1
|
Tutunchi H, Arefhosseini S, Nomi-Golzar S, Ebrahimi-Mameghani M. Effects of Hydroxycitric Acid Supplementation on Body Composition, Obesity Indices, Appetite, Leptin, and Adiponectin of Women with NAFLD on a Calorie-Restricted Diet. Int J Clin Pract 2023; 2023:6492478. [PMID: 37476001 PMCID: PMC10356186 DOI: 10.1155/2023/6492478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/25/2023] [Accepted: 06/23/2023] [Indexed: 07/22/2023] Open
Abstract
Background This trial assessed the effects of a calorie-restricted diet (CRD) with hydroxycitric acid (HCA) supplementation on appetite-regulating hormones, obesity indices, body composition, and appetite in women with nonalcoholic fatty liver disease (NAFLD). Methods This study was carried out on 44 overweight/obese women with NAFLD. The patients were randomly assigned into two groups, namely, "Intervention group" (receiving individual CRD plus HCA tablets per day) and "Control group" (receiving only CRD) for eight weeks. Obesity indices, body composition, appetite status, and serum levels of leptin and adiponectin were assessed before and after the intervention. Results Forty patients completed the trial. At the end of the trial, although significant reductions were found in most of the studied obesity indices in the intervention group, there was only a significant decrease in waist circumference and waist-to-height ratio in the control group. Fat mass and muscle mass significantly decreased in the intervention group (p=0.044 and p=0.024, respectively), and the reduction in visceral fat in the intervention group was significantly greater than that in the control group (-0.49 kg vs -0.37 kg, p=0.024). Intra- and intergroup differences in serum leptin and adiponectin levels and their ratios before and after the trial were not significant. We found a negative and marginally significant correlation between percent of changes in serum adiponectin level and percent of changes in visceral adipose tissue (VAT) (r = -0.429, p=0.067) and BMI (r = -0.440, p=0.059) as well as an inverse relationship between percent of changes in leptin/adiponectin with VAT (r = -0.724, p < 0.001) in the intervention group. Conclusion HCA plus weight loss diet could significantly reduce visceral adipose tissue without any significant changes in serum leptin and adiponectin levels.
Collapse
Affiliation(s)
- Helda Tutunchi
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Arefhosseini
- Student Research Committee, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Nomi-Golzar
- Student Research Committee, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrangiz Ebrahimi-Mameghani
- Nutrition Research Center, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Arefhosseini S, Tutunchi H, Nomi-Golzar S, Mahboob S, Pouretedal Z, Ebrahimi-Mameghani M. The effect of hydroxy citric acid supplementation with calorie-restricted diet on metabolic, atherogenic and inflammatory biomarkers in women with non-alcoholic fatty liver disease: a randomized controlled clinical trial. Food Funct 2022; 13:5124-5134. [PMID: 35416190 DOI: 10.1039/d1fo03685h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The objective of the present study was to examine the effects of hydroxy citric acid (HCA) extracts from Garcinia cambogia on metabolic, atherogenic and inflammatory biomarkers in obese women with non-alcoholic fatty liver disease (NAFLD). The present clinical trial was carried out on 40 overweight/obese women with NAFLD. The patients were randomly allocated into either the "HCA group" (receiving calorie-restricted diet (-700 kcal d-1) accompanied by HCA tablets) and the "control group" (receiving only calorie-restricted diet) for eight weeks. Weight, height, body mass index (BMI), and waist circumference (WC) were measured. Fasting blood sugar (FBS), lipid profile, liver enzymes, as well as inflammatory biomarkers were determined at baseline and after the intervention. Dietary intake was assessed at baseline and at the end of the trial and food intake data were analyzed by the Nutritionist IV software. Results showed a decrease in energy and macronutrient intake in both groups (p < 0.05). Weight, BMI, WC, and hip circumference as well as FBS, triglyceride (TG), low-density lipoprotein cholesterol (LDL-C) decreased and high-density lipoprotein cholesterol (HDL-C) increased significantly in the HCA group (p < 0.05). There were also significant reductions in WC, FBS, TG, total cholesterol, LDL-C in the control group while inter-group changes in FBS, TG, LDL-C and HDL-C were statistically significant. Although atherogenic indices reduced significantly in both groups, inter-group comparison revealed that the HCA group showed greater decrease in the TG/HDL-C ratio than the control group (p = 0.004). Other atherogenic indices including TC/HDL-C and non-HDL-C/HDL-C ratio showed greater reduction in the control versus HCA group (p < 0.01). Some inflammatory factors were reduced in the HCA group; however, no significant within- or between-group differences were revealed post-intervention. Our results indicated that HCA supplementation plus calorie-restricted diet could improve some metabolic factors without any significant effect on inflammation in patients with NAFLD.
Collapse
Affiliation(s)
- Sara Arefhosseini
- Student Research Committee, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Helda Tutunchi
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Nomi-Golzar
- Student Research Committee, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soltanali Mahboob
- Nutrition Research Center, Department of Biochemistry and Diet Therapy, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Zohre Pouretedal
- Standard Research Institute, Food Technology and Agricultural Products Research Center, Microbiology and Biology Group, Tehran, Iran
| | - Mehrangiz Ebrahimi-Mameghani
- Nutrition Research Center, Department of Biochemistry and Diet Therapy, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Effects of hydroxy citric acid on body weight and serum hepcidin level in women with non-alcoholic fatty liver disease a randomized clinical trial. ADVANCES IN INTEGRATIVE MEDICINE 2021. [DOI: 10.1016/j.aimed.2020.07.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
4
|
Watanabe M, Risi R, Masi D, Caputi A, Balena A, Rossini G, Tuccinardi D, Mariani S, Basciani S, Manfrini S, Gnessi L, Lubrano C. Current Evidence to Propose Different Food Supplements for Weight Loss: A Comprehensive Review. Nutrients 2020; 12:E2873. [PMID: 32962190 PMCID: PMC7551574 DOI: 10.3390/nu12092873] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/14/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
The use of food supplements for weight loss purposes has rapidly gained popularity as the prevalence of obesity increases. Navigating through the vast, often low quality, literature available is challenging, as is providing informed advice to those asking for it. Herein, we provide a comprehensive literature revision focusing on most currently marketed dietary supplements claimed to favor weight loss, classifying them by their purported mechanism of action. We conclude by proposing a combination of supplements most supported by current evidence, that leverages all mechanisms of action possibly leading to a synergistic effect and greater weight loss in the foreseen absence of adverse events. Further studies will be needed to confirm the weight loss and metabolic improvement that may be obtained through the use of the proposed combination.
Collapse
Affiliation(s)
- Mikiko Watanabe
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Renata Risi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Davide Masi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Alessandra Caputi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Angela Balena
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Giovanni Rossini
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, 00128 Rome, Italy; (G.R.); (D.T.); (S.M.)
| | - Dario Tuccinardi
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, 00128 Rome, Italy; (G.R.); (D.T.); (S.M.)
| | - Stefania Mariani
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Sabrina Basciani
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Silvia Manfrini
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, 00128 Rome, Italy; (G.R.); (D.T.); (S.M.)
| | - Lucio Gnessi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Carla Lubrano
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| |
Collapse
|
5
|
Li S, Yang Z, Zhang H, Peng M, Ma H. Potential role of ALDH3A2 on the lipid and glucose metabolism regulated by (-)-hydroxycitric acid in chicken embryos. Anim Sci J 2019; 90:961-976. [PMID: 31132807 DOI: 10.1111/asj.13225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/10/2019] [Accepted: 04/18/2019] [Indexed: 01/29/2023]
Abstract
This study aimed to investigate the effect of (-)-hydroxycitric acid ((-)-HCA) on lipid and glucose metabolism, and further analyzed these actions whether associated with modulation of aldehyde dehydrogenase 3 family member A2 (ALDH3A2) expression in chicken embryos. Results showed that (-)-HCA decreased triglyceride content and lipid droplet counts, while these effects induced by (-)-HCA were reversed in chicken embryos pre-transfected with sh4-ALDH3A2. (-)-HCA decreased malic enzyme, acetyl-CoA carboxylase, fatty acid synthase, and sterol regulatory element binding protein-1c mRNA level, while increased carnitine palmitoyl transferase 1A (CPT1A) and peroxisome proliferators-activated receptor α (PPARα) mRNA level; and the action of (-)-HCA on lipid metabolism factors had completely eliminated in embryos pre-transfected with sh4-ALDH3A2. Chicken embryos pre-transfected with sh4-ALDH3A2 had eliminated the increasing of serum glucose and hepatic glycogen content induced by (-)-HCA. (-)-HCA decreased phosphofructokinase-1 and increased G6P, fructose-1,6-bisphosphatase, phosphoenolpyruvate carboxykinase (PEPCK), and pyruvate carboxylase mRNA level in chicken embryos. Similarly, the effect of (-)-HCA on these key enzyme mRNA level was reversed in embryos pre-transfected with sh4-ALDH3A2. Furthermore, (-)-HCA increased PPAR-γ-coactivator-1α (PGC-1α), PPARα, hepatic nuclear factor-4A, PEPCK, and CPT1A protein level, and these actions of (-)-HCA disappeared in embryos pre-transfected with sh4-ALDH3A2. These results indicated that (-)-HCA reduced fat accumulation and accelerated gluconeogenesis via activation of PGC-1α signaling pathway, and these effects of (-)-HCA might associate with the increasing of ALDH3A2 expression level in chicken embryos.
Collapse
Affiliation(s)
- Shengnan Li
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhongmiao Yang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Huihui Zhang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Mengling Peng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
6
|
Peng M, Li L, Yu L, Ge C, Ma H. Effects of (−)‐hydroxycitric acid on lipid droplet accumulation in chicken embryos. Anim Sci J 2017; 89:237-249. [DOI: 10.1111/asj.12887] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 07/04/2017] [Indexed: 01/18/2023]
Affiliation(s)
- Mengling Peng
- Key Laboratory of Animal Physiology and Biochemistry College of Veterinary Medicine Nanjing Agricultural University Nanjing China
| | - Longlong Li
- Key Laboratory of Animal Physiology and Biochemistry College of Veterinary Medicine Nanjing Agricultural University Nanjing China
| | - Lei Yu
- Key Laboratory of Animal Physiology and Biochemistry College of Veterinary Medicine Nanjing Agricultural University Nanjing China
| | - Chongyang Ge
- Key Laboratory of Animal Physiology and Biochemistry College of Veterinary Medicine Nanjing Agricultural University Nanjing China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry College of Veterinary Medicine Nanjing Agricultural University Nanjing China
| |
Collapse
|
7
|
Peng M, Han J, Li L, Ma H. Suppression of fat deposition in broiler chickens by (-)-hydroxycitric acid supplementation: A proteomics perspective. Sci Rep 2016; 6:32580. [PMID: 27586962 PMCID: PMC5009311 DOI: 10.1038/srep32580] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 08/10/2016] [Indexed: 12/12/2022] Open
Abstract
(-)-Hydroxycitric acid (HCA) suppresses fatty acid synthesis in animals, but its biochemical mechanism in poultry is unclear. This study identified the key proteins associated with fat metabolism and elucidated the biochemical mechanism of (-)-HCA in broiler chickens. Four groups (n = 30 each) received a diet supplemented with 0, 1000, 2000 or 3000 mg/kg (-)-HCA for 4 weeks. Of the differentially expressed liver proteins, 40 and 26 were identified in the mitochondrial and cytoplasm respectively. Pyruvate dehydrogenase E1 components (PDHA1 and PDHB), dihydrolipoyl dehydrogenase (DLD), aconitase (ACO2), a-ketoglutarate dehydrogenase complex (DLST), enoyl-CoA hydratase (ECHS1) and phosphoglycerate kinase (PGK) were upregulated, while NADP-dependent malic enzyme (ME1) was downregulated. Biological network analysis showed that the identified proteins were involved in glycometabolism and lipid metabolism, whereas PDHA1, PDHB, ECHS1, and ME1 were identified in the canonical pathway by Ingenuity Pathway Analysis. The data indicated that (-)-HCA inhibited fatty acid synthesis by reducing the acetyl-CoA supply, via promotion of the tricarboxylic acid cycle (upregulation of PDHA1, PDHB, ACO2, and DLST expression) and inhibition of ME1 expression. Moreover, (-)-HCA promoted fatty acid beta-oxidation by upregulating ECHS1 expression. These results reflect a biochemically relevant mechanism of fat reduction by (-)-HCA in broiler chickens.
Collapse
Affiliation(s)
- Mengling Peng
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Han
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Longlong Li
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
8
|
Kang J, Ge C, Yu L, Li L, Ma H. Long-Term Administration of Dehydroepiandrosterone Accelerates Glucose Catabolism via Activation of PI3K/Akt-PFK-2 Signaling Pathway in Rats Fed a High-Fat Diet. PLoS One 2016; 11:e0159077. [PMID: 27410429 PMCID: PMC4943648 DOI: 10.1371/journal.pone.0159077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/27/2016] [Indexed: 01/23/2023] Open
Abstract
Dehydroepiandrosterone (DHEA) has a fat-reducing effect, while little information is available on whether DHEA regulates glucose metabolism, which would in turn affect fat deposition. To investigate the effects of DHEA on glucose metabolism, rats were administered a high-fat diet containing either 0 (HCG), 25 (HLG), 50 (HMG), or 100 (HHG) mg·kg-1 DHEA per day via gavage for 8 weeks. Results showed that long-term administration of DHEA inhibited body weight gain in rats on a high-fat diet. No statistical differences in serum glucose levels were observed, whereas hepatic glycogen content in HMG and HHG groups and muscle glycogen content in HLG and HMG groups were higher than those in HCG group. Glucokinase, malate dehydrogenase and phosphofructokinase-2 activities in HMG and HHG groups, pyruvate kinase and succinate dehydrogenase activities in HMG group, and pyruvate dehydrogenase activity in all DHEA treatment groups were increased compared with those in HCG group. Phosphoenolpyruvate carboxykinase and glycogen phosphorylase mRNA levels were decreased in HMG and HHG groups, whereas glycogen synthase-2 mRNA level was increased in HMG group compared with those in HCG. The abundance of Glut2 mRNA in HMG and HHG groups and Glut4 mRNA in HMG group was higher than that in HCG group. DHEA treatment increased serum leptin content in HMG and HHG groups compared with that in HCG group. Serum insulin content and insulin receptor mRNA level in HMG group and insulin receptor substrate-2 mRNA level in HMG and HHG group were increased compared with those in HCG group. Furthermore, Pi3k mRNA level in HMG and Akt mRNA level in HMG and HHG groups were significantly increased than those in HCG group. These data showed that DHEA treatment could enhance glycogen storage and accelerate glucose catabolism in rats fed a high-fat diet, and this effect may be associated with the activation of PI3K/Akt-PFK-2 signaling pathway.
Collapse
Affiliation(s)
- Jian Kang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Chongyang Ge
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Lei Yu
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Longlong Li
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- * E-mail:
| |
Collapse
|
9
|
Han N, Li L, Peng M, Ma H. (-)-Hydroxycitric Acid Nourishes Protein Synthesis via Altering Metabolic Directions of Amino Acids in Male Rats. Phytother Res 2016; 30:1316-29. [PMID: 27145492 DOI: 10.1002/ptr.5630] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 12/16/2022]
Abstract
(-)-Hydroxycitric acid (HCA), a major active ingredient of Garcinia Cambogia extracts, had shown to suppress body weight gain and fat accumulation in animals and humans. While, the underlying mechanism of (-)-HCA has not fully understood. Thus, this study was aimed to investigate the effects of long-term supplement with (-)-HCA on body weight gain and variances of amino acid content in rats. Results showed that (-)-HCA treatment reduced body weight gain and increased feed conversion ratio in rats. The content of hepatic glycogen, muscle glycogen, and serum T4 , T3 , insulin, and Leptin were increased in (-)-HCA treatment groups. Protein content in liver and muscle were significantly increased in (-)-HCA treatment groups. Amino acid profile analysis indicated that most of amino acid contents in serum and liver, especially aromatic amino acid and branched amino acid, were higher in (-)-HCA treatment groups. However, most of the amino acid contents in muscle, especially aromatic amino acid and branched amino acid, were reduced in (-)-HCA treatment groups. These results indicated that (-)-HCA treatment could reduce body weight gain through promoting energy expenditure via regulation of thyroid hormone levels. In addition, (-)-HCA treatment could promote protein synthesis by altering the metabolic directions of amino acids. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Ningning Han
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Longlong Li
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mengling Peng
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haitian Ma
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|