1
|
Ray S, McCall JL, Tian JB, Jeon J, Douglas A, Tyler K, Liu S, Berry K, Nicewarner B, Hall C, Groschner K, Bacsa B, Geldenhuys W, Zhu MX, Blair HC, Barnett JB, Soboloff J. Targeting TRPC channels for control of arthritis-induced bone erosion. SCIENCE ADVANCES 2025; 11:eabm9843. [PMID: 39813349 PMCID: PMC11734723 DOI: 10.1126/sciadv.abm9843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/12/2024] [Indexed: 01/18/2025]
Abstract
Arthritis leads to bone erosion due to an imbalance between osteoclast and osteoblast function. Our prior investigations revealed that the Ca2+-selective ion channel, Orai1, is critical for osteoclast maturation. Here, we show that the small-molecule ELP-004 preferentially inhibits transient receptor potential canonical (TRPC) channels. While ELP-004 minimally affected physiological RANKL-induced osteoclast maturation in murine bone marrow- and spleen-derived myeloid cells (BMSMCs) and human PBMC-derived cells, it potently interfered with osteoclast maturation driven by TNFα or LTB4. The contribution of TRPC channels to osteoclastogenesis was examined using BMSMCs derived from TRPC4-/- or TRPC(1-7)-/- mice, again revealing preferential interference with osteoclastogenesis driven by proinflammatory cytokines. ELP-004 also reduced bone erosion in a mouse model of rheumatoid arthritis. These investigations reveal TRPC channels as critical mediators of inflammatory bone erosion and provide insight into the major target of ELP-004, a drug currently in preclinical testing as a therapeutic for inflammatory arthritis.
Collapse
Affiliation(s)
- Suravi Ray
- Fels Cancer Institute for Personalized Medicine, Department of Cancer & Cellular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Jamie L. McCall
- Department of Microbiology, Immunology & Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
- ExesaLibero Pharma, Morgantown, WV 26505, USA
| | - Jin Bin Tian
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston TX 77030, USA
| | - Jaepyo Jeon
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston TX 77030, USA
| | - Aidan Douglas
- Fels Cancer Institute for Personalized Medicine, Department of Cancer & Cellular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Kendall Tyler
- Fels Cancer Institute for Personalized Medicine, Department of Cancer & Cellular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Siyao Liu
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Kendyl Berry
- Department of Microbiology, Immunology & Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
- ExesaLibero Pharma, Morgantown, WV 26505, USA
| | | | - Casey Hall
- ExesaLibero Pharma, Morgantown, WV 26505, USA
| | - Klaus Groschner
- Medical University of Graz, Division of Medical Physics and Biophysics, Neue Stiftingtalstrasse 6/H03, 8010 Graz, Austria
| | - Bernadett Bacsa
- Medical University of Graz, Division of Medical Physics and Biophysics, Neue Stiftingtalstrasse 6/H03, 8010 Graz, Austria
| | - Werner Geldenhuys
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26506, USA
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA
- West Virginia University Cancer Institute, Morgantown, WV 26506, USA
| | - Michael X. Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston TX 77030, USA
| | - Harry C. Blair
- Research Service, VA Medical Centre, Departments of Pathology and of Cell Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - John B. Barnett
- Department of Microbiology, Immunology & Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
- ExesaLibero Pharma, Morgantown, WV 26505, USA
- West Virginia University Cancer Institute, Morgantown, WV 26506, USA
| | - Jonathan Soboloff
- Fels Cancer Institute for Personalized Medicine, Department of Cancer & Cellular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
2
|
Leopold J, Schiller J. (Chemical) Roles of HOCl in Rheumatic Diseases. Antioxidants (Basel) 2024; 13:921. [PMID: 39199167 PMCID: PMC11351306 DOI: 10.3390/antiox13080921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 09/01/2024] Open
Abstract
Chronic rheumatic diseases such as rheumatoid arthritis (RA) are characterized by a dysregulated immune response and persistent inflammation. The large number of neutrophilic granulocytes in the synovial fluid (SF) from RA patients leads to elevated enzyme activities, for example, from myeloperoxidase (MPO) and elastase. Hypochlorous acid (HOCl), as the most important MPO-derived product, is a strong reactive oxygen species (ROS) and known to be involved in the processes of cartilage destruction (particularly regarding the glycosaminoglycans). This review will discuss open questions about the contribution of HOCl in RA in order to improve the understanding of oxidative tissue damaging. First, the (chemical) composition of articular cartilage and SF and the mechanisms of cartilage degradation will be discussed. Afterwards, the products released by neutrophils during inflammation will be summarized and their effects towards the individual, most abundant cartilage compounds (collagen, proteoglycans) and selected cellular components (lipids, DNA) discussed. New developments about neutrophil extracellular traps (NETs) and the use of antioxidants as drugs will be outlined, too. Finally, we will try to estimate the effects induced by these different agents and their contributions in RA.
Collapse
Affiliation(s)
- Jenny Leopold
- Institute for Medical Physics and Biophysics, Medical Faculty, Leipzig University, 04103 Leipzig, Germany;
| | | |
Collapse
|
3
|
Jahid M, Khan KU, Rehan-Ul-Haq, Ahmed RS. Overview of Rheumatoid Arthritis and Scientific Understanding of the Disease. Mediterr J Rheumatol 2023; 34:284-291. [PMID: 37941854 PMCID: PMC10628871 DOI: 10.31138/mjr.20230801.oo] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 11/10/2023] Open
Abstract
Rheumatoid arthritis (RA), a chronic inflammatory autoimmune disorder, is characterised by persistent synovial inflammation, erosion of bones and cartilage, leading to joint destruction. Clinical manifestations are morning stiffness, pain in shoulder, neck and pelvic girdle, loss of mobility with fever, fatigue, malaise, loss of body weight, and development of rheumatoid nodules. Environmental and genetic factors are important contributors in its susceptibility. Association between RA and diet, cigarette smoking, hormones, alcohol, microbiota, infection, and coffee have also been reported. To diagnose patients with RA, American college of rheumatology (ACR, 2010) criteria, developed by European league against rheumatism (EULAR). Inflammation produced in RA patients is due to cell-mediated immune response. The rheumatoid synovium consists of a large number of CD4+ T cells suggesting pathogenic nature of T cells in this disorder. B-cells may also participate in the pathogenesis by several means such as autoantibodies, by instigation of T-cells through expression of co-stimulatory molecules, by generating pro-inflammatory and anti-inflammatory cytokines and by organisation of other inflammatory cells. The conventional management of RA usually focuses over reducing pain and limiting the disability by medical therapies which include a number of classes of agents such as non-steroidal anti-inflammatory drugs (NSAIDs), non-biological and biological agents, disease-modifying anti rheumatic drugs (DMARDs), immunosuppressants, and corticosteroids. However, only proper rehabilitation can promote the objective to achieve the joint functionality and ease of motion which improves independence as well as quality of life in patient suffering from Rheumatoid Arthritis.
Collapse
Affiliation(s)
- Mohd Jahid
- Department of Biochemistry, University College of Medical Sciences and GTB Hospital (University of Delhi), Dilshad Garden, Delhi, India
| | - Karim Ullah Khan
- Department of Orthopaedics, University College of Medical Sciences and GTB Hospital (University of Delhi), Dilshad Garden, Delhi, India
| | - Rehan-Ul-Haq
- Department of Orthopaedics, All India Institute of Medical Sciences (AIIMS) Bhopal, India
| | - Rafat Sultana Ahmed
- Department of Biochemistry, University College of Medical Sciences and GTB Hospital (University of Delhi), Dilshad Garden, Delhi, India
| |
Collapse
|
4
|
Grossi C, Capitani N, Benagiano M, Baldari CT, Della Bella C, Macor P, Tedesco F, Borghi MO, Maugeri N, D’Elios MM, Meroni PL. Beta 2 glycoprotein I and neutrophil extracellular traps: Potential bridge between innate and adaptive immunity in anti-phospholipid syndrome. Front Immunol 2023; 13:1076167. [PMID: 36700193 PMCID: PMC9868732 DOI: 10.3389/fimmu.2022.1076167] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/20/2022] [Indexed: 01/10/2023] Open
Abstract
Antiphospholipid syndrome (APS) is a systemic autoimmune disorder characterized by recurrent vascular thrombosis and miscarriages in the absence of known causes. Antibodies against phospholipid-binding proteins (aPL) are pathogenic players in both clotting and pregnancy APS manifestations. There is sound evidence that antibodies specific for beta2 glycoprotein I (β2GPI) trigger thrombotic and pregnancy complications by interacting with the molecule on the membranes of different cell types of the coagulation cascade, and in placenta tissues. In addition to the humoral response against β2GPI, both peripheral and tissue CD4+ β2GPI-specific T cells have been reported in primary APS as well as in systemic lupus erythematosus (SLE)-associated APS. While adaptive immunity plays a clear role in APS, it is still debated whether innate immunity is involved as well. Acute systemic inflammation does not seem to be present in the syndrome, however, there is sound evidence that complement activation is crucial in animal models and can be found also in patients. Furthermore, neutrophil extracellular traps (NETs) have been documented in arterial and venous thrombi with different etiology, including clots in APS models. Keeping in mind that β2GPI is a pleiotropic glycoprotein, acting as scavenger molecule for infectious agents and apoptotic/damaged body constituents and that self-molecules externalized through NETs formation may become immunogenic autoantigens, we demonstrated β2GPI on NETs, and its ability to stimulate CD4+β2GPI-specific T cells. The aim of this review is to elucidate the role of β2GPI in the cross-talk between the innate and adaptive immunity in APS.
Collapse
Affiliation(s)
- Claudia Grossi
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Laboratory of Immuno-Rheumatology, Milan, Italy
| | - Nagaja Capitani
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy,Department of Life Sciences, University of Siena, Siena, Italy
| | - Marisa Benagiano
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Chiara Della Bella
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Paolo Macor
- Department of Life Science, University of Trieste, Trieste, Italy
| | - Francesco Tedesco
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Laboratory of Immuno-Rheumatology, Milan, Italy
| | - Maria Orietta Borghi
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Laboratory of Immuno-Rheumatology, Milan, Italy,Department of Clinical Science and Community Health, University of Milan, Milan, Italy
| | - Norma Maugeri
- Autoimmunity and Vascular Inflammation Unit, Division of Immunology, Transplantation & Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Institute, Milan, Italy
| | - Mario Milco D’Elios
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy,*Correspondence: Pier Luigi Meroni, ; ; Mario Milco D’Elios,
| | - Pier Luigi Meroni
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Laboratory of Immuno-Rheumatology, Milan, Italy,*Correspondence: Pier Luigi Meroni, ; ; Mario Milco D’Elios,
| |
Collapse
|
5
|
Moreira V, Leiguez E, Janovits PM, Maia-Marques R, Fernandes CM, Teixeira C. Inflammatory Effects of Bothrops Phospholipases A 2: Mechanisms Involved in Biosynthesis of Lipid Mediators and Lipid Accumulation. Toxins (Basel) 2021; 13:toxins13120868. [PMID: 34941706 PMCID: PMC8709003 DOI: 10.3390/toxins13120868] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/19/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023] Open
Abstract
Phospholipases A2s (PLA2s) constitute one of the major protein groups present in the venoms of viperid and crotalid snakes. Snake venom PLA2s (svPLA2s) exhibit a remarkable functional diversity, as they have been described to induce a myriad of toxic effects. Local inflammation is an important characteristic of snakebite envenomation inflicted by viperid and crotalid species and diverse svPLA2s have been studied for their proinflammatory properties. Moreover, based on their molecular, structural, and functional properties, the viperid svPLA2s are classified into the group IIA secreted PLA2s, which encompasses mammalian inflammatory sPLA2s. Thus, research on svPLA2s has attained paramount importance for better understanding the role of this class of enzymes in snake envenomation and the participation of GIIA sPLA2s in pathophysiological conditions and for the development of new therapeutic agents. In this review, we highlight studies that have identified the inflammatory activities of svPLA2s, in particular, those from Bothrops genus snakes, which are major medically important snakes in Latin America, and we describe recent advances in our collective understanding of the mechanisms underlying their inflammatory effects. We also discuss studies that dissect the action of these venom enzymes in inflammatory cells focusing on molecular mechanisms and signaling pathways involved in the biosynthesis of lipid mediators and lipid accumulation in immunocompetent cells.
Collapse
Affiliation(s)
- Vanessa Moreira
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo 04044-020, Brazil;
| | - Elbio Leiguez
- Laboratório de Farmacologia, Instituto Butantan, Sao Paulo 05503-900, Brazil; (E.L.); (P.M.J.); (R.M.-M.); (C.M.F.)
| | - Priscila Motta Janovits
- Laboratório de Farmacologia, Instituto Butantan, Sao Paulo 05503-900, Brazil; (E.L.); (P.M.J.); (R.M.-M.); (C.M.F.)
| | - Rodrigo Maia-Marques
- Laboratório de Farmacologia, Instituto Butantan, Sao Paulo 05503-900, Brazil; (E.L.); (P.M.J.); (R.M.-M.); (C.M.F.)
| | - Cristina Maria Fernandes
- Laboratório de Farmacologia, Instituto Butantan, Sao Paulo 05503-900, Brazil; (E.L.); (P.M.J.); (R.M.-M.); (C.M.F.)
| | - Catarina Teixeira
- Laboratório de Farmacologia, Instituto Butantan, Sao Paulo 05503-900, Brazil; (E.L.); (P.M.J.); (R.M.-M.); (C.M.F.)
- Correspondence:
| |
Collapse
|