1
|
Guan D, Li Y, Cui Y, Zhao H, Dong N, Wang K, Ren D, Song T, Wang X, Jin S, Gao Y, Wang M. 5-HMF attenuates inflammation and demyelination in experimental autoimmune encephalomyelitis mice by inhibiting the MIF-CD74 interaction. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1222-1233. [PMID: 37431183 PMCID: PMC10448060 DOI: 10.3724/abbs.2023105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 02/10/2023] [Indexed: 07/12/2023] Open
Abstract
The neuroprotective role of 5-hydroxymethyl-2-furfural (5-HMF) has been demonstrated in a variety of neurological diseases. The aim of this study is to investigate the effect of 5-HMF on multiple sclerosis (MS). IFN-γ-stimulated murine microglia (BV2 cells) are considered a cell model of MS. With 5-HMF treatment, microglial M1/2 polarization and cytokine levels are detected. The interaction of 5-HMF with migration inhibitory factor (MIF) is predicted using online databases. The experimental autoimmune encephalomyelitis (EAE) mouse model is established, followed by a 5-HMF injection. The results show that 5-HMF facilitates IFN-γ-stimulated microglial M2 polarization and attenuates the inflammatory response. According to the network pharmacology and molecular docking results, 5-HMF has a binding site for MIF. Further results show that blocking MIF activity or silencing CD74 enhances microglial M2 polarization, reduces inflammatory activity, and prevents ERK1/2 phosphorylation. 5-HMF inhibits the MIF-CD74 interaction by binding to MIF, thereby inhibiting microglial M1 polarization and enhancing the anti-inflammatory response. 5-HMF ameliorates EAE, inflammation, and demyelination in vivo. In conclusion, our research indicates that 5-HMF promotes microglial M2 polarization by inhibiting the MIF-CD74 interaction, thereby attenuating inflammation and demyelination in EAE mice.
Collapse
Affiliation(s)
- Dongsheng Guan
- Department of Neurologythe Second Clinical Medical CollegeHenan University of Traditional Chinese MedicineZhengzhou450002China
| | - Yingxia Li
- The College of Basic MedicineHenan University of Traditional Chinese MedicineZhengzhou450046China
| | - Yinglin Cui
- Department of Neurologythe Second Clinical Medical CollegeHenan University of Traditional Chinese MedicineZhengzhou450002China
| | - Huanghong Zhao
- Department of Neurologythe Second Clinical Medical CollegeHenan University of Traditional Chinese MedicineZhengzhou450002China
| | - Ning Dong
- Department of Neurologythe Second Clinical Medical CollegeHenan University of Traditional Chinese MedicineZhengzhou450002China
| | - Kun Wang
- Department of Pharmacythe Second Clinical Medical CollegeHenan University of Traditional Chinese MedicineZhengzhou450002China
| | - Deqi Ren
- Department of Neurologythe Second Clinical Medical CollegeHenan University of Traditional Chinese MedicineZhengzhou450002China
| | - Tiantian Song
- Department of Neurologythe Second Clinical Medical CollegeHenan University of Traditional Chinese MedicineZhengzhou450002China
| | - Xiaojing Wang
- Department of Neurologythe Second Clinical Medical CollegeHenan University of Traditional Chinese MedicineZhengzhou450002China
| | - Shijie Jin
- Department of Neurologythe Second Clinical Medical CollegeHenan University of Traditional Chinese MedicineZhengzhou450002China
| | - Yinghe Gao
- Department of Neurologythe Second Clinical Medical CollegeHenan University of Traditional Chinese MedicineZhengzhou450002China
| | - Mengmeng Wang
- Department of Neurologythe Second Clinical Medical CollegeHenan University of Traditional Chinese MedicineZhengzhou450002China
| |
Collapse
|
2
|
Wu X, Wang Z, Wang J, Tian X, Cao G, Gu Y, Shao F, Yan T. Exosomes Secreted by Mesenchymal Stem Cells Induce Immune Tolerance to Mouse Kidney Transplantation via Transporting LncRNA DANCR. Inflammation 2022; 45:460-475. [PMID: 34596768 DOI: 10.1007/s10753-021-01561-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 11/30/2022]
Abstract
Mesenchymal stem cells induce kidney transplant tolerance by increasing regulatory T (Treg) cells. Bone marrow mesenchymal stem cell exosomes (BMMSC-Ex) promote Treg cell differentiation. Long non-coding RNA differentiation antagonizing non-protein coding RNA (DANCR) is expressed in BMMSCs and can be encapsulated in exosomes. We aimed to explore the role of DANCR in BMMSC-Ex in immune tolerance after kidney transplantation and related mechanism. The isogenic/allograft kidney transplantation mouse model was established, and levels of serum creatinine (SCr) were determined. Hematoxylin-eosin staining was conducted to detect the inflammation, and immunohistochemistry was performed to detect the infiltration of CD4+ T cells. Levels of IFN-γ, IL-17, and IL-2 were examined by ELISA. Flow cytometry was conducted to determine Treg cells. In the allograft group, the inflammatory response was severe, CD4+ T cell infiltration, SCr levels, and plasma rejection-related factors were up-regulated, while injection of BMMSC-Ex reversed the results. BMMSC-Ex increased Treg cells in kidney transplantation mice. Interference with DANCR reversed the promoting effect of BMMSC-Ex on Treg cell differentiation. DANCR bound to SIRT1, promoted ubiquitination and accelerated its degradation. The injection of BMMSC-Ex (after interference with DANCR) promoted SIRT1 levels, inflammatory response, CD4+ T cell infiltration, SCr levels, and plasma rejection related factors' expression, while Treg cells were decreased. LncRNA DANCR in BMMSC-Ex promoted Treg cell differentiation and induced immune tolerance of kidney transplantation by down-regulating SIRT1 expression in CD4+ T cells.
Collapse
Affiliation(s)
- Xiaoqiang Wu
- Department of Urology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No. 7 Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan, China
| | - Zhiwei Wang
- Department of Urology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No. 7 Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan, China
| | - Junpeng Wang
- Department of Urology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No. 7 Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan, China
| | - Xiangyong Tian
- Department of Urology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No. 7 Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan, China
| | - Guanghui Cao
- Department of Urology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No. 7 Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan, China
| | - Yue Gu
- Department of Nephrology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Fengmin Shao
- Department of Nephrology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Tianzhong Yan
- Department of Urology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No. 7 Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
3
|
Shen M, Pan X, Gao Y, Ye H, Zhang J, Chen Y, Pan M, Huang W, Xu X, Zhao Y, Jin L. LncRNA CRNDE Exacerbates IgA Nephropathy Progression by Promoting NLRP3 Inflammasome Activation in Macrophages. Immunol Invest 2021; 51:1515-1527. [PMID: 34747317 DOI: 10.1080/08820139.2021.1989461] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Activation of NLRP3 inflammasome in macrophages contributes greatly to IgA nephropathy (IgAN) progression. This study intended to investigate the underlying mechanism of NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome activation in the development of IgAN. METHODS We examined the expression levels of colorectal neoplasia differentially expressed (CRNDE), NLRP3 inflammasome-related proteins in peripheral blood mononuclear cells (PBMCs) and J774A.1 cells and detected inflammatory cytokine levels in the serum of IgAN patients and cell supernatants of in vitro IgAN model. RNA pull-down and RNA immunoprecipitation (RIP) experiments were conducted to evaluate the interaction between CRNDE and NLRP3. Then, the ubiquitin level of NLRP3 and its binding ability to TRIM family member 31 (TRIM31) were determined. RESULTS Compared with the control group, the expressions of CRNDE and NLRP3 inflammasome-related proteins in PBMCs and J774A.1 cells and levels of IL-1β, TNF-α and IL-12 in serum of IgAN patients and cell supernatants of IgA-IC-induced J774A.1 cells were all increased. CRNDE silencing down-regulated NLRP3 inflammasome-related proteins and the levels of IL-1β, TNF-α and IL-12 in cell supernatants, while NLRP3 overexpression reversed these effects. Additionally, CRNDE could interact with NLRP3 and promote NLRP3 expression. Furthermore, inhibition of CRNDE reduced NLRP3 protein level and promoted TRIM31-mediated NLRP3 ubiquitination and degradation. CONCLUSION CRNDE exacerbates IgA nephropathy progression through restraining ubiquitination and degradation of NLRP3 and facilitating NLRP3 inflammasome activation in macrophages.
Collapse
Affiliation(s)
- Meng Shen
- Department of Nephropathy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R China
| | - Xinyue Pan
- Department of Nephropathy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R China
| | - Yingjie Gao
- Department of Nephropathy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R China
| | - Hanyang Ye
- Department of Nephropathy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R China
| | - Jing Zhang
- Department of Nephropathy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R China
| | - Yan Chen
- Department of Nephropathy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R China
| | - Min Pan
- Department of Nephropathy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R China
| | - Wenwen Huang
- Department of Nephropathy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R China
| | - Xiaoyan Xu
- Department of Nephropathy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R China
| | - Yanling Zhao
- Department of Nephropathy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R China
| | - Lingwei Jin
- Department of Nephropathy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R China
| |
Collapse
|
4
|
Zhang J, Chen C, Zhang S, Chen J, Wu L, Chen Z. LncRNA XIST restrains the activation of Müller cells and inflammation in diabetic retinopathy via stabilizing SIRT1. Autoimmunity 2021; 54:504-513. [PMID: 34498499 DOI: 10.1080/08916934.2021.1969551] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Recent studies have provided strong evidence that lncRNAs play a functional regulatory role in diabetic retinopathy (DR). The purpose of this study was to investigate the effect of long non-coding RNA (lncRNA) X-inactive specific transcript (XIST) in DR. METHODS A DR mouse model was established by intraperitoneal injection of streptozotocin (STZ), and then the mouse retinal Müller cells (mMCs) were isolated from retina tissues of mice. Human retinal Müller cell line (HMCs) and mMCs and were treated with high glucose (HG) to simulate an in vitro DR model. XIST expression was detected by qRT-PCR. Next, XIST overexpression was performed in mMCs and HMCs to examine its effect on the activation of Müller cells and production of pro-inflammatory cytokines. Subsequently, the interaction between XIST and SIRT1 was verified, and the ubiquitination level of SIRT1 as well as the stability of SIRT1 protein were assessed. RESULTS XIST was down-regulated in retinal tissues of DR mice and HG-induced HMCs. Overexpression of XIST inhibited HG-induced activation of mMCs and HMCs, and reduced the production of pro-inflammatory cytokines. XIST promoted SIRT1 expression via interacting with SIRT1 and inhibiting the ubiquitination of SIRT1. Furthermore, SIRT1 silencing partly abrogated the effect of XIST overexpression on the activation of mMCs and HMCs as well as the production of pro-inflammatory cytokines induced by HG. CONCLUSION We concluded that XIST restrained the activation of Müller cells and the production of pro-inflammatory cytokines via stabilizing SIRT1.
Collapse
Affiliation(s)
- Jiayu Zhang
- Department of Ophthalmology, The Third Affiliated Hospital of Wenzhou Medical University, Ruian, China
| | - Chengwei Chen
- Department of Ophthalmology, The Third Affiliated Hospital of Wenzhou Medical University, Ruian, China
| | - Sifang Zhang
- Department of Ophthalmology, The Third Affiliated Hospital of Wenzhou Medical University, Ruian, China
| | - Jiawei Chen
- Department of Ophthalmology, The Third Affiliated Hospital of Wenzhou Medical University, Ruian, China
| | - Liang Wu
- Department of Ophthalmology, The Third Affiliated Hospital of Wenzhou Medical University, Ruian, China
| | - Zhenguo Chen
- Department of Ophthalmology, The Third Affiliated Hospital of Wenzhou Medical University, Ruian, China
| |
Collapse
|
5
|
Ye Q, Chen Z. MicroRNA-409-3p regulates macrophage migration in polymyositis through targeting CXCR4. Autoimmunity 2021; 54:353-361. [PMID: 34142881 DOI: 10.1080/08916934.2021.1937610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Macrophage migration and infiltration contribute to the pathogenesis of polymyositis (PM). This study aims to investigate the effect and underlying mechanism of miR-409-3p on macrophage migration in PM. METHODS The GSE143845 database was used to predict the altered expression of microRNAs (miRNAs) in PM. The quantitative real-time PCR (qRT-PCR), western blot and Transwell assay were performed to detect migration of macrophages and expressions of related molecules. A luciferase activity assay was conducted to confirm the binding of miR-409-3p and CXCR4 3'-UTR. Next, a mouse model of experimental autoimmune myositis (EAM) was established. Haematoxylin and eosin (HE) staining, immunohistochemistry (IHC), and enzyme-linked immunosorbent assay (ELISA) were used to measure associated factors. RESULTS MiR-409-3p was downregulated in PM of GSE143845 database and patients. Differently, the serum creatine kinase (s-CK), TNF-α, and IL-6 in patients with PM were increased. Furthermore, miR-409-3p mimic transfection reduced the migration of macrophages and CXCR4 levels, while miR-409-3p inhibitor exerted the opposite effects. CXCR4 was a target of miR-409-3p, and the effect of CXCR4 on promoting macrophage migration was reversed by miR-409-3p mimic. In vivo, miR-409-3p agomir injection reduced inflammatory cells, macrophages, and TNFα and IL-6 levels in muscles and serum of EAM mouse models. CONCLUSIONS In conclusion, miR-409-3p reduces the migration of macrophages through negatively regulating CXCR4 expression in PM.
Collapse
Affiliation(s)
- Qin Ye
- Department of Pulmonary Medicine, Ningbo HwaMei Hospital, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, P. R. China
| | - Zhaoying Chen
- Department of Neurology, Ningbo HwaMei Hospital, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, P. R. China
| |
Collapse
|