the granzyme family, in disease. Long known to be a pro-apoptotic protease expressed by cytotoxic lymphocytes and natural killer cells, it is now accepted that GrB can be expressed in other cell types of immune and nonimmune origin. To the latter, an emerging immune-independent role for GrB has been forwarded due to recent discoveries that GrB may be expressed in nonimmune cells such as smooth muscle cells, keratinocytes, and chondrocytes in certain disease states. Given that GrB retains its activity in the blood, can cleave extracellular matrix, and its levels are often elevated in chronic inflammatory diseases, this protease may be an important contributor to certain pathologies. The implications of sustained elevations of intracellular and extracellular GrB in chronic vascular, dermatological, and neurological diseases, among others, are developing. This review examines, for the first time, the multiple roles of GrB in disease pathogenesis.
Collapse
|
15
|
Huang M, Ida H, Arima K, Nakamura H, Aramaki T, Fujikawa K, Tamai M, Kamachi M, Kawakami A, Yamasaki H, Origuchi T, Eguchi K. La autoantigen translocates to cytoplasm after cleavage during granzyme B-mediated cytotoxicity. Life Sci 2007; 81:1461-6. [PMID: 17945310 DOI: 10.1016/j.lfs.2007.09.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 08/15/2007] [Accepted: 09/14/2007] [Indexed: 01/17/2023]
Abstract
Our recent report demonstrated that apoptosis-specific autoantibodies against granzyme B-induced cleavage fragments of SS-B (La) were found in the sera from patients with primary Sjögren's syndrome. The objective of this study was identified by the intracellular redistribution of La autoantigen during granzyme B-induced apoptosis. We developed green fluorescence protein (GFP)-La and GFP-LaDelta220 (generation of granzyme B-specific cleavage of La protein) fusion proteins. GFP-La protein was localized in the nucleus, whereas the GFP-LaDelta220 protein predominantly existed in the cytoplasm in transformed A293T cells. Nuclear GFP-La protein was translocated to cytoplasm after granzyme B enriched YT cells incubation. La protein in human salivary grand HSG cells is cleaved and translocated from the nucleus to the cytoplasm after YT cell co-cultivation. These results suggest that La protein is cleaved by granzyme B and N-terminal La fragment (27 kD) translocated to the cytoplasm, thus leading to a novel autoantibody production during granzyme B-mediated cytotoxicity.
Collapse
Affiliation(s)
- Mingguo Huang
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|