1
|
Wu KY, Osman RM, Esomchukwu O, Marchand M, Nguyen BH, Tran SD. Advances in Regenerative Medicine, Cell Therapy, and 3D Bioprinting for Glaucoma and Retinal Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025. [PMID: 40131702 DOI: 10.1007/5584_2025_854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Regenerative medicine, cell therapy, and 3D bioprinting represent promising advancements in addressing retinal and glaucomatous diseases. These conditions, including diabetic retinopathy (DR), age-related macular degeneration (AMD), inherited retinal degenerations (IRDs), and glaucomatous optic neuropathy, have complex pathophysiologies that involve neurodegeneration, oxidative stress, and vascular dysfunction. Despite significant progress in conventional therapies, including anti-VEGF injections, laser photocoagulation, and intraocular pressure (IOP)-lowering interventions, these approaches remain limited in reversing disease progression and restoring lost visual function.This chapter explores the potential of emerging regenerative therapies to fill these critical gaps. For retinal diseases, cell replacement strategies using human embryonic stem cells (hESCs), induced pluripotent stem cells (iPSCs), and mesenchymal stem cells (MSCs) have demonstrated encouraging outcomes in clinical trials, though challenges in delivery and long-term integration persist. Similarly, neuroprotective strategies and the use of retinal progenitor cells hold promise for preserving and restoring vision in degenerative retinal conditions. Advances in 3D bioprinting and retinal organoids further augment these efforts, offering innovative tools for disease modeling and therapy development.In glaucoma, regenerative approaches targeting trabecular meshwork (TM) dysfunction and retinal ganglion cell (RGC) loss are gaining traction. Stem cell-based therapies have shown potential in restoring TM functionality and providing neuroprotection, while innovative delivery systems and bioengineered platforms aim to enhance therapeutic efficacy and safety.This chapter provides an overview of the evolving landscape of regenerative therapies for retinal and glaucomatous diseases, highlighting current advancements, ongoing challenges, and future directions in the field. These approaches, while still emerging, hold the potential to transform the management of these complex ocular diseases.
Collapse
Affiliation(s)
- Kevin Y Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC, Canada.
| | - Rahma M Osman
- Department of Medicine, School of Medicine, Queen's University, Kingston, ON, Canada
| | | | - Michael Marchand
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC, Canada
| | | | - Simon D Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| |
Collapse
|
2
|
Alsalloum A, Gornostal E, Mingaleva N, Pavlov R, Kuznetsova E, Antonova E, Nadzhafova A, Kolotova D, Kadyshev V, Mityaeva O, Volchkov P. A Comparative Analysis of Models for AAV-Mediated Gene Therapy for Inherited Retinal Diseases. Cells 2024; 13:1706. [PMID: 39451224 PMCID: PMC11506034 DOI: 10.3390/cells13201706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Inherited retinal diseases (IRDs) represent a diverse group of genetic disorders leading to progressive degeneration of the retina due to mutations in over 280 genes. This review focuses on the various methodologies for the preclinical characterization and evaluation of adeno-associated virus (AAV)-mediated gene therapy as a potential treatment option for IRDs, particularly focusing on gene therapies targeting mutations, such as those in the RPE65 and FAM161A genes. AAV vectors, such as AAV2 and AAV5, have been utilized to deliver therapeutic genes, showing promise in preserving vision and enhancing photoreceptor function in animal models. Despite their advantages-including high production efficiency, low pathogenicity, and minimal immunogenicity-AAV-mediated therapies face limitations such as immune responses beyond the retina, vector size constraints, and challenges in large-scale manufacturing. This review systematically compares different experimental models used to investigate AAV-mediated therapies, such as mouse models, human retinal explants (HREs), and induced pluripotent stem cell (iPSC)-derived retinal organoids. Mouse models are advantageous for genetic manipulation and detailed investigations of disease mechanisms; however, anatomical differences between mice and humans may limit the translational applicability of results. HREs offer valuable insights into human retinal pathophysiology but face challenges such as tissue degradation and lack of systemic physiological effects. Retinal organoids, on the other hand, provide a robust platform that closely mimics human retinal development, thereby enabling more comprehensive studies on disease mechanisms and therapeutic strategies, including AAV-based interventions. Specific outcomes targeted in these studies include vision preservation and functional improvements of retinas damaged by genetic mutations. This review highlights the strengths and weaknesses of each experimental model and advocates for their combined use in developing targeted gene therapies for IRDs. As research advances, optimizing AAV vector design and delivery methods will be critical for enhancing therapeutic efficacy and improving clinical outcomes for patients with IRDs.
Collapse
Affiliation(s)
- Almaqdad Alsalloum
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia (P.V.)
| | | | - Natalia Mingaleva
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Roman Pavlov
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | | | - Ekaterina Antonova
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Aygun Nadzhafova
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Daria Kolotova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | | | - Olga Mityaeva
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia (P.V.)
- Department of Fundamental Medicine, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Pavel Volchkov
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia (P.V.)
- Department of Fundamental Medicine, Lomonosov Moscow State University, 119992 Moscow, Russia
- Moscow Clinical Scientific Center N.A. A.S. Loginov, 111123 Moscow, Russia
| |
Collapse
|
3
|
Wang LH, Huang CH, Lin IC. Advances in Neuroprotection in Glaucoma: Pharmacological Strategies and Emerging Technologies. Pharmaceuticals (Basel) 2024; 17:1261. [PMID: 39458902 PMCID: PMC11510571 DOI: 10.3390/ph17101261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
Glaucoma is a major global health concern and the leading cause of irreversible blindness worldwide, characterized by the progressive degeneration of retinal ganglion cells (RGCs) and their axons. This review focuses on the need for neuroprotective strategies in glaucoma management, addressing the limitations of current treatments that primarily target intraocular pressure (IOP) reduction. Despite effective IOP management, many patients continue to experience RGC degeneration, leading to irreversible blindness. This review provides an overview of both pharmacological interventions and emerging technologies aimed at directly protecting RGCs and the optic nerve, independent of IOP reduction. Pharmacological agents such as brimonidine, neurotrophic factors, memantine, Ginkgo biloba extract, citicoline, nicotinamide, insulin, and resveratrol show promise in preclinical and early clinical studies for their neuroprotective properties. Emerging technologies, including stem cell therapy, gene therapy, mitochondrial-targeted therapies, and nanotechnologies, offer innovative approaches for neuroprotection and regeneration of damaged RGCs. While these interventions hold significant potential, further research and clinical trials are necessary to confirm their efficacy and establish their role in clinical practice. This review highlights the multifaceted nature of neuroprotection in glaucoma, aiming to guide future research and clinical practice toward more effective management of glaucoma-induced neurodegeneration.
Collapse
Affiliation(s)
- Li-Hsin Wang
- School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan;
| | - Chun-Hao Huang
- Department of Ophthalmology, Wan Fang Hospital, Taipei Medical University, Taipei 110301, Taiwan;
| | - I-Chan Lin
- Department of Ophthalmology, Wan Fang Hospital, Taipei Medical University, Taipei 110301, Taiwan;
- Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
4
|
Scarabosio A, Surico PL, Tereshenko V, Singh RB, Salati C, Spadea L, Caputo G, Parodi PC, Gagliano C, Winograd JM, Zeppieri M. Whole-eye transplantation: Current challenges and future perspectives. World J Transplant 2024; 14:95009. [PMID: 38947970 PMCID: PMC11212585 DOI: 10.5500/wjt.v14.i2.95009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/24/2024] [Accepted: 05/15/2024] [Indexed: 06/13/2024] Open
Abstract
Whole-eye transplantation emerges as a frontier in ophthalmology, promising a transformative approach to irreversible blindness. Despite advancements, formidable challenges persist. Preservation of donor eye viability post-enucleation necessitates meticulous surgical techniques to optimize retinal integrity and ganglion cell survival. Overcoming the inhibitory milieu of the central nervous system for successful optic nerve regeneration remains elusive, prompting the exploration of neurotrophic support and immunomodulatory interventions. Immunological tolerance, paramount for graft acceptance, confronts the distinctive immunogenicity of ocular tissues, driving research into targeted immunosuppression strategies. Ethical and legal considerations underscore the necessity for stringent standards and ethical frameworks. Interdisciplinary collaboration and ongoing research endeavors are imperative to navigate these complexities. Biomaterials, stem cell therapies, and precision immunomodulation represent promising avenues in this pursuit. Ultimately, the aim of this review is to critically assess the current landscape of whole-eye transplantation, elucidating the challenges and advancements while delineating future directions for research and clinical practice. Through concerted efforts, whole-eye transplantation stands to revolutionize ophthalmic care, offering hope for restored vision and enhanced quality of life for those afflicted with blindness.
Collapse
Affiliation(s)
- Anna Scarabosio
- Department of Plastic Surgery, University Hospital of Udine, Udine 33100, Italy
- Department of Plastic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
| | - Pier Luigi Surico
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, United States
| | - Vlad Tereshenko
- Department of Plastic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
| | - Rohan Bir Singh
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, United States
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, "Sapienza" University of Rome, Rome 00142, Italy
| | - Glenda Caputo
- Department of Plastic Surgery, University Hospital of Udine, Udine 33100, Italy
| | - Pier Camillo Parodi
- Department of Plastic Surgery, University Hospital of Udine, Udine 33100, Italy
| | - Caterina Gagliano
- Department of Medicine and Surgery, University of Enna "Kore", Enna 94100, Italy
- Eye Clinic Catania University San Marco Hospital, Viale Carlo Azeglio Ciampi 95121 Catania, Italy
| | - Jonathan M Winograd
- Department of Plastic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| |
Collapse
|
5
|
Kugler SA, Valmaggia C, Sturm V, Schorderet DF, Todorova MG. Analysis of Suspected Achromatopsia by Multimodal Diagnostic Testing. Klin Monbl Augenheilkd 2023; 240:1158-1173. [PMID: 37714190 DOI: 10.1055/a-2176-4233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
BACKGROUND Achromatopsia (ACHM) as a hereditary cone disease might manifest in a stationary and progressive manner. The proper clinical and genetic diagnosis may allow an individual prognosis, accurate genetic counselling, and the optimal choice of low vision aids. The primary aim of the study was to determine the spectrum of clinical and genetic diagnostics required to characterize the ACHM. METHODS A retrospective analysis was performed in 8 patients from non-related families (5 ♀,3 ♂); age at diagnosis: 3 - 56 y, mean 18.13 (SD ± 18.22). Clinical phenotyping, supported by colour vision test, fundus photography-, autofluorescence- (FAF), infra-red- (IR), OCT imaging and electroretinography provided information on the current status and the course of the disease over the years. In addition, genetic examinations were performed with ACHM relevant testing (CNGA3, CNGB3, GNAT2, PDE6C, PDE6H and the transcription factor ATF6). RESULTS All patients suffered photophobia and reduced visual acuity (mean: 0.16 [SD ± 0.08]). Nystagmus was identified in 7 from 8 subjects and in one patient a head-turn right helped to reduce the nystagmus amplitude. Colour vision testing confirmed complete achromatopsia in 7 out of 8 patients. Electrophysiology found severely reduced photopic- but also scotopic responses. Thinning and interruption of the inner segment ellipsoid (ISe) line within the macula but also FAF- and IR abnormalities in the fovea and/or parafovea were characteristic in all ACHM patients. Identification of pathogenic mutations in 7 patients helped to confirm the diagnosis of ACHM (3 adults, 4 children; 3 ♀ and 4 ♂). Achromatopsia was linked to CNGA3 (2 ♀, 1 ♂) and CNGB3 variants (2 ♀, 3 ♂). The youngest patient (♀, 10 y) had 3 different CNGB3 variants on different alleles. In a patient (♂, 29 y) carrying 2 pathogenic digenic-triallelic CNGA3- and CNGB3-mutations, a severe progression of ISe discontinuity to coloboma-like macular atrophy was observed during the 12-year follow-up. The oldest female (67 y) showed a compound homozygous CNGA3- and heterozygous CNGB3-, as well as a heterozygous GUCY2D variants. The destruction of her ISe line was significantly enlarged and represented a progressive cone-rod phenotype in comparison to other ACHM patients. In a patient (♂, 45 y) carrying a pathogenic CNGB3 and USH2 mutation, a severe macular oedema and a rod-cone phenotype was observed. In addition, two variants in C2ORF71 considered as VOS were found. One patient showed the rare ATF6 mutation, where a severe coloboma-like macular atrophy was observed on the left eye as early as at the age of three years. CONCLUSION Combining multimodal ophthalmological diagnostics and molecular genetics when evaluating patients with ACHM helps in characterizing the disease and associated modifiers, and is therefore strongly recommended for such patients.
Collapse
Affiliation(s)
- Sylvia A Kugler
- Department of Ophthalmology, Cantonal Hospital St. Gallen, Switzerland
| | - Christophe Valmaggia
- Department of Ophthalmology, Cantonal Hospital St. Gallen, Switzerland
- Department of Ophthalmology, University of Zürich, Switzerland
| | - Veit Sturm
- Department of Ophthalmology, University of Zürich, Switzerland
- Ophthalmology, Eye Center Rosengarten, Arbon, Switzerland
| | - Daniel F Schorderet
- Faculty of Biology and Medicine, University of Lausanne and Faculty of Life Sciences, École polytechnique fédérale de Lausanne, Switzerland
| | - Margarita G Todorova
- Department of Ophthalmology, Cantonal Hospital St. Gallen, Switzerland
- Department of Ophthalmology, University of Zürich, Switzerland
- Department of Ophthalmology, University Hospital Basel, Switzerland
| |
Collapse
|
6
|
Kuo CY, Liu CJL. Neuroprotection in Glaucoma: Basic Aspects and Clinical Relevance. J Pers Med 2022; 12:jpm12111884. [PMID: 36579616 PMCID: PMC9697907 DOI: 10.3390/jpm12111884] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/21/2022] [Accepted: 11/04/2022] [Indexed: 11/12/2022] Open
Abstract
Glaucoma is a neurodegenerative disease that affects primarily the retinal ganglion cells (RGCs). Increased intraocular pressure (IOP) is one of the major risk factors for glaucoma. The mainstay of current glaucoma therapy is limited to lowering IOP; however, controlling IOP in certain patients can be futile in slowing disease progression. The understanding of potential biomolecular processes that occur in glaucomatous degeneration allows for the development of glaucoma treatments that modulate the death of RGCs. Neuroprotection is the modification of RGCs and the microenvironment of neurons to promote neuron survival and function. Numerous studies have revealed effective neuroprotection modalities in animal models of glaucoma; nevertheless, clinical translation remains a major challenge. In this review, we select the most clinically relevant treatment strategies, summarize preclinical and clinical data as well as recent therapeutic advances in IOP-independent neuroprotection research, and discuss the feasibility and hurdles of each therapeutic approach based on possible pathogenic mechanisms. We also summarize the potential therapeutic mechanisms of various agents in neuroprotection related to glutamate excitotoxicity.
Collapse
Affiliation(s)
- Che-Yuan Kuo
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Catherine Jui-Ling Liu
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Correspondence: ; Tel.: +886-2-2875-7325
| |
Collapse
|
7
|
Stramkauskaitė A, Povilaityte I, Glebauskiene B, Liutkeviciene R. Clinical Overview of Leber Hereditary Optic Neuropathy. Acta Med Litu 2022; 29:9-18. [PMID: 36061944 PMCID: PMC9428633 DOI: 10.15388/amed.2022.29.1.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 11/22/2022] Open
Abstract
Leber hereditary ptic neuropathy (LHON) is a disease of young adults with bilateral, painless, subacute visual loss. The peak age of onset of LHON is in the second and third decades of life. Men are 4 times more likely to be affected than women. In about 25-50% of cases, both eyes are affected simultaneously. In unilateral cases, the other eye is usually affected 2 to 3 months later. Visual acuity deteriorates to counting fingers or worse with a dense central or centrocecal scotoma. In the subacute phase, the optic disc may appear hyperemic with swelling of the peripapillary retinal nerve fibre layer, peripapillary telangiectasias, and increased vascular tortuosity. Ocular coherence tomography of the macula shows marked thinning of the ganglion cell complex even at this stage. The diagnosis of LHON is made in a subject with a consistent clinical history and/or one of three common pathogenic mitochondrial DNA (mtDNA) variants identified by molecular genetic testing. Idebenone was approved by the European Medicines Agency under exceptional circumstances for the treatment of LHON. Current evidence suggests some benefit to vision in a subset of affected individuals treated with idebenone, particularly when treated within the first year of onset of vision loss. In this article, we discuss aetiology, clinical features, diagnosis, differential dignosis, prognosis and treatment.
Collapse
|
8
|
Lambuk L, Mohd Lazaldin MA, Ahmad S, Iezhitsa I, Agarwal R, Uskoković V, Mohamud R. Brain-Derived Neurotrophic Factor-Mediated Neuroprotection in Glaucoma: A Review of Current State of the Art. Front Pharmacol 2022; 13:875662. [PMID: 35668928 PMCID: PMC9163364 DOI: 10.3389/fphar.2022.875662] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/28/2022] [Indexed: 12/14/2022] Open
Abstract
Retinal ganglion cells (RGCs) are neurons of the visual system that are responsible for transmitting signals from the retina to the brain via the optic nerve. Glaucoma is an optic neuropathy characterized by apoptotic loss of RGCs and degeneration of optic nerve fibers. Risk factors such as elevated intraocular pressure and vascular dysregulation trigger the injury that culminates in RGC apoptosis. In the event of injury, the survival of RGCs is facilitated by neurotrophic factors (NTFs), the most widely studied of which is brain-derived neurotrophic factor (BDNF). Its production is regulated locally in the retina, but transport of BDNF retrogradely from the brain to retina is also crucial. Not only that the interruption of this retrograde transport has been detected in the early stages of glaucoma, but significantly low levels of BDNF have also been detected in the sera and ocular fluids of glaucoma patients, supporting the notion that neurotrophic deprivation is a likely mechanism of glaucomatous optic neuropathy. Moreover, exogenous NTF including BDNF administration was shown reduce neuronal loss in animal models of various neurodegenerative diseases, indicating the possibility that exogenous BDNF may be a treatment option in glaucoma. Current literature provides an extensive insight not only into the sources, transport, and target sites of BDNF but also the intracellular signaling pathways, other pathways that influence BDNF signaling and a wide range of its functions. In this review, the authors discuss the neuroprotective role of BDNF in promoting the survival of RGCs and its possible application as a therapeutic tool to meet the challenges in glaucoma management. We also highlight the possibility of using BDNF as a biomarker in neurodegenerative disease such as glaucoma. Further we discuss the challenges and future strategies to explore the utility of BDNF in the management of glaucoma.
Collapse
Affiliation(s)
- Lidawani Lambuk
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | | | - Suhana Ahmad
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Igor Iezhitsa
- Department of Pharmacology and Therapeutics, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
- Department of Pharmacology and Bioinformatics, Volgograd State Medical University, Volgograd, Russia
| | - Renu Agarwal
- Department of Pharmacology and Therapeutics, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Vuk Uskoković
- TardigradeNano LLC, Irvine, CA, United States
- Department of Mechanical Engineering, San Diego State University, San Diego, CA, United States
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| |
Collapse
|
9
|
Effects of Varying Intranasal Treatment Regimens in ST266-Mediated Retinal Ganglion Cell Neuroprotection. J Neuroophthalmol 2020; 39:191-199. [PMID: 30829880 DOI: 10.1097/wno.0000000000000760] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Previous studies have shown that intranasally administered ST266, a novel biological secretome of amnion-derived multipotent progenitor cells containing multiple growth factors and anti-inflammatory cytokines, attenuated visual dysfunction and prevented retinal ganglion cell (RGC) loss in experimental optic neuritis. Long-term effects and dose escalation studies examined here have not been reported previously. METHODS Optic neuritis was induced in the multiple sclerosis model experimental autoimmune encephalomyelitis (EAE). EAE and control mice were treated once or twice daily with intranasal placebo/vehicle or ST266 beginning after onset of optic neuritis for either 15 days or continuously until sacrifice. Visual function was assessed by optokinetic responses (OKRs). RGC survival and optic nerve inflammation and demyelination were measured. RESULTS Both once and twice daily continuous intranasal ST266 treatment from disease onset to 56 days after EAE induction significantly increased OKR scores, decreased RGC loss, and reduced optic nerve inflammation and demyelination compared with placebo (saline, nonspecific protein solution, or cell culture media)-treated EAE mice. ST266 treatment given for just 15 days after disease onset, then discontinued, only delayed OKR decreases, and had limited effects on RGC survival and optic nerve inflammation 56 days after disease induction. CONCLUSIONS ST266 is a potential neuroprotective therapy to prevent RGC damage, and intranasal delivery warrants further study as a novel mechanism to deliver protein therapies for optic neuropathies. Results suggest that once daily ST266 treatment is sufficient to sustain maximal benefits and demonstrate that neuroprotective effects promoted by ST266 are specific to the combination of factors present in this complex biologic therapy.
Collapse
|
10
|
Behtaj S, Öchsner A, Anissimov YG, Rybachuk M. Retinal Tissue Bioengineering, Materials and Methods for the Treatment of Glaucoma. Tissue Eng Regen Med 2020; 17:253-269. [PMID: 32390117 PMCID: PMC7260329 DOI: 10.1007/s13770-020-00254-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Glaucoma, a characteristic type of optic nerve degeneration in the posterior pole of the eye, is a common cause of irreversible vision loss and the second leading cause of blindness worldwide. As an optic neuropathy, glaucoma is identified by increasing degeneration of retinal ganglion cells (RGCs), with consequential vision loss. Current treatments only postpone the development of retinal degeneration, and there are as yet no treatments available for this disability. Recent studies have shown that replacing lost or damaged RGCs with healthy RGCs or RGC precursors, supported by appropriately designed bio-material scaffolds, could facilitate the development and enhancement of connections to ganglion cells and optic nerve axons. The consequence may be an improved retinal regeneration. This technique could also offer the possibility for retinal regeneration in treating other forms of optic nerve ailments through RGC replacement. METHODS In this brief review, we describe the innovations and recent developments in retinal regenerative medicine such as retinal organoids and gene therapy which are specific to glaucoma treatment and focus on the selection of appropriate bio-engineering principles, biomaterials and cell therapies that are presently employed in this growing research area. RESULTS Identification of optimal sources of cells, improving cell survival, functional integration upon transplantation, and developing techniques to deliver cells into the retinal space without provoking immune responses are the main challenges in retinal cell replacement therapies. CONCLUSION The restoration of visual function in glaucoma patients by the RGC replacement therapies requires appropriate protocols and biotechnology methods. Tissue-engineered scaffolds, the generation of retinal organoids, and gene therapy may help to overcome some of the challenges in the generation of clinically safe RGCs.
Collapse
Affiliation(s)
- Sanaz Behtaj
- School of Engineering and Built Environment, Griffith University, Engineering Drive, Southport, QLD, 4222, Australia
- Queensland Micro- and Nanotechnology Centre, Griffith University, West Creek Road, Nathan, QLD, 4111, Australia
- Department of Cell and Molecular Biology, Cell Science Research Centre, Royan Institute for Biotechnology, Isfahan, Iran
| | - Andreas Öchsner
- Faculty of Mechanical Engineering, Esslingen University of Applied Sciences, Kanalstrasse 33, 73728, Esslingen, Germany
| | - Yuri G Anissimov
- Queensland Micro- and Nanotechnology Centre, Griffith University, West Creek Road, Nathan, QLD, 4111, Australia
- School of Environment and Science, Griffith University, Parklands Drive, Southport, QLD, 4222, Australia
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, 119146, Russia
| | - Maksym Rybachuk
- Queensland Micro- and Nanotechnology Centre, Griffith University, West Creek Road, Nathan, QLD, 4111, Australia.
- School of Engineering and Built Environment, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia.
| |
Collapse
|
11
|
Parisi V, Oddone F, Ziccardi L, Roberti G, Coppola G, Manni G. Citicoline and Retinal Ganglion Cells: Effects on Morphology and Function. Curr Neuropharmacol 2018; 16:919-932. [PMID: 28676014 PMCID: PMC6120106 DOI: 10.2174/1570159x15666170703111729] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/07/2017] [Accepted: 06/22/2017] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Retinal ganglion cells (RGCs) are the nervous retinal elements which connect the visual receptors to the brain forming the nervous visual system. Functional and/or morphological involvement of RGCs occurs in several ocular and neurological disorders and therefore these cells are targeted in neuroprotective strategies. Cytidine 5-diphosphocholine or Citicoline is an endogenous compound that acts in the biosynthesis of phospholipids of cell membranes and increases neurotransmitters' levels in the Central Nervous System. Experimental studies suggested the neuromodulator effect and the protective role of Citicoline on RGCs. This review aims to present evidence of the effects of Citicoline in experimental models of RGCs degeneration and in human neurodegenerative disorders involving RGCs. METHODS All published papers containing experimental or clinical studies about the effects of Citicoline on RGCs morphology and function were reviewed. RESULTS In rodent retinal cultures and animal models, Citicoline induces antiapoptotic effects, increases the dopamine retinal level, and counteracts retinal nerve fibers layer thinning. Human studies in neurodegenerative visual pathologies such as glaucoma or non-arteritic ischemic neuropathy showed a reduction of the RGCs impairment after Citicoline administration. By reducing the RGCs' dysfunction, a better neural conduction along the post-retinal visual pathways with an improvement of the visual field defects was observed. CONCLUSION Citicoline, with a solid history of experimental and clinical studies, could be considered a very promising molecule for neuroprotective strategies in those pathologies (i.e. Glaucoma) in which morpho-functional changes of RGCc occurs.
Collapse
Affiliation(s)
- Vincenzo Parisi
- IRCCS-Fondazione GB Bietti, Via Livenza, 3, 00198 Rome, Italy
| | | | - Lucia Ziccardi
- IRCCS-Fondazione GB Bietti, Via Livenza, 3, 00198 Rome, Italy
| | - Gloria Roberti
- IRCCS-Fondazione GB Bietti, Via Livenza, 3, 00198 Rome, Italy
| | | | - Gianluca Manni
- IRCCS-Fondazione GB Bietti, Via Livenza, 3, 00198 Rome, Italy.,DSCMT, Università di Roma Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| |
Collapse
|
12
|
Finsterer J, Mancuso M, Pareyson D, Burgunder JM, Klopstock T. Mitochondrial disorders of the retinal ganglion cells and the optic nerve. Mitochondrion 2017; 42:1-10. [PMID: 29054473 DOI: 10.1016/j.mito.2017.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 10/02/2017] [Accepted: 10/06/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To summarise and discuss recent findings and future perspectives concerning mitochondrial disorders (MIDs) affecting the retinal ganglion cells and the optic nerve (mitochondrial optic neuropathy. MON). METHOD Literature review. RESULTS MON in MIDs is more frequent than usually anticipated. MON may occur in specific as well as non-specific MIDs. In specific and non-specific MIDs, MON may be a prominent or non-prominent phenotypic feature and due to mutations in genes located either in the mitochondrial DNA (mtDNA) or the nuclear DNA (nDNA). Clinically, MON manifests with painless, bilateral or unilateral, slowly or rapidly progressive visual impairment and visual field defects. In some cases, visual impairment may spontaneously recover. The most frequent MIDs with MON include LHON due to mutations in mtDNA-located genes and autosomal dominant optic atrophy (ADOA) or autosomal recessive optic atrophy (AROA) due to mutations in nuclear genes. Instrumental investigations for diagnosing MON include fundoscopy, measurement of visual acuity, visual fields, and color vision, visually-evoked potentials, optical coherence tomography, fluorescein angiography, electroretinography, and MRI of the orbita and cerebrum. In non-prominent MON, work-up of the muscle biopsy with transmission electron microscopy may indicate mitochondrial destruction. Treatment is mostly supportive but idebenone has been approved for LHON and experimental approaches are promising. CONCLUSIONS MON needs to be appreciated, requires extensive diagnostic work-up, and supportive treatment should be applied although loss of vision, as the most severe outcome, can often not be prevented.
Collapse
Affiliation(s)
| | - Michelangelo Mancuso
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Italy
| | - Davide Pareyson
- Department of Clinical Neurosciences, C. Besta Neurological Institute, IRCCS Foundation, Milan, Italy.
| | - Jean-Marc Burgunder
- Department of Neurology, University of Bern, Switzerland; Department of Neurology, Sun Yat Sen University, Guangzhou, China; Department of Neurology, Sichuan University, Chendgu, China.
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur Institute, Ludwig-Maximilians-Universität München, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
13
|
Assessment of Safety and Functional Efficacy of Stem Cell-Based Therapeutic Approaches Using Retinal Degenerative Animal Models. Stem Cells Int 2017; 2017:9428176. [PMID: 28928775 PMCID: PMC5592015 DOI: 10.1155/2017/9428176] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 06/19/2017] [Indexed: 02/06/2023] Open
Abstract
Dysfunction and death of retinal pigment epithelium (RPE) and or photoreceptors can lead to irreversible vision loss. The eye represents an ideal microenvironment for stem cell-based therapy. It is considered an “immune privileged” site, and the number of cells needed for therapy is relatively low for the area of focused vision (macula). Further, surgical placement of stem cell-derived grafts (RPE, retinal progenitors, and photoreceptor precursors) into the vitreous cavity or subretinal space has been well established. For preclinical tests, assessments of stem cell-derived graft survival and functionality are conducted in animal models by various noninvasive approaches and imaging modalities. In vivo experiments conducted in animal models based on replacing photoreceptors and/or RPE cells have shown survival and functionality of the transplanted cells, rescue of the host retina, and improvement of visual function. Based on the positive results obtained from these animal experiments, human clinical trials are being initiated. Despite such progress in stem cell research, ethical, regulatory, safety, and technical difficulties still remain a challenge for the transformation of this technique into a standard clinical approach. In this review, the current status of preclinical safety and efficacy studies for retinal cell replacement therapies conducted in animal models will be discussed.
Collapse
|
14
|
Li Y, He X, Li J, Ni F, Sun Q, Zhou Y. Proliferation and differentiation of direct co‑culture of bone marrow mesenchymal stem cells and pigmented cells from the ciliary margin. Mol Med Rep 2017; 15:3529-3534. [PMID: 28440470 PMCID: PMC5436198 DOI: 10.3892/mmr.2017.6481] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 02/07/2017] [Indexed: 12/23/2022] Open
Abstract
Damage of retinal ganglion cells (RGCs) is the major consequence of glaucoma and regeneration of RGCs is extremely difficult once the damage has occurred. Retinal stem cells (RSCs) are considered an ideal choice for RGC regeneration. Pigmented cells from the ciliary margin (PCMs) have great retinal differentiation potential and may be an ideal RSC candidate. However, the ciliary margin is too small, so the number of cells that can be obtained is limited. Bone marrow-derived mesenchymal stem cells (BMMSCs) are another type of stem cell that have been previously investigated for RGC regeneration. BMMSCs expand sufficiently, whereas the retinal differentiation of BMMSCs is insufficient. The aim of the present study was to investigate whether the co-culture of PCMs and BMMSCs may combine the advantages of both cell types to establish a novel and effective stem cell source for RGC regeneration. Primary rat PCMs and BMMSCs were isolated and co-cultured. Cell growth was observed by an inverted microscope and proliferation was monitored by an MTT assay. Cell cycle analysis was performed by using a flow cytometer, while the expression of the photoreceptor-specific homeobox gene (cone-rod homeobox, Crx) was determined by reverse transcription-quantitative polymerase chain reaction and western blot analysis. In addition, retinal differentiation was confirmed by immunofluorescence staining of major markers of retinal differentiation, including rhodopsin, visual system homeobox 2 and heparin sulfate. The co-cultured cells expanded successfully, in a similar way to BMMSCs. In addition, the expression of Crx and retinal markers were significantly upregulated following BMMSC and PCM co-culture. The results of the present study demonstrated that the co-culture of BMMSCs and PCMs may be used as a source of RSCs.
Collapse
Affiliation(s)
- Yan Li
- Department of Ophthalmology, No. 113 Hospital of PLA, Ningbo, Zhejiang 315000, P.R. China
| | - Xinzheng He
- Department of Ophthalmology, No. 113 Hospital of PLA, Ningbo, Zhejiang 315000, P.R. China
| | - Jun Li
- Department of Ophthalmology, No. 113 Hospital of PLA, Ningbo, Zhejiang 315000, P.R. China
| | - Fangfang Ni
- Department of Ophthalmology, No. 113 Hospital of PLA, Ningbo, Zhejiang 315000, P.R. China
| | - Qingqing Sun
- Department of Ophthalmology, No. 113 Hospital of PLA, Ningbo, Zhejiang 315000, P.R. China
| | - Yan Zhou
- Department of Glaucoma, Ningbo Eye Hospital, Ningbo, Zhejiang 315000, P.R. China
| |
Collapse
|
15
|
Combined transplantation of human mesenchymal stem cells and human retinal progenitor cells into the subretinal space of RCS rats. Sci Rep 2017; 7:199. [PMID: 28298640 PMCID: PMC5428026 DOI: 10.1038/s41598-017-00241-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/15/2017] [Indexed: 11/08/2022] Open
Abstract
Retinitis pigmentosa (RP) is one of hereditary retinal diseases characterized by the loss of photoreceptors. Cell transplantation has been clinically applied to treat RP patients. Human retinal progenitor cells (HRPCs) and human bone marrow-derived mesenchymal stem cells (HBMSCs) are the two commonly and practically used stem cells for transplantation. Since combined transplantation could be a promising way to integrate the advantages of both stem cell types, we transplanted HRPCs and HBMSCs into the subretinal space (SRS) of Royal College of Surgeons (RCS) rats. We report that HRPCs/HBMSCs combined transplantation maintains the electroretinogram results much better than HRPCs or HBMSCs single transplantations. The thickness of outer nuclear layer also presented a better outcome in the combined transplantation. Importantly, grafted cells in the combination migrated better, both longitudinally and latitudinally, than single transplantation. The photoreceptor differentiation of grafted cells in the retina of RCS rats receiving combined transplantation also showed a higher ratio than single transplantation. Finally, activation of microglia and the gliosis of Müller cells were more effectively suppressed in combined transplantation, indicating better immunomodulatory and anti-gliosis effects. Taken together, combining the transplantation of HRPCs and HBMSCs is a more effective strategy in stem cell-based therapy for retinal degenerative diseases.
Collapse
|
16
|
|
17
|
Levin LA, Crowe ME, Quigley HA. Neuroprotection for glaucoma: Requirements for clinical translation. Exp Eye Res 2016; 157:34-37. [PMID: 27955999 DOI: 10.1016/j.exer.2016.12.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 10/06/2016] [Accepted: 12/09/2016] [Indexed: 11/17/2022]
Abstract
Within the field of glaucoma research, neuroprotection is defined as slowing the functional loss in glaucoma by a mechanism independent of lowering of intraocular pressure. There is currently a great potential for research surrounding neuroprotection as it relates to glaucoma. Anatomical targets for neuroprotection should focus on upstream rather than downstream factors, and could include any part of the retinal ganglion cell, the glia, especially astrocytes or Muller cells, and vasculature. The great number of anatomical targets is exceeded only by the number of possible biochemical pathways and potential treatments. Successful treatment may be accomplished through the targeting of one or even a combination of multiple pathways. Once a treatment is shown effective in vitro, it should be evaluated in vivo with carefully chosen animal models and studied in sufficient numbers to detect statistically and clinically significant effects. Such a drug should have few systemic side effects and its delivery should be optimized so as to encourage compliance. There are still a multitude of possible screens available to test the efficacy of a neuroprotective drug and a single gold standard is ideal for the accurate assessment and comparison of new drugs. Future studies in neuroprotection should investigate the genetic component of the disease, novel pharmaceutical agents for new or known pathways, modulations of scleral biomechanics, and relation to research of other complex disorders of the central nervous system.
Collapse
Affiliation(s)
- Leonard A Levin
- Department of Ophthalmology, McGill University, Montreal, Quebec, Canada; Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | - Megan E Crowe
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Harry A Quigley
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
18
|
Quintiliano K, Crestani T, Silveira D, Helfer VE, Rosa A, Balbueno E, Steffens D, Jotz GP, Pilger DA, Pranke P. Neural Differentiation of Mesenchymal Stem Cells on Scaffolds for Nerve Tissue Engineering Applications. Cell Reprogram 2016; 18:369-381. [DOI: 10.1089/cell.2016.0024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Kerlin Quintiliano
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Post-graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Thayane Crestani
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Post-graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Davi Silveira
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Annelise Rosa
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Post-graduate Program in Material Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Eduardo Balbueno
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Daniela Steffens
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Post Graduate Program in Biological Science: Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Centro Universitário Ritter dos Reis—UniRitter
| | - Geraldo Pereira Jotz
- Post-graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Department of Morphological Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Diogo André Pilger
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Patricia Pranke
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Post-graduate Program in Material Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Post Graduate Program in Biological Science: Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Stem Cell Research Institute. Porto Alegre, Brazil
| |
Collapse
|
19
|
Zhang WM, Zhang ZR, Zhang YG, Gao YS. Neural Stem Cell-based Intraocular Administration of Pigment Epithelium-derived Factor Promotes Retinal Ganglion Cell Survival and Axon Regeneration after Optic Nerve Crush Injury in Rat: An Experimental Study. IRANIAN JOURNAL OF MEDICAL SCIENCES 2016; 41:382-90. [PMID: 27582587 PMCID: PMC4967482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Pigment epithelium-derived factor (PEDF) is regarded as a multifunctional protein possessing neurotrophic and neuroprotective properties. PEDF has a very short half-life, and it would require multiple injections to maintain a therapeutically relevant level without a delivery system. However, multiple injections are prone to cause local damage or infection. To overcome this, we chose a cell-based system that provided sustained delivery of PEDF and compared the effect of weekly injections of PEDF and neural stem cell (NSC)-based intraocular administration of PEDF on retinal ganglion cell (RGC) survival and axon regeneration after optic nerve injury. METHODS Seventy-two rats were randomly assigned to 3 groups: group with injections of phosphate buffered saline (PBS) (n=24), group with weekly injections of PEDF (n=24), and group with NSC-based administration of PEDF (n=24). Western blot was used to analyze the PEDF protein level 2 weeks after injection. Retinal flat mounts and immunohistochemistry were employed to analyze RGC survival and axon regeneration 2 weeks and 4 weeks after injection. The data were analyzed with one-way ANOVA in SPSS (version 19.0). A P<0.05 was considered significant. RESULTS The PEDF protein level in the group with NSC-based administration of PEDF increased compared with that in the groups with injections of PEDF and PBS (P<0.05). The PEDF-modified NSCs differentiated into GFAP-positive astrocytes andβ-tubulin-III-positive neurons. NSC-based administration of PEDF effectively increased RGC survival and improved the axon regeneration of the optic nerve compared with weekly injections of PEDF. CONCLUSION Subretinal space transplantation of PEDF-secreting NSCs sustained high concentrations of PEDF, differentiated into neurons and astrocytes, and significantly promoted RGC survival and axon regeneration after optic nerve injury.
Collapse
Affiliation(s)
- Wei-Min Zhang
- Department of Neurosurgery, Zhumadian Central Hospital, Zhumadian, China
| | - Zhi-Ren Zhang
- Department of Medical Administration, Zhumadian Central Hospital, Zhumadian, China,Correspondence: Zhi-Ren Zhang, MD; Department of Medical Administration, Zhumadian Central Hospital, Zhumadian, 463000, China Tel: +86 369 2726911 Fax: +86 396 2726209
| | - Yong-Gang Zhang
- Department of Neurosurgery, Zhumadian Central Hospital, Zhumadian, China
| | - Yan-Sheng Gao
- Department of Neurosurgery, Zhumadian Central Hospital, Zhumadian, China
| |
Collapse
|
20
|
Lv XM, Liu Y, Wu F, Yuan Y, Luo M. Human umbilical cord blood-derived stem cells and brain-derived neurotrophic factor protect injured optic nerve: viscoelasticity characterization. Neural Regen Res 2016; 11:652-6. [PMID: 27212930 PMCID: PMC4870926 DOI: 10.4103/1673-5374.180753] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The optic nerve is a viscoelastic solid-like biomaterial. Its normal stress relaxation and creep properties enable the nerve to resist constant strain and protect it from injury. We hypothesized that stress relaxation and creep properties of the optic nerve change after injury. More-over, human brain-derived neurotrophic factor or umbilical cord blood-derived stem cells may restore these changes to normal. To validate this hypothesis, a rabbit model of optic nerve injury was established using a clamp approach. At 7 days after injury, the vitreous body re-ceived a one-time injection of 50 μg human brain-derived neurotrophic factor or 1 × 106 human umbilical cord blood-derived stem cells. At 30 days after injury, stress relaxation and creep properties of the optic nerve that received treatment had recovered greatly, with patho-logical changes in the injured optic nerve also noticeably improved. These results suggest that human brain-derived neurotrophic factor or umbilical cord blood-derived stem cell intervention promotes viscoelasticity recovery of injured optic nerves, and thereby contributes to nerve recovery.
Collapse
Affiliation(s)
- Xue-Man Lv
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yan Liu
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Fei Wu
- Department of Gynaecology and Obstetrics, Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yi Yuan
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Min Luo
- Department of Pain Management, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
21
|
Novel Strategies for the Improvement of Stem Cells' Transplantation in Degenerative Retinal Diseases. Stem Cells Int 2016; 2016:1236721. [PMID: 27293444 PMCID: PMC4887645 DOI: 10.1155/2016/1236721] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/17/2016] [Accepted: 05/03/2016] [Indexed: 12/20/2022] Open
Abstract
Currently, there is no cure for the permanent vision loss caused by degenerative retinal diseases. One of the novel therapeutic strategies aims at the development of stem cells (SCs) based neuroprotective and regenerative medicine. The main sources of SCs for the treatment of retinal diseases are the embryo, the bone marrow, the region of neuronal genesis, and the eye. The success of transplantation depends on the origin of cells, the route of administration, the local microenvironment, and the proper combinative formula of growth factors. The feasibility of SCs based therapies for degenerative retinal diseases was proved in the preclinical setting. However, their translation into the clinical realm is limited by various factors: the immunogenicity of the cells, the stability of the cell phenotype, the predilection of SCs to form tumors in situ, the abnormality of the microenvironment, and the association of a synaptic rewiring. To improve SCs based therapies, nanotechnology offers a smart delivery system for biomolecules, such as growth factors for SCs implantation and differentiation into retinal progenitors. This review explores the main advances in the field of retinal transplantology and applications of nanotechnology in the treatment of retinal diseases, discusses the challenges, and suggests new therapeutic approaches in retinal transplantation.
Collapse
|
22
|
Stem Cell Therapy for Treatment of Ocular Disorders. Stem Cells Int 2016; 2016:8304879. [PMID: 27293447 PMCID: PMC4884591 DOI: 10.1155/2016/8304879] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/10/2016] [Indexed: 12/30/2022] Open
Abstract
Sustenance of visual function is the ultimate focus of ophthalmologists. Failure of complete recovery of visual function and complications that follow conventional treatments have shifted search to a new form of therapy using stem cells. Stem cell progenitors play a major role in replenishing degenerated cells despite being present in low quantity and quiescence in our body. Unlike other tissues and cells, regeneration of new optic cells responsible for visual function is rarely observed. Understanding the transcription factors and genes responsible for optic cells development will assist scientists in formulating a strategy to activate and direct stem cells renewal and differentiation. We review the processes of human eye development and address the strategies that have been exploited in an effort to regain visual function in the preclinical and clinical state. The update of clinical findings of patients receiving stem cell treatment is also presented.
Collapse
|
23
|
Aplin FP, Vessey KA, Luu CD, Guymer RH, Shepherd RK, Fletcher EL. Retinal Changes in an ATP-Induced Model of Retinal Degeneration. Front Neuroanat 2016; 10:46. [PMID: 27199678 PMCID: PMC4850166 DOI: 10.3389/fnana.2016.00046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/11/2016] [Indexed: 11/20/2022] Open
Abstract
In rodents and felines, intravitreal administration of adenosine triphosphate (ATP) has been shown to induce photoreceptor death providing a tractable model of retinal degeneration in these species. This study investigated the long term effects of photoreceptor loss in an ATP induced feline model of retinal degeneration. Six normal sighted felines were unilaterally blinded using intravitreal ATP injections and assessed using electroretinography (ERG) and optical coherence tomography (OCT). At 30 h (n = 3) or 12 weeks (n = 3) post-injection, the animals were euthanized and the eyes enucleated. Retinae were sectioned and labeled using immunohistochemistry for markers of cell death, neural remodeling and gliosis. Ongoing cell death and retinal degeneration was observed in the outer retina at both 30 h and 12 weeks following unilateral ATP injection. Markers of mid to late-stage retinal remodeling such as cell displacement and aberrant neurite growth were observed in the inner retina at 12 weeks post-injection. Ganglion cells appeared to remain intact in ATP injected eyes. Müller cell gliosis was observed throughout the inner and outer retina, in some parts completely enveloping and/or displacing the surviving neural tissue. Our data suggests that the ATP injected feline retina continues to undergo progressive retinal degeneration and exhibits abnormalities consistent with a description of retinal remodeling commonly seen in other models of retinal degeneration. These findings validate the use of intravitreal ATP injection in feline as a large animal model of retinal degeneration which may aid in development of therapies aiming to restore visual function after photoreceptor degeneration.
Collapse
Affiliation(s)
- Felix P Aplin
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East MelbourneMelbourne, VIC, Australia; Department of Anatomy and Neuroscience, The University of MelbourneMelbourne, VIC, Australia; The Bionics Institute, East MelbourneMelbourne, VIC, Australia
| | - Kirstan A Vessey
- Department of Anatomy and Neuroscience, The University of Melbourne Melbourne, VIC, Australia
| | - Chi D Luu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East MelbourneMelbourne, VIC, Australia; Department of Surgery (Ophthalmology), The University of MelbourneParkville, VIC, Australia
| | - Robyn H Guymer
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East MelbourneMelbourne, VIC, Australia; Department of Surgery (Ophthalmology), The University of MelbourneParkville, VIC, Australia
| | - Robert K Shepherd
- The Bionics Institute, East MelbourneMelbourne, VIC, Australia; Medical Bionics Department, The University of MelbourneMelbourne, VIC, Australia
| | - Erica L Fletcher
- Department of Anatomy and Neuroscience, The University of Melbourne Melbourne, VIC, Australia
| |
Collapse
|
24
|
Doozandeh A, Yazdani S. Neuroprotection in Glaucoma. J Ophthalmic Vis Res 2016; 11:209-20. [PMID: 27413504 PMCID: PMC4926571 DOI: 10.4103/2008-322x.183923] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 08/03/2015] [Indexed: 11/04/2022] Open
Abstract
Glaucoma is a degenerative optic neuropathy characterized by retinal ganglion cell (RGC) loss and visual field defects. It is known that in some glaucoma patients, death of RGCs continues despite intraocular pressure (IOP) reduction. Neuroprotection in the field of glaucoma is defined as any treatment, independent of IOP reduction, which prevents RGC death. Glutamate antagonists, ginkgo biloba extract, neurotrophic factors, antioxidants, calcium channel blockers, brimonidine, glaucoma medications with blood regulatory effect and nitric oxide synthase inhibitors are among compounds with possible neuroprotective activity in preclinical studies. A few agents (such as brimonidine or memantine) with neuroprotective effects in experimental studies have advanced to clinical trials; however the results of clinical trials for these agents have not been conclusive. Nevertheless, lack of compelling clinical evidence has not prevented the off-label use of some of these compounds in glaucoma practice. Stem cell transplantation has been reported to halt experimental neurodegenerative disease processes in the absence of cell replacement. It has been hypothesized that transplantation of some types of stem cells activates multiple neuroprotective pathways via secretion of various factors. The advantage of this approach is a prolonged and targeted effect. Important concerns in this field include the secretion of unwanted harmful mediators, graft survival issues and tumorigenesis. Neuroprotection in glaucoma, pharmacologically or by stem cell transplantation, is an interesting subject waiting for broad and multidisciplinary collaborative studies to better clarify its role in clinical practice.
Collapse
Affiliation(s)
- Azadeh Doozandeh
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahin Yazdani
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Becker S, Eastlake K, Jayaram H, Jones MF, Brown RA, McLellan GJ, Charteris DG, Khaw PT, Limb GA. Allogeneic Transplantation of Müller-Derived Retinal Ganglion Cells Improves Retinal Function in a Feline Model of Ganglion Cell Depletion. Stem Cells Transl Med 2016; 5:192-205. [PMID: 26718648 PMCID: PMC4729554 DOI: 10.5966/sctm.2015-0125] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 11/11/2015] [Indexed: 11/16/2022] Open
Abstract
Human Müller glia with stem cell characteristics (hMGSCs) have been shown to improve retinal function upon transplantation into rat models of retinal ganglion cell (RGC) depletion. However, their translational potential may depend upon successful engraftment and improvement of retinal function in experimental models with anatomical and functional features resembling those of the human eye. We investigated the effect of allogeneic transplantation of feline Müller glia with the ability to differentiate into cells expressing RGC markers, following ablation of RGCs by N-methyl-d-aspartate (NMDA). Unlike previous observations in the rat, transplantation of hMGSC-derived RGCs into the feline vitreous formed aggregates and elicited a severe inflammatory response without improving visual function. In contrast, allogeneic transplantation of feline MGSC (fMGSC)-derived RGCs into the vitrectomized eye improved the scotopic threshold response (STR) of the electroretinogram (ERG). Despite causing functional improvement, the cells did not attach onto the retina and formed aggregates on peripheral vitreous remnants, suggesting that vitreous may constitute a barrier for cell attachment onto the retina. This was confirmed by observations that cellular scaffolds of compressed collagen and enriched preparations of fMGSC-derived RGCs facilitated cell attachment. Although cells did not migrate into the RGC layer or the optic nerve, they significantly improved the STR and the photopic negative response of the ERG, indicative of increased RGC function. These results suggest that MGSCs have a neuroprotective ability that promotes partial recovery of impaired RGC function and indicate that cell attachment onto the retina may be necessary for transplanted cells to confer neuroprotection to the retina. Significance: Müller glia with stem cell characteristics are present in the adult human retina, but they do not have regenerative ability. These cells, however, have potential for development of cell therapies to treat retinal disease. Using a feline model of retinal ganglion cell (RGC) depletion, cell grafting methods to improve RGC function have been developed. Using cellular scaffolds, allogeneic transplantation of Müller glia-derived RGC promoted cell attachment onto the retina and enhanced retinal function, as judged by improvement of the photopic negative and scotopic threshold responses of the electroretinogram. The results suggest that the improvement of RGC function observed may be ascribed to the neuroprotective ability of these cells and indicate that attachment of the transplanted cells onto the retina is required to promote effective neuroprotection.
Collapse
Affiliation(s)
- Silke Becker
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Karen Eastlake
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Hari Jayaram
- National Institute for Health Research Biomedical Research Centre for Ophthalmology, Institute of Ophthalmology, University College London, London, United Kingdom
| | - Megan F Jones
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Robert A Brown
- Institute of Orthopaedics and Musculoskeletal Science, University College London, London, United Kingdom
| | - Gillian J McLellan
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - David G Charteris
- National Institute for Health Research Biomedical Research Centre for Ophthalmology, Institute of Ophthalmology, University College London, London, United Kingdom
| | - Peng T Khaw
- National Institute for Health Research Biomedical Research Centre for Ophthalmology, Institute of Ophthalmology, University College London, London, United Kingdom
| | - G Astrid Limb
- National Institute for Health Research Biomedical Research Centre for Ophthalmology, Institute of Ophthalmology, University College London, London, United Kingdom
| |
Collapse
|
26
|
Meyerson C, Van Stavern G, McClelland C. Leber hereditary optic neuropathy: current perspectives. Clin Ophthalmol 2015; 9:1165-76. [PMID: 26170609 PMCID: PMC4492634 DOI: 10.2147/opth.s62021] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Leber hereditary optic neuropathy (LHON) is one of the most common inherited optic neuropathies causing bilateral central vision loss. The disorder results from point mutations in mitochondrial DNA and subsequent mitochondrial dysfunction. The primary cell type that is lost in LHON is the retinal ganglion cell, which is highly susceptible to disrupted ATP production and oxidative stress. Inheritance of LHON follows that of mitochondrial genetics, and it has a highly variable clinical phenotype, as other genetic and environmental factors also play a role. Although LHON usually presents with isolated vision loss, some patients suffer other neurological sequelae. For ill-defined reasons, male LHON mutation carriers are more affected than females. Most LHON patients remain legally blind, but a small proportion can experience spontaneous partial recovery, often within the first year of symptom onset. Unfortunately, at this time there are no established curative interventions and treatment is largely supportive. Patients should be offered low vision services and counseled on mitigating risk factors for additional vision loss, such as smoking and consuming alcohol. Encouraging treatments currently undergoing investigation includes ubiquinone analogs, such as idebenone, as well as gene therapy and stem cells to restore ATP synthesis and provide neuroprotection to surviving retinal ganglion cells.
Collapse
Affiliation(s)
- Cherise Meyerson
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St Louis, MO, USA
| | - Greg Van Stavern
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St Louis, MO, USA
| | - Collin McClelland
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
27
|
Lužnik Z, Parekh M, Bertolin M, Griffoni C, Ponzin D, Ferrari S. Biobanking of Human Retinas: The Next Big Leap for Eye Banks? Stem Cells Transl Med 2015; 4:868-72. [PMID: 26032747 DOI: 10.5966/sctm.2015-0061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 04/30/2015] [Indexed: 11/16/2022] Open
Abstract
Retinal degenerative diseases are one of the main clinical causes of incurable and severe visional impairment. Thus, extensive research effort is put into the development of new causal therapeutic options. Promisingly, a number of studies showed regenerative capacity in specific retinal regions (the ciliary epithelium, retinal pigmented epithelium, iris, and Müller glia cells). However, most recent research studies are based on animal models or in vitro cultured cells, probably because of the limited availability of human posterior eye tissues (vitreous, retina, and choroid). To address this, we showed in our previous reports that eye banks with large numbers of globes collected yearly could set up biorepositories/biobanks where these precious tissues are isolated, quality controlled, and finally stored for scientists and clinicians wanting to access human tissues and test their own hypotheses. These precious human posterior eye tissues could be used for further research purposes, epidemiological studies, and target validation of newly developed drugs. In addition, this could be a promising and challenging option to retrieve potential retinal stem and progenitor cells from different parts of the retina and could be a breakthrough in the future delivery of ex vivo prepared customized (histocompatible) retinal tissue on scaffolds for transplantation purposes. In this Perspective, we will consider how the biorepositories could influence the future strategies for retinal stem cell therapies.
Collapse
Affiliation(s)
- Zala Lužnik
- Fondazione Banca degli Occhi del Veneto, Venice, Italy; Eye Hospital, University Medical Centre, Ljubljana, Slovenia
| | - Mohit Parekh
- Fondazione Banca degli Occhi del Veneto, Venice, Italy
| | | | | | - Diego Ponzin
- Fondazione Banca degli Occhi del Veneto, Venice, Italy
| | | |
Collapse
|
28
|
Raykova K, Jones MV, Huang H, Hoffman PF, Levy M. Minimally-invasive Technique for Injection into Rat Optic Nerve. J Vis Exp 2015:e52249. [PMID: 26068024 DOI: 10.3791/52249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The rat optic nerve is a useful model for stem cell regeneration research. Direct injection into the rat optic nerve allows delivery into the central nervous system in a minimally-invasive surgery without bone removal. This technique describes an approach to visualization and direct injection of the optic nerve following minor fascial dissection from the orbital ridge, using a conjunctival traction suture to gently pull the eye down and out. Representative examples of an injected optic nerve show successful injection of dyed beads.
Collapse
Affiliation(s)
| | | | - Hwa Huang
- Department of Neurology, Johns Hopkins University
| | | | - Michael Levy
- Department of Neurology, Johns Hopkins University;
| |
Collapse
|
29
|
Stem cell therapy for glaucoma: science or snake oil? Surv Ophthalmol 2014; 60:93-105. [PMID: 25132498 DOI: 10.1016/j.survophthal.2014.07.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 06/30/2014] [Accepted: 07/09/2014] [Indexed: 01/15/2023]
Abstract
In recent years there has been substantial progress in developing stem cell treatments for glaucoma. As a downstream approach that targets the underlying susceptibility of retinal ganglion and trabecular meshwork cells, stem cell therapy has the potential to both replace lost, and protect damaged, cells by secreting neurotrophic factors. A variety of sources, including embryonic cells, adult cells derived from the central nervous system, and induced pluripotent stem cells show promise as therapeutic approaches. Even though safety concerns and ethical controversies have limited clinical implementation, some institutions have already commercialized stem cell therapy and are using direct-to-consumer advertising to attract patients with glaucoma. We review the progress of stem cell therapy and its current commercial availability.
Collapse
|
30
|
Greenberg JP, Sherman J, Zweifel SA, Chen RWS, Duncker T, Kohl S, Baumann B, Wissinger B, Yannuzzi LA, Tsang SH. Spectral-domain optical coherence tomography staging and autofluorescence imaging in achromatopsia. JAMA Ophthalmol 2014; 132:437-45. [PMID: 24504161 PMCID: PMC4423754 DOI: 10.1001/jamaophthalmol.2013.7987] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE Evidence is mounting that achromatopsia is a progressive retinal degeneration, and treatments for this condition are on the horizon. OBJECTIVES To categorize achromatopsia into clinically identifiable stages using spectral-domain optical coherence tomography and to describe fundus autofluorescence imaging in this condition. DESIGN, SETTING, AND PARTICIPANTS A prospective observational study was performed between 2010 and 2012 at the Edward S. Harkness Eye Institute, New York-Presbyterian Hospital. Participants included 17 patients (aged 10-62 years) with full-field electroretinography-confirmed achromatopsia. MAIN OUTCOMES AND MEASURES Spectral-domain optical coherence tomography features and staging system, fundus autofluorescence and near-infrared reflectance features and their correlation to optical coherence tomography, and genetic mutations served as the outcomes and measures. RESULTS Achromatopsia was categorized into 5 stages on spectral-domain optical coherence tomography: stage 1 (2 patients [12%]), intact outer retina; stage 2 (2 patients [12%]), inner segment ellipsoid line disruption; stage 3 (5 patients [29%]), presence of an optically empty space; stage 4 (5 patients [29%]), optically empty space with partial retinal pigment epithelium disruption; and stage 5 (3 patients [18%]), complete retinal pigment epithelium disruption and/or loss of the outer nuclear layer. Stage 1 patients showed isolated hyperreflectivity of the external limiting membrane in the fovea, and the external limiting membrane was hyperreflective above each optically empty space. On near infrared reflectance imaging, the fovea was normal, hyporeflective, or showed both hyporeflective and hyperreflective features. All patients demonstrated autofluorescence abnormalities in the fovea and/or parafovea: 9 participants (53%) had reduced or absent autofluorescence surrounded by increased autofluorescence, 4 individuals (24%) showed only reduced or absent autofluorescence, 3 patients (18%) displayed only increased autofluorescence, and 1 individual (6%) exhibited decreased macular pigment contrast. Inner segment ellipsoid line loss generally correlated with the area of reduced autofluorescence, but hyperautofluorescence extended into this region in 2 patients (12%). Bilateral coloboma-like atrophic macular lesions were observed in 1 patient (6%). Five novel mutations were identified (4 in the CNGA3 gene and 1 in the CNGB3 gene). CONCLUSIONS AND RELEVANCE Achromatopsia often demonstrates hyperautofluorescence suggestive of progressive retinal degeneration. The proposed staging system facilitates classification of the disease into different phases of progression and may have therapeutic implications.
Collapse
Affiliation(s)
| | - Jerome Sherman
- Department of Clinical Sciences, State University of New York College of Optometry, New York, New York
| | - Sandrine A Zweifel
- The Vitreous, Retina, Macula Consultants of New York, New York4The LuEsther T. Mertz Retinal Research Center, Manhattan Eye, Ear, and Throat Hospital, New York, New York
| | - Royce W S Chen
- Department of Ophthalmology, Columbia University, New York, New York
| | - Tobias Duncker
- Department of Ophthalmology, Columbia University, New York, New York
| | - Susanne Kohl
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Britta Baumann
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Bernd Wissinger
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Lawrence A Yannuzzi
- The Vitreous, Retina, Macula Consultants of New York, New York4The LuEsther T. Mertz Retinal Research Center, Manhattan Eye, Ear, and Throat Hospital, New York, New York
| | - Stephen H Tsang
- Department of Ophthalmology, Columbia University, New York, New York6Bernard and Shirlee Brown Glaucoma Laboratory, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, New York 7Department of Pathology and Cell Biology, Columbia Un
| |
Collapse
|
31
|
Yu-Wai-Man P, Votruba M, Moore AT, Chinnery PF. Treatment strategies for inherited optic neuropathies: past, present and future. Eye (Lond) 2014; 28:521-37. [PMID: 24603424 PMCID: PMC4017118 DOI: 10.1038/eye.2014.37] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 01/22/2014] [Indexed: 12/16/2022] Open
Abstract
Bilateral visual loss secondary to inherited optic neuropathies is an important cause of registrable blindness among children and young adults. The two prototypal disorders seen in clinical practice are Leber hereditary optic neuropathy (LHON) and autosomal dominant optic atrophy (DOA). About 90% of LHON cases are due to one of three mitochondrial DNA (mtDNA) point mutations: m.3460G>A, m.11778G>A, and m.14484T>C, which affect critical complex I subunits of the mitochondrial respiratory chain. The majority of patients with DOA harbour pathogenic mutations within OPA1, a nuclear gene that codes for a multifunctional inner mitochondrial membrane protein. Despite their contrasting genetic basis, LHON and DOA share overlapping pathological and clinical features that serve to highlight the striking tissue-specific vulnerability of the retinal ganglion cell (RGC) layer to disturbed mitochondrial function. In addition to severe visual loss secondary to progressive optic nerve degeneration, a subgroup of patients will also develop a more aggressive syndromic phenotype marked by significant neurological deficits. The management of LHON and DOA remains largely supportive, but major advances in our understanding of the mechanisms underpinning RGC loss in these two disorders are paving the way for novel forms of treatment aimed at halting or reversing visual deterioration at different stages of the disease process. In addition to neuroprotective strategies for rescuing RGCs from irreversible cell death, innovative in vitro fertilisation techniques are providing the tantalising prospect of preventing the germline transmission of pathogenic mtDNA mutations, eradicating in so doing the risk of disease in future generations.
Collapse
Affiliation(s)
- P Yu-Wai-Man
- 1] Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK [2] Departments of Neurology and Ophthalmology, Royal Victoria Infirmary, Newcastle upon Tyne, UK [3] Moorfields Eye Hospital, London, UK [4] NIHR Biomedical Research Centre, UCL Institute of Ophthalmology, University College London, London, UK
| | - M Votruba
- 1] School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK [2] Cardiff Eye Unit, University Hospital of Wales, Cardiff, UK
| | - A T Moore
- 1] Moorfields Eye Hospital, London, UK [2] NIHR Biomedical Research Centre, UCL Institute of Ophthalmology, University College London, London, UK
| | - P F Chinnery
- 1] Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK [2] Departments of Neurology and Ophthalmology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| |
Collapse
|
32
|
Migration, integration, survival, and differentiation of stem cell-derived neural progenitors in the retina in a pharmacological model of retinal degeneration. ISRN OPHTHALMOLOGY 2014; 2013:752161. [PMID: 24558604 PMCID: PMC3914245 DOI: 10.1155/2013/752161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 01/23/2013] [Indexed: 11/23/2022]
Abstract
Purpose. The purpose of this work was to evaluate the retinal integration and differentiation of neurospheres formed by stem cells and mouse neural progenitor cells injected intravitreally in mice eyes with retinal injury. Methods. Eight male C57BL mice, 8 weeks old, were submitted to intraperitoneal injection of sodium iodate (2% NaIO3, 50 mg/kg). After 72 hours, 2 μL of solution with mNPC were injected intravitreally (100.000 cells/μL). After 7 days, their eyes were dissected and cryoprotected in 30% sucrose in PB for at least 24 hours at 4°C. The material was analyzed by immunohistochemistry and the following primary antibodies evaluation. Results. The results showed that the grafted cells integrated and survived in the adult mice within the sinner retinal tissue for at least 7 days. Immunohistochemical analysis revealed mature neuronal pattern in some regions. The mNPC population in the transplants was tightly surrounded by neuroretinal cells, suggesting their active role in neuron survival. Notably, the appearance of GFP-positive mNPC was not the result of fusion between donor cells and endogenous neuroretinal cells. Conclusions. Migration, survival, and differentiation of mNPCs were observed after 7 days following a single application with neurosphere method. The results may be clinically relevant for future stem cell therapy to restore retinal degeneration.
Collapse
|
33
|
Johnson TV, Bull ND, Martin KR. Stem cell therapy for glaucoma: possibilities and practicalities. EXPERT REVIEW OF OPHTHALMOLOGY 2014; 6:165-174. [PMID: 21686079 DOI: 10.1586/eop.11.3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glaucoma is a progressive, neurodegenerative, optic neuropathy in which currently available therapies cannot always prevent, and do not reverse, vision loss. Stem cell transplantation may provide a promising new avenue for treating many presently incurable degenerative conditions, including glaucoma. This article will explore the various ways in which transplantation of stem or progenitor cells may be applied for the treatment of glaucoma. We will critically discuss the translational prospects of two cell transplantation-based treatment modalities: neuroprotection and retinal ganglion cell replacement. In addition, we will identify specific questions that need to be addressed and obstacles to overcome on the path to clinical translation, and offer insight into potential strategies for approaching this goal.
Collapse
Affiliation(s)
- Thomas V Johnson
- Cambridge Centre for Brain Repair, University of Cambridge ED Adrian Building Forvie Site, Robinson Way, Cambridge, CB2 OPY, UK
| | | | | |
Collapse
|
34
|
Roska B, Busskamp V, Sahel JA, Picaud S. [Retinitis pigmentosa: eye sight restoration by optogenetic therapy]. Biol Aujourdhui 2013; 207:109-121. [PMID: 24103341 DOI: 10.1051/jbio/2013011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Indexed: 06/02/2023]
Abstract
Retinitis pigmentosa (RP) is a hereditary retinal disease leading to blindness, which affects two million people worldwide. Restoring vision in these blind patients was proposed by gene delivery of microbial light-activated ionic channels or pumps "optogenetic proteins" to transform surviving cells into artificial photoreceptors. This therapeutic strategy was validated in blind animal models of RP by recording at the level of the retina and cortex and by behavioural tests. The translational potentials of these optogenetic approaches have been evaluated using in vitro studies on post-mortem human retinal tissues. Here, we review these recent results and discuss the potential clinical applications of the optogenetic therapy for RP patients.
Collapse
Affiliation(s)
- Botond Roska
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66F, 4058 Basel, Switzerland
| | | | | | | |
Collapse
|
35
|
G N, Tan A, Farhatnia Y, Rajadas J, Hamblin MR, Khaw PT, Seifalian AM. Channelrhodopsins: visual regeneration and neural activation by a light switch. N Biotechnol 2013; 30:461-74. [PMID: 23664865 DOI: 10.1016/j.nbt.2013.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/28/2013] [Accepted: 04/16/2013] [Indexed: 01/09/2023]
Abstract
The advent of optogenetics provides a new direction for the field of neuroscience and biotechnology, serving both as a refined investigative tool and as potential cure for many medical conditions via genetic manipulation. Although still in its infancy, recent advances in optogenetics has made it possible to remotely manipulate in vivo cellular functions using light. Coined Nature Methods' 'Method of the Year' in 2010, the optogenetic toolbox has the potential to control cell, tissue and even animal behaviour. This optogenetic toolbox consists of light-sensitive proteins that are able to modulate membrane potential in response to light. Channelrhodopsins (ChR) are light-gated microbial ion channels, which were first described in green algae. ChR2 (a subset of ChR) is a seven transmembrane α helix protein, which evokes membrane depolarization and mediates an action potential upon photostimulation with blue (470 nm) light. By contrast to other seven-transmembrane proteins that require second messengers to open ion channels, ChR2 form ion channels themselves, allowing ultrafast depolarization (within 50 milliseconds of illumination). It has been shown that integration of ChR2 into various tissues of mice can activate neural circuits, control heart muscle contractions, and even restore breathing after spinal cord injury. More compellingly, a plethora of evidence has indicated that artificial expression of ChR2 in retinal ganglion cells can reinstate visual perception in mice with retinal degeneration.
Collapse
Affiliation(s)
- Natasha G
- Centre for Nanotechnology & Regenerative Medicine, UCL Division of Surgery & Interventional Science, University College London, London, UK
| | | | | | | | | | | | | |
Collapse
|
36
|
Gao H, Zhang HL, Shou J, Chen L, Shen Y, Tang Q, Huang J, Zhu J. Towards retinal ganglion cell regeneration. Regen Med 2013; 7:865-75. [PMID: 23164085 DOI: 10.2217/rme.12.97] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Traumatic optic nerve injury and glaucoma are among the leading causes of incurable vision loss across the world. What is worse, neither pharmacological nor surgical interventions are significantly effective in reversing or halting the progression of vision loss. Advances in cell biology offer some hope for the victims of optic nerve damage and subsequent partial or complete visual loss. Retinal ganglion cells (RGCs) travel through the optic nerve and carry all visual signals to the brain. After injury, RGC axons usually fail to regrow and die, leading to irreversible loss of vision. Various kinds of cells and factors possess the ability to support the process of axon regeneration for RGCs. This article summarizes the latest advances in RGC regeneration.
Collapse
Affiliation(s)
- Huasong Gao
- Department of Neurosurgery, Fudan University Huashan Hospital, National Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Giant cell arteritis is the most common vasculitis in Caucasians. Acute visual loss in one or both eyes is by far the most feared and irreversible complication of giant cell arteritis. This article reviews recent guidelines on early recognition of systemic, cranial, and ophthalmic manifestations, and current management and diagnostic strategies and advances in imaging. We share our experience of the fast track pathway and imaging in associated disorders, such as large-vessel vasculitis.
Collapse
Affiliation(s)
| | | | - Shaifali Jain
- Department of Radiology, Southend University Hospital, Westcliff, Essex, United Kingdom
| | | |
Collapse
|
38
|
Nanomedicine for the treatment of retinal and optic nerve diseases. Curr Opin Pharmacol 2013; 13:134-48. [DOI: 10.1016/j.coph.2012.10.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 10/04/2012] [Accepted: 10/04/2012] [Indexed: 01/02/2023]
|
39
|
Lu B, Morgans CW, Girman S, Luo J, Zhao J, Du H, Lim S, Ding S, Svendsen C, Zhang K, Wang S. Neural Stem Cells Derived by Small Molecules Preserve Vision. Transl Vis Sci Technol 2013; 2:1. [PMID: 24049711 DOI: 10.1167/tvst.2.1.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 11/28/2012] [Indexed: 12/21/2022] Open
Abstract
PURPOSE The advances in stem cell biology hold a great potential to treat retinal degeneration. Importantly, specific cell types can be generated efficiently with small molecules and maintained stably over numerous passages. Here, we investigated whether neural stem cell (NSC) derived from human embryonic stem cells (hESC) by small molecules can preserve vision following grafting into the Royal College Surgeon (RCS) rats; a model for retinal degeneration. METHODS A cell suspension containing 3 × 104 NSCs or NSCs labeled with green fluorescent protein (GFP) was injected into the subretinal space or the vitreous cavity of RCS rats at postnatal day (P) 22; animals injected with cell-carry medium and those left untreated were used as controls. The efficacy of treatment was evaluated by testing optokinetic response, recording luminance threshold, and examining retinal histology. RESULTS NSCs offered significant preservation of both photoreceptors and visual function. The grafted NSCs survived for long term without evidence of tumor formation. Functionally, NSC treated eyes had significantly better visual acuity and lower luminance threshold than controls. Morphologically, photoreceptors and retinal connections were well preserved. There was an increase in expression of cillary neurotrophic factor (CNTF) in Müller cells in the graft-protected retina. CONCLUSIONS This study reveals that NSCs derived from hESC by small molecules can survive and preserve vision for long term following subretinal transplantation in the RCS rats. These cells migrate extensively in the subretinal space and inner retina; there is no evidence of tumor formation or unwanted changes after grafting into the eyes. TRANSLATIONAL RELEVANCE The NSCs derived from hESC by small molecules can be generated efficiently and provide an unlimited supply of cells for the treatment of some forms of human outer retinal degenerative diseases. The capacity of NSCs migrating into inner retina offers a potential as a vehicle to delivery drugs/factors to treat inner retinal disorders.
Collapse
Affiliation(s)
- Bin Lu
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Nita M, Strzałka-Mrozik B, Grzybowski A, Romaniuk W, Mazurek U. Ophthalmic transplantology: posterior segment of the eye--part II. Med Sci Monit 2012; 18:RA97-103. [PMID: 22648265 PMCID: PMC3560715 DOI: 10.12659/msm.882868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background Transplants of the retina are among the new strategies being used in the treatment of genetic and degenerative macular diseases. Moreover, various cell cultures are being tested to treat retinal disorders. Material/Methods Literature dated from 2004 to 2011 was comprehensively examined via Medline and PubMed searches for the following terms: auto-, homo-, heterologous transplantation, retina, stem cells, cultivated cells. Results Tissue and cell therapy of retinal diseases are reviewed, including full-thickness retina/retinal pigment epithelium (RPE)/choroid graft; full and partial thickness RPE/choroid complex grafts; RPE/Bruch membrane complex graft; and RPE, iris pigment epithelium and stem cell grafts. Recommendations for transplants, as well as the benefits and weaknesses of specific techniques in retina transplants, are discussed. Conclusions Auto- and allogenic transplants of a full or partial thickness retina/RPE/Bruch membrane/choroid complex represent an alternative treatment offered to patients with some macular diseases. Stem cell transplantation to reconstruct and regenerate the macula requires further biomolecular and animal research studies.
Collapse
Affiliation(s)
- Małgorzata Nita
- Domestic and Specialized Medicine Centre Dilmed, Katowice, Poland
| | | | | | | | | |
Collapse
|
41
|
Wohl SG, Schmeer CW, Isenmann S. Neurogenic potential of stem/progenitor-like cells in the adult mammalian eye. Prog Retin Eye Res 2012; 31:213-42. [DOI: 10.1016/j.preteyeres.2012.02.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 02/04/2012] [Accepted: 02/06/2012] [Indexed: 11/26/2022]
|
42
|
Singhal S, Bhatia B, Jayaram H, Becker S, Jones MF, Cottrill PB, Khaw PT, Salt TE, Limb GA. Human Müller glia with stem cell characteristics differentiate into retinal ganglion cell (RGC) precursors in vitro and partially restore RGC function in vivo following transplantation. Stem Cells Transl Med 2012; 1:188-99. [PMID: 23197778 PMCID: PMC3659849 DOI: 10.5966/sctm.2011-0005] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 01/30/2012] [Indexed: 01/29/2023] Open
Abstract
Müller glia with stem cell characteristics have been identified in the adult human eye, and although there is no evidence that they regenerate retina in vivo, they can be induced to grow and differentiate into retinal neurons in vitro. We differentiated human Müller stem cells into retinal ganglion cell (RGC) precursors by stimulation with fibroblast growth factor 2 together with NOTCH inhibition using the γ-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT). Differentiation into RGC precursors was confirmed by gene and protein expression analysis, changes in cytosolic [Ca(2+)] in response to neurotransmitters, and green fluorescent protein (GFP) expression by cells transduced with a transcriptional BRN3b-GFP reporter vector. RGC precursors transplanted onto the inner retinal surface of Lister hooded rats depleted of RGCs by N-methyl-d-aspartate aligned onto the host RGC layer at the site of transplantation but did not extend long processes toward the optic nerve. Cells were observed extending processes into the RGC layer and expressing RGC markers in vivo. This migration was observed only when adjuvant anti-inflammatory and matrix degradation therapy was used for transplantation. RGC precursors induced a significant recovery of RGC function in the transplanted eyes as determined by improvement of the negative scotopic threshold response of the electroretinogram (indicative of RGC function). The results suggest that transplanted RGC precursors may be capable of establishing local interneuron synapses and possibly release neurotrophic factors that facilitate recovery of RGC function. These cells constitute a promising source of cells for cell-based therapies to treat retinal degenerative disease caused by RGC dysfunction.
Collapse
Affiliation(s)
| | | | - Hari Jayaram
- Divisions of Ocular Biology and Therapeutics and
| | - Silke Becker
- Divisions of Ocular Biology and Therapeutics and
| | | | | | - Peng T. Khaw
- Divisions of Ocular Biology and Therapeutics and
| | - Thomas E. Salt
- Visual Neurosciences, NIHR BRC University College London Institute of Ophthalmology and Moorfields Eye Hospital, London, United Kingdom
| | | |
Collapse
|
43
|
Schmeer CW, Wohl SG, Isenmann S. Cell-replacement therapy and neural repair in the retina. Cell Tissue Res 2012; 349:363-74. [PMID: 22354517 DOI: 10.1007/s00441-012-1335-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 01/18/2012] [Indexed: 01/12/2023]
Abstract
Visual impairment severely affects the quality of life of patients and their families and is also associated with a deep economic impact. The most common pathologies responsible for visual impairment and legally defined blindness in developed countries include age-related macular degeneration, glaucoma and diabetic retinopathy. These conditions share common pathophysiological features: dysfunction and loss of retinal neurons. To date, two main approaches are being taken to develop putative therapeutic strategies: neuroprotection and cell replacement. Cell replacement is a novel therapeutic approach to restore visual capabilities to the degenerated adult neural retina and represents an emerging field of regenerative neurotherapy. The discovery of a population of proliferative cells in the mammalian retina has raised the possibility of harnessing endogenous retinal stem cells to elicit retinal repair. Furthermore, the development of suitable protocols for the reprogramming of differentiated somatic cells to a pluripotent state further increases the therapeutic potential of stem-cell-based technologies for the treatment of major retinal diseases. Stem-cell transplantation in animal models has been most effectively used for the replacement of photoreceptors, although this therapeutic approach is also being used for inner retinal pathologies. In this review, we discuss recent advances in the development of cell-replacement approaches for the treatment of currently incurable degenerative retinal diseases.
Collapse
Affiliation(s)
- Christian W Schmeer
- Hans Berger Clinic of Neurology, University Hospital Jena, Erlanger Allee 101, 07747 Jena, Germany.
| | | | | |
Collapse
|
44
|
Oldani M, Marchi S, Giani A, Cecchin S, Rigoni E, Persi A, Podavini D, Guerrini A, Nervegna A, Staurenghi G, Bertelli M. Clinical and molecular genetic study of 12 Italian families with autosomal recessive Stargardt disease. GENETICS AND MOLECULAR RESEARCH 2012; 11:4342-50. [DOI: 10.4238/2012.october.9.3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
45
|
Abstract
Distinct stem cell types have been established from embryos and identified in the fetal tissues and umbilical cord blood as well as in specific niches in many adult mammalian tissues and organs such as bone marrow, brain, skin, eyes, heart, kidneys, lungs, gastrointestinal tract, pancreas, liver, breast, ovaries, and prostate. All stem cells are undifferentiated cells that exhibit unlimited self-renewal and can generate multiple cell lineages or more restricted progenitor populations that can contribute to tissue homeostasis by replenishing the cells or to tissue regeneration after injury. The remarkable progress of regenerative medicine in the last few years indicates promise for the use of stem cells in the treatment of ophthalmic disorders. Experimental and human studies with intravitreal bone marrow-derived stem cells have begun. This paper reviews recent advances and potential sources of stem cells for cell therapy in retinal diseases.
Collapse
|
46
|
Mason SL, Stewart RMK, Kearns VR, Williams RL, Sheridan CM. Ocular epithelial transplantation: current uses and future potential. Regen Med 2011; 6:767-82. [DOI: 10.2217/rme.11.94] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Visual loss may be caused by a variety of ocular diseases and places a significant burden on society. Replacing or regenerating epithelial structures in the eye has been demonstrated to recover visual loss in a number of such diseases. Several types of cells (e.g., embryonic stem cells, adult stem/progenitor/differentiated epithelial cells and induced pluripotent cells) have generated much interest and research into their potential in restoring vision in a variety of conditions: from ocular surface disease to age-related macular degeneration. While there has been some success in clinical transplantation of conjunctival and particularly corneal epithelium utilizing ocular stem cells, in particular, from the limbus, the replacement of the retinal pigment epithelium by utilizing stem cell sources has yet to reach the clinic. Advances in our understanding of all of these cell types, their differentiation and subsequent optimization of culture conditions and development of suitable substrates for their transplantation will enable us to overcome current clinical obstacles. This article addresses the current status of knowledge concerning the biology of stem cells, their progeny and the use of differentiated epithelial cells to replace ocular epithelial cells. It will highlight the clinical outcomes to date and their potential for future clinical use.
Collapse
Affiliation(s)
- Sharon L Mason
- Department of Eye & Vision Science, Institute of Ageing & Chronic Disease, University of Liverpool, Daulby Street, L69 3GA, UK
| | - Rosalind MK Stewart
- Department of Eye & Vision Science, Institute of Ageing & Chronic Disease, University of Liverpool, Daulby Street, L69 3GA, UK
| | - Victoria R Kearns
- Department of Eye & Vision Science, Institute of Ageing & Chronic Disease, University of Liverpool, Daulby Street, L69 3GA, UK
| | - Rachel L Williams
- Department of Eye & Vision Science, Institute of Ageing & Chronic Disease, University of Liverpool, Daulby Street, L69 3GA, UK
| | | |
Collapse
|
47
|
Abstract
Clinical laboratories are strong, integral partners in personalized health care. Laboratory databases hold a vast amount of data on human phenotypes, genotypes, biomarkers, progression of disease, and response to therapy. These structured and unstructured free text data are critical for patient care and a resource for personalized medicine and translational research. Laboratory data are integrated into many electronic medical records that provide "summary reports" and "trending" to visualize longitudinal patient data. Recent advances in ophthalmology such as gene therapy, cell therapy using stem cells, and also retinal prosthesis explore the potential of translational research marking a new era in research into the diagnosis and treatment of eye diseases.
Collapse
Affiliation(s)
- Rubens Camargo Siqueira
- Rubens Siqueira Research Center, São José do Rio Preto, São Paulo, Brazil
- Retina and Vitreous Section, Department of Ophthalmology, School of Medicine of Ribeirão Preto, University of São Paulo, Brazil
| | - Rodrigo Jorge
- Retina and Vitreous Section, Department of Ophthalmology, School of Medicine of Ribeirão Preto, University of São Paulo, Brazil
| |
Collapse
|
48
|
|
49
|
Hooper P. Next generation eye surgery and drug delivery. Can J Ophthalmol 2010; 45:321. [PMID: 20676151 DOI: 10.3129/i10-079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|