1
|
Li W, Xu R, Qin S, Song Q, Guo B, Li M, Zhang Y, Zhang B. Cereal dietary fiber regulates the quality of whole grain products: Interaction between composition, modification and processing adaptability. Int J Biol Macromol 2024; 274:133223. [PMID: 38897509 DOI: 10.1016/j.ijbiomac.2024.133223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/27/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
The coarse texture and difficulty in processing dietary fiber (DF) in cereal bran have become limiting factors for the development of the whole cereal grain (WCG) food industry. To promote the development of the WCG industry, this review comprehensively summarizes the various forms and structures of cereal DF, including key features such as molecular weight, chain structure, and substitution groups. Different modification methods for changing the chemical structure of DF and their effects on the modification methods on physicochemical properties and biological activities of DF are discussed systematically. Furthermore, the review focusses on exploring the interactions between DF and dough components and discusses the effects on the gluten network structure, starch gelatinization and retrogradation, fermentation, glass transition, gelation, and rheological and crystalline characteristics of dough. Additionally, opportunities and challenges regarding the further development of DF for the flour products are also reviewed. The objective of this review is to establish a comprehensive foundation for the precise modification of cereal DF, particularly focusing on its application in dough-related products, and to advance the development and production of WCG products.
Collapse
Affiliation(s)
- Wen Li
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China
| | - Rui Xu
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China
| | - Shaoshuang Qin
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China
| | - Qiaozhi Song
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China
| | - Boli Guo
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China.
| | - Ming Li
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China.
| | - Yingquan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China
| | - Bo Zhang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China
| |
Collapse
|
2
|
Sztupecki W, Rhazi L, Depeint F, Aussenac T. Functional and Nutritional Characteristics of Natural or Modified Wheat Bran Non-Starch Polysaccharides: A Literature Review. Foods 2023; 12:2693. [PMID: 37509785 PMCID: PMC10379113 DOI: 10.3390/foods12142693] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/27/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Wheat bran (WB) consists mainly of different histological cell layers (pericarp, testa, hyaline layer and aleurone). WB contains large quantities of non-starch polysaccharides (NSP), including arabinoxylans (AX) and β-glucans. These dietary fibres have long been studied for their health effects on management and prevention of cardiovascular diseases, cholesterol, obesity, type-2 diabetes, and cancer. NSP benefits depend on their dose and molecular characteristics, including concentration, viscosity, molecular weight, and linked-polyphenols bioavailability. Given the positive health effects of WB, its incorporation in different food products is steadily increasing. However, the rheological, organoleptic and other problems associated with WB integration are numerous. Biological, physical, chemical and combined methods have been developed to optimise and modify NSP molecular characteristics. Most of these techniques aimed to potentially improve food processing, nutritional and health benefits. In this review, the physicochemical, molecular and functional properties of modified and unmodified WB are highlighted and explored. Up-to-date research findings from the clinical trials on mechanisms that WB have and their effects on health markers are critically reviewed. The review points out the lack of research using WB or purified WB fibre components in randomized, controlled clinical trials.
Collapse
Affiliation(s)
| | | | | | - Thierry Aussenac
- Institut Polytechnique Unilasalle, Université d’Artois, ULR 7519, 60026 Beauvais, France; (W.S.); (L.R.); (F.D.)
| |
Collapse
|
3
|
Liu Y, Huang S, Meng T, Wang Y, Zhang Z. Effects of steam explosion on the nutritional and functional properties of black-grained wheat bran and its application. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2175-2185. [PMID: 36541582 DOI: 10.1002/jsfa.12401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/09/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND In recent years, an increasing interest in healthy functional foods has been documented among health-conscious consumers. Steam explosion (SE)-treated black-grained wheat (BGW) bran was explored for the development of chiffon cakes with high nutritional and functional value. RESULTS The content of crude fat and total starch decreased with increasing SE pressure, whereas water-holding capacity and antioxidant activity increased, suggesting SE at 0.6-1.0 MPa could be an effective technique for enhancing the nutritional and functional properties of wheat bran. The protein, iron, zinc, manganese, selenium, and soluble dietary fiber contents, the water-holding, oil-binding, swelling, cholesterol binding, and cation-exchange capacities, and antioxidant activity of SE BGW bran were better than those of SE white-grained wheat bran. The addition of SE bran (0.8 MPa) to flour significantly decreased the peak viscosity, final viscosity, and setback and increased the pasting temperature. The effect of SE bran on the pasting properties of low-gluten and medium-gluten flour was stronger than that of high-gluten flour. SE BGW bran altered the physicochemical properties of chiffon cakes. When 6% SE BGW bran (0.8 MPa) was added, chiffon cakes exhibited good specific volume, hardness, chewiness, and other sensory qualities. CONCLUSIONS These results indicate that SE at 0.6-1.0 MPa is an effective technique for enhancing the nutritional and functional properties of wheat bran. SE BGW bran can be alternatives to food materials for developing health functional cereal-based products. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuxiu Liu
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuhua Huang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, China
| | - Tianqi Meng
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Yizhao Wang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhengmao Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
4
|
Ma C, Ni L, Guo Z, Zeng H, Wu M, Zhang M, Zheng B. Principle and Application of Steam Explosion Technology in Modification of Food Fiber. Foods 2022; 11:3370. [PMID: 36359983 PMCID: PMC9658468 DOI: 10.3390/foods11213370] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 07/30/2023] Open
Abstract
Steam explosion is a widely used hydrothermal pretreatment method, also known as autohydrolysis, which has become a popular pretreatment method due to its lower energy consumption and lower chemical usage. In this review, we summarized the technical principle of steam explosion, and its definition, modification and application in dietary fiber, which have been explored by researchers in recent years. The principle and application of steam explosion technology in the modification of food dietary fiber were analyzed. The change in dietary fiber structure; physical, chemical, and functional characteristics; the advantages and disadvantages of the method; and future development trends were discussed, with the aim to strengthen the economic value and utilization of plants with high dietary fiber content and their byproducts.
Collapse
Affiliation(s)
- Chao Ma
- Department of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Jinan Fruit Research Institute All China Federation of Supply and Marketing Co-Operatives, Jinan 250014, China
| | - Liying Ni
- Jinan Fruit Research Institute All China Federation of Supply and Marketing Co-Operatives, Jinan 250014, China
| | - Zebin Guo
- Department of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongliang Zeng
- Department of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Maoyu Wu
- Jinan Fruit Research Institute All China Federation of Supply and Marketing Co-Operatives, Jinan 250014, China
| | - Ming Zhang
- Jinan Fruit Research Institute All China Federation of Supply and Marketing Co-Operatives, Jinan 250014, China
| | - Baodong Zheng
- Department of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
5
|
Quality Characteristics and Antioxidant Activity of Fresh Noodles Formulated with Flour-Bran Blends Varied by Particle Size and Blend Ratio of Purple-Colored Wheat Bran. Processes (Basel) 2022. [DOI: 10.3390/pr10030584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
This study explored the noodle-making performance of flour blends with different particle sizes and blending ratios of purple-colored wheat bran and their antioxidant properties. The bran particle size was reduced using an ultra-centrifugal mill equipped with 1, 0.5, and 0.2 mm sieves. The damaged starch and swelling capacity of the bran were analyzed. Quality of the flour-bran blends at different blending ratios was analyzed by solvent retention capacity (SRC). Noodles made from the blends and their corresponding antioxidant activities were examined. The damaged starch and swelling capacity of bran were higher for smaller particles than for larger particles. Water and sodium carbonate SRC values of blends increased as the bran particle size decreased. The smaller the bran particles incorporated in the cooked noodles, the greater firmness and springiness measured. The antioxidant activity of noodles made with blends reflected better embedding of the small particles of bran than the large particles into noodle sheets. Small bran particles significantly enhanced noodles’ quality and antioxidant activity at higher blending ratios than large bran particles. Particle size reduction of bran enhanced the noodle-making performance of flour blended with purple-colored wheat bran; this could increase the utilization of bran to produce noodles with health benefits.
Collapse
|
6
|
Guo X, Zhang M, Huo R, Zhang Y, Bai X. Study on the effects of combined processing of micro‐pulverization and extrusion on the physicochemical properties of oat bran. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xinyue Guo
- College of Food Science and Engineering Inner Mongolia Agricultural University Hohhot China
| | - Meili Zhang
- College of Food Science and Engineering Inner Mongolia Agricultural University Hohhot China
| | - Rui Huo
- College of Food Science and Engineering Inner Mongolia Agricultural University Hohhot China
| | - Yakun Zhang
- College of Food Science and Engineering Inner Mongolia Agricultural University Hohhot China
| | - Xue Bai
- College of Food Science and Engineering Inner Mongolia Agricultural University Hohhot China
| |
Collapse
|
7
|
Saroj R, Singh V, Kushwaha R, Singh M, Kaur D. Screening of the antioxidant, nutritional, physical, and functional properties of bran obtained from six Indian wheat cultivars. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Reshma Saroj
- Center of Food Technology University of Allahabad Allahabad India
| | - Vinti Singh
- Center of Food Technology University of Allahabad Allahabad India
| | - Radha Kushwaha
- Center of Food Technology University of Allahabad Allahabad India
| | - Monika Singh
- Center of Food Technology University of Allahabad Allahabad India
| | - Devinder Kaur
- Center of Food Technology University of Allahabad Allahabad India
| |
Collapse
|
8
|
Impact of Rapeseed Press Cake on the Rheological Properties and Expansion Dynamics of Extruded Maize Starch. Foods 2021; 10:foods10030616. [PMID: 33799433 PMCID: PMC7998157 DOI: 10.3390/foods10030616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 11/16/2022] Open
Abstract
Rapeseed press cake (RPC), an oil pressing side product rich in protein and fiber, can be combined with starch and valorized into directly expanded products using extrusion technology. The mechanism of starch expansion has been studied in detail, but the impact of RPC on expansion behavior is poorly understood. However, it can be linked to rheological and physicochemical properties and is a key product quality parameter. Blends with different amounts of RPC (0, 10, 40 g/100 g) were extruded at different barrel temperatures (100, 120, 140 °C) and moisture contents (24 or 29 g/100 g). The initial, intermediate and final sectional, longitudinal and volumetric expansion indices (SEI, LEI, VEI) were monitored directly, 10 s and 24 h after die exit to measure extrudate growth and shrinkage. The viscous and elastic properties of the extruded blends were investigated in a closed cavity rheometer. Starch and blends with 10 g/100 g RPC achieved a high initial SEI followed by significant short-term shrinkage. Blends containing 40 g/100 g RPC did not show any initial expansion. With increasing RPC content, the intermediate SEI decreased, but all samples reached a similar final SEI due to time-dependent swelling of the RPC blends. With increasing RPC content, the elasticity of the starch-based extruded samples significantly increased. Our study shows that comprehensive control and understanding of expansion mechanisms can be achieved only by investigating all stages of extrudate growth and shrinkage. We also found that the closed cavity rheometer is a powerful tool to correlate the rheological properties and expansion mechanisms of biopolymers.
Collapse
|
9
|
Effects of extrusion processing on the physiochemical and functional properties of lupin kernel fibre. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106222] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Kong F, Wang L, Gao H, Chen H. Process of steam explosion assisted superfine grinding on particle size, chemical composition and physico-chemical properties of wheat bran powder. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2020.05.067] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|