1
|
Huang C, Zhang B, Xu D. The effects of natural active substances in food on the toxicity of patulin. WORLD MYCOTOXIN J 2022. [DOI: 10.3920/wmj2022.2794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Patulin (PAT) is a mycotoxin, a secondary metabolite mainly produced by fungi of the genera Aspergillus, Byssochlamys, and Penicillium. Many studies have looked into the potential impacts of this mycotoxin due to its high risk. Researchers are currently doing a more in-depth investigation of and employing physical, chemical, and biological ways to remove PAT. However, existing technology cannot completely remove it, and the residual PAT will continue to pose a threat to human health. As a result, substances capable of reducing PAT toxicity need be discovered. According to previous studies, natural components in food could reduce the toxicity of PAT. This article will review the different types of active compounds and discus the detoxification processes, as well as give recommendations for decreasing the toxicity of PAT and future research directions.
Collapse
Affiliation(s)
- C. Huang
- College of Life Science and Engineering, Lanzhou University of Technology, No.287 Langongping Road, Lanzhou, Gansu 730050, China P.R
| | - B. Zhang
- College of Life Science and Engineering, Lanzhou University of Technology, No.287 Langongping Road, Lanzhou, Gansu 730050, China P.R
| | - D. Xu
- College of Life Science and Engineering, Lanzhou University of Technology, No.287 Langongping Road, Lanzhou, Gansu 730050, China P.R
| |
Collapse
|
2
|
Buechel ER, Pinkett HW. Transcription factors and ABC transporters: from pleiotropic drug resistance to cellular signaling in yeast. FEBS Lett 2020; 594:3943-3964. [PMID: 33089887 DOI: 10.1002/1873-3468.13964] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/07/2020] [Accepted: 10/15/2020] [Indexed: 12/24/2022]
Abstract
Budding yeast Saccharomyces cerevisiae survives in microenvironments utilizing networks of regulators and ATP-binding cassette (ABC) transporters to circumvent toxins and a variety of drugs. Our understanding of transcriptional regulation of ABC transporters in yeast is mainly derived from the study of multidrug resistance protein networks. Over the past two decades, this research has not only expanded the role of transcriptional regulators in pleiotropic drug resistance (PDR) but evolved to include the role that regulators play in cellular signaling and environmental adaptation. Inspection of the gene networks of the transcriptional regulators and characterization of the ABC transporters has clarified that they also contribute to environmental adaptation by controlling plasma membrane composition, toxic-metal sequestration, and oxidative stress adaptation. Additionally, ABC transporters and their regulators appear to be involved in cellular signaling for adaptation of S. cerevisiae populations to nutrient availability. In this review, we summarize the current understanding of the S. cerevisiae transcriptional regulatory networks and highlight recent work in other notable fungal organisms, underlining the expansion of the study of these gene networks across the kingdom fungi.
Collapse
Affiliation(s)
- Evan R Buechel
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Heather W Pinkett
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| |
Collapse
|
3
|
Oporto CI, Villarroel CA, Tapia SM, García V, Cubillos FA. Distinct Transcriptional Changes in Response to Patulin Underlie Toxin Biosorption Differences in Saccharomyces Cerevisiae. Toxins (Basel) 2019; 11:toxins11070400. [PMID: 31295862 PMCID: PMC6669508 DOI: 10.3390/toxins11070400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/26/2019] [Accepted: 07/08/2019] [Indexed: 11/28/2022] Open
Abstract
Patulin (4-hydroxy-4H-furo[3,2c]pyran-2[6H]-one) is a mycotoxin produced by a suite of fungi species. Patulin is toxic to humans and is a sporadic contaminant in products that were made from fungi-infected fruits. The baker yeast Saccharomyces cerevisiae (S. cerevisiae) has been shown to decrease patulin levels likely by converting it to the less harmful E-ascladiol, yet this capacity is dependent on the strain utilized. In this study we show that four representative strains of different S. cerevisiae lineages differ in their ability to tolerate and decrease patulin levels in solution, demonstrating that some strains are better suitable for patulin biocontrol. Indeed, we tested the biocontrol capacities of the best patulin-reducer strain (WE) in contaminated apple juice and demonstrated their potential role as an efficient natural biocontrol solution. To investigate the mechanisms behind the differences between strains, we explored transcriptomic changes of the top (WE strain) and worst (WA strain) patulin-biocontroller strains after being exposed to this toxin. Large and significant gene expression differences were found between these two strains, the majority of which represented genes associated with protein biosynthesis, cell wall composition and redox homeostasis. Interestingly, the WE isolate exhibited an overrepresentation of up-regulated genes involved in membrane components, suggesting an active role of the membrane towards patulin detoxification. In contrast, WA upregulated genes were associated with RNA metabolism and ribosome biogenesis, suggesting a patulin impact upon transcription and translation activity. These results suggest that different genotypes of S. cerevisiae encounter different stresses from patulin toxicity and that different rates of detoxification of this toxin might be related with the plasma membrane composition. Altogether, our data demonstrates the different molecular mechanisms in S. cerevisiae strains withstanding patulin exposure and opens new avenues for the selection of new patulin biocontroller strains.
Collapse
Affiliation(s)
- Christian I Oporto
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago 7500574, Chile
| | - Carlos A Villarroel
- Millennium Institute for Integrative Biology (iBio), Santiago 7500574, Chile
| | - Sebastián M Tapia
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago 7500574, Chile
| | - Verónica García
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago 9170201, Chile
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile
| | - Francisco A Cubillos
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile.
- Millennium Institute for Integrative Biology (iBio), Santiago 7500574, Chile.
| |
Collapse
|
4
|
Mastanjević K, Šarkanj B, Mastanjević K, Šantek B, Krstanović V. Fusarium culmorum mycotoxin transfer from wheat to malting and brewing products and by-products. WORLD MYCOTOXIN J 2019. [DOI: 10.3920/wmj2018.2340] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The objectives of this study were to establish the impact of Fusarium culmorum infection and fungicide treatment on the occurrence of deoxynivalenol (DON), 3-acetyl deoxynivalenol, T-2 toxin, HT-2 toxin, nivalenol, fusarenon-X, diacetoxyscirpenol and zearalenone in wheat, wheat malt and wort (beer). The concentrations of these compounds were also measured in the germ/rootlets, spent grains and spent yeast because these are the most important by-products and are further used as food or feed additives. Two wheat genotypes were obtained from the Agricultural Institute in Osijek, Croatia. The Osk.110/09 genotype, the genotype more susceptible to Fusarium infections, and Lucija, the genotype less susceptible to Fusarium, were analysed in this research. Each genotype was treated in four different ways at the field: (A) control, (B) treated with fungicide Prosaro® 250, (C) inoculated with F. culmorum spores and treated with fungicide Prosaro® 250, and (D) inoculated with F. culmorum spores. All samples were malted and brewed according to standard procedures, products and by-products were analysed for the mycotoxins by using LC-MS/MS. Since the majority of trichothecenes are polar molecules, the water after steeping was also analysed with LC-MS/MS. Mycotoxin concentrations were lower in malt samples treated with the fungicide. Elevated mycotoxin concentrations were observed in samples of both genotypes exposed to F. culmorum. Fungicide treatment was observed to suppress mycotoxin production and accumulation. However, samples with notably high mycotoxin concentrations, especially DON, retained elevated mycotoxin concentrations throughout the entire beer production process, even after a six-month storage period. DON proved to be the most frequently occurring mycotoxin in all of the by-products. The highest concentration of this compound was found in the steeping water from sample D (Osk.110/09), at 20,326 μg/l, leaving the spent grains of this sample with no detectable levels of DON.
Collapse
Affiliation(s)
- K. Mastanjević
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, F. Kuhača 20, 31000 Osijek, Croatia
| | - B. Šarkanj
- Department of Food Technology, University Center Koprivnica, University North, Trg dr. Žarka Dolinara 1, 48000 Koprivnica, Croatia
| | - K. Mastanjević
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, F. Kuhača 20, 31000 Osijek, Croatia
| | - B. Šantek
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia
| | - V. Krstanović
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, F. Kuhača 20, 31000 Osijek, Croatia
| |
Collapse
|
5
|
Acetylated Deoxynivalenol Generates Differences of Gene Expression that Discriminate Trichothecene Toxicity. Toxins (Basel) 2016; 8:42. [PMID: 26861396 PMCID: PMC4773795 DOI: 10.3390/toxins8020042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/03/2016] [Indexed: 01/06/2023] Open
Abstract
Deoxynivalenol (DON), which is a toxic secondary metabolite generated by Fusarium species, is synthesized through two separate acetylation pathways. Both acetylation derivatives, 3-acetyl-DON (3ADON) and 15-acetyl-DON (15ADON), also contaminate grain and corn widely. These derivatives are deacetylated via a variety of processes after ingestion, so it has been suggested that they have the same toxicity as DON. However, in the intestinal entry region such as the duodenum, the derivatives might come into contact with intestinal epithelium cells because metabolism by microflora or import into the body has not progressed. Therefore, the differences of toxicity between DON and these derivatives need to be investigated. Here, we observed gene expression changes in the yeast pdr5Δ mutant strain under concentration-dependent mycotoxin exposure conditions. 15ADON exposure induced significant gene expression changes and DON exposure generally had a similar but smaller effect. However, the glucose transporter genes HXT2 and HXT4 showed converse trends. 3ADON also induced a different expression trend in these genes than DON and 15ADON. These differences in gene expression suggest that DON and its derivatives have different effects on cells.
Collapse
|
6
|
Pfliegler WP, Pusztahelyi T, Pócsi I. Mycotoxins - prevention and decontamination by yeasts. J Basic Microbiol 2015; 55:805-18. [DOI: 10.1002/jobm.201400833] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/12/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Walter P. Pfliegler
- Department of Genetics and Applied Microbiology; Faculty of Science and Technology; University of Debrecen; Debrecen Hungary
- Department of Biotechnology and Microbiology; Faculty of Science and Technology; University of Debrecen; Debrecen Hungary
- Postdoctoral Fellowship Programme of the Hungarian Academy of Sciences (MTA); Hungary
| | - Tünde Pusztahelyi
- Faculty of Agricultural and Food Sciences and Environmental Management; Central Laboratory; University of Debrecen; Debrecen Hungary
| | - István Pócsi
- Department of Biotechnology and Microbiology; Faculty of Science and Technology; University of Debrecen; Debrecen Hungary
| |
Collapse
|
7
|
Low toxicity of deoxynivalenol-3-glucoside in microbial cells. Toxins (Basel) 2015; 7:187-200. [PMID: 25609182 PMCID: PMC4303822 DOI: 10.3390/toxins7010187] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 12/18/2014] [Accepted: 01/15/2015] [Indexed: 12/21/2022] Open
Abstract
Host plants excrete a glucosylation enzyme onto the plant surface that changes mycotoxins derived from fungal secondary metabolites to glucosylated products. Deoxynivalenol-3-glucoside (DON3G) is synthesized by grain uridine diphosphate-glucosyltransferase, and is found worldwide, although information on its toxicity is lacking. Here, we conducted growth tests and DNA microarray analysis to elucidate the characteristics of DON3G. The Saccharomyces cerevisiaePDR5 mutant strain exposed to DON3G demonstrated similar growth to the dimethyl sulfoxide control, and DNA microarray analysis revealed limited differences. Only 10 genes were extracted, and the expression profile of stress response genes was similar to that of DON, in contrast to metabolism genes like SER3, which encodes 3-phosphoglycerate dehydrogenase. Growth tests with Chlamydomonas reinhardtii also showed a similar growth rate to the control sample. These results suggest that DON3G has extremely low toxicity to these cells, and the glucosylation of mycotoxins is a useful protective mechanism not only for host plants, but also for other species.
Collapse
|
8
|
Phytotoxicity evaluation of type B trichothecenes using a Chlamydomonas reinhardtii model system. Toxins (Basel) 2014; 6:453-63. [PMID: 24476708 PMCID: PMC3942745 DOI: 10.3390/toxins6020453] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/14/2014] [Accepted: 01/15/2014] [Indexed: 11/17/2022] Open
Abstract
Type B trichothecenes, which consist of deoxynivalenol (DON) and nivalenol (NIV) as the major end products, are produced by phytotoxic fungi, such as the Fusarium species, and pollute arable fields across the world. The DON toxicity has been investigated using various types of cell systems or animal bioassays. The evaluation of NIV toxicity, however, has been relatively restricted because of its lower level compared with DON. In this study, the Chlamydomonas reinhardtii testing system, which has been reported to have adequate NIV sensitivity, was reinvestigated under different mycotoxin concentrations and light conditions. The best concentration of DON and NIV, and their derivatives, for test conditions was found to be 25 ppm (2.5 × 10(-2) mg/mL). In all light test conditions, DON, NIV, and fusarenon-X (FusX) indicated significant growth inhibition regardless of whether a light source existed, or under differential wavelength conditions. FusX growth was also influenced by changes in photon flux density. These results suggest that C. reinhardtii is an appropriate evaluation system for type B trichothecenes.
Collapse
|
9
|
Ianiri G, Idnurm A, Wright SAI, Durán-Patrón R, Mannina L, Ferracane R, Ritieni A, Castoria R. Searching for genes responsible for patulin degradation in a biocontrol yeast provides insight into the basis for resistance to this mycotoxin. Appl Environ Microbiol 2013; 79:3101-15. [PMID: 23455346 PMCID: PMC3623128 DOI: 10.1128/aem.03851-12] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 02/25/2013] [Indexed: 11/20/2022] Open
Abstract
Patulin is a mycotoxin that contaminates pome fruits and derived products worldwide. Basidiomycete yeasts belonging to the subphylum Pucciniomycotina have been identified to have the ability to degrade this molecule efficiently and have been explored through different approaches to understand this degradation process. In this study, Sporobolomyces sp. strain IAM 13481 was found to be able to degrade patulin to form two different breakdown products, desoxypatulinic acid and (Z)-ascladiol. To gain insight into the genetic basis of tolerance and degradation of patulin, more than 3,000 transfer DNA (T-DNA) insertional mutants were generated in strain IAM 13481 and screened for the inability to degrade patulin using a bioassay based on the sensitivity of Escherichia coli to patulin. Thirteen mutants showing reduced growth in the presence of patulin were isolated and further characterized. Genes disrupted in patulin-sensitive mutants included homologs of Saccharomyces cerevisiae YCK2, PAC2, DAL5, and VPS8. The patulin-sensitive mutants also exhibited hypersensitivity to reactive oxygen species as well as genotoxic and cell wall-destabilizing agents, suggesting that the inactivated genes are essential for tolerating and overcoming the initial toxicity of patulin. These results support a model whereby patulin degradation occurs through a multistep process that includes an initial tolerance to patulin that utilizes processes common to other external stresses, followed by two separate pathways for degradation.
Collapse
Affiliation(s)
- G. Ianiri
- Dipartimento di Agricoltura, Ambiente e Alimenti, Facoltà di Agraria, Università degli Studi del Molise, Campobasso, Italy
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri—Kansas City, Kansas City, Missouri, USA
| | - A. Idnurm
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri—Kansas City, Kansas City, Missouri, USA
| | - S. A. I. Wright
- Dipartimento di Agricoltura, Ambiente e Alimenti, Facoltà di Agraria, Università degli Studi del Molise, Campobasso, Italy
| | - R. Durán-Patrón
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | - L. Mannina
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Universita' di Roma, Rome, Italy
- Istituto di Metodologie Chimiche, Laboratorio di Risonanza Magnetica Annalaura Segre, CNR, Monterotondo, Rome, Italy
| | - R. Ferracane
- Dipartimento di Scienza degli Alimenti, Università di Napoli Federico II, Parco Gussone, Portici, Italy
| | - A. Ritieni
- Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli Federico II, Naples, Italy
| | - R. Castoria
- Dipartimento di Agricoltura, Ambiente e Alimenti, Facoltà di Agraria, Università degli Studi del Molise, Campobasso, Italy
| |
Collapse
|
10
|
Suzuki T, Iwahashi Y. Comprehensive gene expression analysis of type B trichothecenes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:9519-9527. [PMID: 22897823 DOI: 10.1021/jf3020975] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Type B trichothecenes, deoxynivalenol (DON) and nivalenol (NIV), are secondary metabolites of Fusarium species and are major pollutants in food and feed products. Recently, the production trend of their derivatives, 3-acetyldeoxynivalenol (3-AcDON), 15-acetyldeoxynivalenol (15-AcDON), and 4-acetylnivalenol (4-AcNIV or fusarenon-X), has been changing in various regions worldwide. Although in vivo behavior has been reported, it is necessary to acquire more detailed information about these derivatives. Here, the yeast PDR5 mutant was used for toxicity evaluation, and the growth test revealed that DON, 15-AcDON, and 4-AcNIV had higher toxicity compared to 3-AcDON and NIV. 15-AcDON exerted the most significant gene expression changes, and cellular localization clustering exhibited repression of mitochondrial ribosomal genes. This study suggests that the toxicity trends of both DON products (DON and its derivatives) and NIV products (NIV and its derivatives) are similar to those observed in mammalian cells, with a notable toxic response to 15-AcDON.
Collapse
Affiliation(s)
- Tadahiro Suzuki
- Applied Microbiology Division, National Food Research Institute, Tsukuba, Ibaraki, Japan
| | | |
Collapse
|
11
|
Suzuki T, Iwahashi Y. Gene expression profiles of yeast Saccharomyces cerevisiae sod1 caused by patulin toxicity and evaluation of recovery potential of ascorbic acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:7145-7154. [PMID: 21648421 DOI: 10.1021/jf104938p] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Patulin (PAT) is a fungal secondary metabolite and exhibits various toxicities including DNA damage and oxidative stress. These toxicities are eased by ascorbic acid (AsA). Although a number of studies regarding the mitigating effect of AsA against PAT toxicity have been reported, a comprehensive study about gene expressions is currently underway. Here, we carried out a detailed evaluation of PAT toxicity by co-incubation with AsA using the superoxide dismutase (SOD) mutant. DNA microarray results extracted the alterations in iron transporter and Fe/S cluster assembly genes; some of the genes that constitute the cellular iron transporter systems remained dysfunctional even in the presence of AsA. Meanwhile, AsA treatment reduced the alterations of G1/S phase cell cycle regulation genes. These results suggest that oxidative stress-derived DNA damage still exists, although AsA treatment effectively reduces PAT toxicity. This implies that a combined condition is required for complete blockade of PAT toxicity.
Collapse
Affiliation(s)
- Tadahiro Suzuki
- Applied Microbiology Division, National Food Research Institute, Tsukuba, Ibaraki 305-8642, Japan
| | | |
Collapse
|
12
|
Suzuki T, Iwahashi Y. Gene expression profile of MAP kinase PTC1 mutant exposed to deoxynivalenol. CHEM-BIO INFORMATICS JOURNAL 2011. [DOI: 10.1273/cbij.11.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Tadahiro Suzuki
- Applied Microbiology Division, National Food Research Institute
| | - Yumiko Iwahashi
- Applied Microbiology Division, National Food Research Institute
| |
Collapse
|
13
|
Current awareness on yeast. Yeast 2010. [DOI: 10.1002/yea.1713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
14
|
Suzuki T, Iwahashi Y. Gene expression profile of MAP kinase PTC1 mutant exposed to Aflatoxin B1: dysfunctions of gene expression in glucose utilization and sphingolipid metabolism. CHEM-BIO INFORMATICS JOURNAL 2009. [DOI: 10.1273/cbij.9.94] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Tadahiro Suzuki
- Applied Microbiology Division, National Food Research Institute
| | - Yumiko Iwahashi
- Applied Microbiology Division, National Food Research Institute
| |
Collapse
|