1
|
Kowalczyk A, Wrzecińska M, Gałęska E, Czerniawska-Piątkowska E, Camiña M, Araujo JP, Dobrzański Z. Exosomal ncRNAs in reproductive cancers†. Biol Reprod 2025; 112:225-244. [PMID: 39561105 PMCID: PMC11833474 DOI: 10.1093/biolre/ioae170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/09/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024] Open
Abstract
Extracellular vesicles, particularly exosomes, play a pivotal role in the cellular mechanisms underlying cancer. This review explores the various functions of exosomes in the progression, growth, and metastasis of cancers affecting the male and female reproductive systems. Exosomes are identified as key mediators in intercellular communication, capable of transferring bioactive molecules such as microRNAs, proteins, and other nucleic acids that influence cancer cell behavior and tumor microenvironment interactions. It has been shown that non-coding RNAs transported by exosomes play an important role in tumor growth processes. Significant molecules that may serve as biomarkers in the development and progression of male reproductive cancers include miR-125a-5p, miR-21, miR-375, the miR-371 ~ 373 cluster, and miR-145-5p. For female reproductive cancers, significant microRNAs include miR-26a-5p, miR-148b, miR-205, and miRNA-423-3p. This review highlights the potential of these noncoding RNAs as biomarkers and prognostics in tumor diagnostics. Understanding the diverse roles of exosomes may hold promise for developing new therapeutic strategies and improving treatment outcomes for cancer patients.
Collapse
Affiliation(s)
- Alicja Kowalczyk
- Department of Environment Hygiene and Animal Welfare, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Marcjanna Wrzecińska
- Department of Ruminant Science, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Elżbieta Gałęska
- Department of Environment Hygiene and Animal Welfare, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | | | - Mercedes Camiña
- Department of Physiology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Jose P Araujo
- Mountain Research Centre (CIMO), Instituto Politécnico de Viana do Castelo, Ponte de Lima, Portugal
| | - Zbigniew Dobrzański
- Department of Environment Hygiene and Animal Welfare, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
2
|
Kathuria-Prakash N, Dave P, Garcia L, Brown P, Drakaki A. MicroRNAs in Genitourinary Malignancies: An Exciting Frontier of Cancer Diagnostics and Therapeutics. Int J Mol Sci 2024; 25:9499. [PMID: 39273446 PMCID: PMC11394927 DOI: 10.3390/ijms25179499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Genitourinary (GU) malignancies, including prostate, urothelial, kidney, testicular, penile, and adrenocortical cancers, comprise a significant burden of cancers worldwide. While many practice-changing advances have been made in the management of GU malignancies in the last decade, there is still significant room for improvement. MicroRNAs (miRNAs) are noncoding RNAs that regulate post-transcription gene expression and which have been implicated in multiple mechanisms of carcinogenesis. Therefore, they have the potential to revolutionize personalized cancer therapy, with several ongoing preclinical and clinical studies underway to investigate their efficacy. In this review, we describe the current landscape of miRNAs as diagnostics, therapeutics, and biomarkers of response for GU malignancies, reflecting a novel frontier in cancer treatment.
Collapse
Affiliation(s)
- Nikhita Kathuria-Prakash
- Division of Hematology/Oncology, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Pranali Dave
- School of Medicine, California University of Science and Medicine, Colton, CA 92324, USA
| | - Lizette Garcia
- Division of Hospice and Palliative Medicine, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Paige Brown
- Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Alexandra Drakaki
- Division of Hematology/Oncology, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Nakka P, Jassi C, Chen MC, Liu YS, Liu JY, Yeh CM, Li CC, Chang YC, Kuo WW, Huang CY. Sensitization of hepatocellular carcinoma cells to HDACi is regulated through hsa-miR-342-5p/CFL1. Cancer Cell Int 2024; 24:291. [PMID: 39152428 PMCID: PMC11328471 DOI: 10.1186/s12935-024-03450-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/13/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Increased prevalence of hepatocellular carcinoma (HCC) remains a global health challenge. HCC chemoresistance is a clinical obstacle for its management. Aberrant miRNA expression is a hallmark for both cancer progression and drug resistance. However, it is unclear which miRNAs are involved in HCC chemoresistance. METHODS MicroRNA microarray analysis revealed a differential expression profile of microRNAs between the hepatocellular carcinoma HA22T cell line and the HDACi-R cell line, which was validated by quantitative real-time PCR (qRT-PCR). To determine the biological function of miR-342-5p and the mechanism of the microRNA-342-5p/CFL1 axis in hepatocellular carcinoma HDACi resistance, loss- and gain-of-function studies were conducted in vitro. RESULTS Here we demonstrated the molecular mechanism of histone deacetylase inhibitor (HDACi) resistance in HCC. Differential miRNA expression analysis showed significant down regulation of miR-342-5p in HDACi-R cells than in parental HA22T cells. Mimics of miR-342-5p enhanced apoptosis through upregulation of Bax, cyto-C, cleaved-caspase-3 expressions with concomitant decline in anti-apoptotic protein (Bcl-2) in HDACi-R cells. Although HDACi did not increase cell viability of HDACi-R, overexpression of miR-342-5p decreased cofilin-1 expression, upregulated reactive oxygen species (ROS) mediated apoptosis, and sensitized HDACi-R to HDACi in a dose-dependent manner. CONCLUSION Our findings demonstrated the critical role of miR-342-5p in HDACi resistance of HCC and that this mechanism might be attributed to miR-342-5p/cofilin-1 regulation.
Collapse
Affiliation(s)
- Parvathi Nakka
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan
| | - Chikondi Jassi
- Department of Biological Science and Technology, China Medical University, Taichung, 406, Taiwan
| | - Ming-Cheng Chen
- Division of Colorectal Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung, 40705, Taiwan
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Sheng Liu
- Division of Hematology and Oncology, Department of Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Jer-Yuh Liu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chung-Min Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua, 500, Taiwan
| | - Chi-Cheng Li
- School of Medicine, Tzu Chi University, 701, Section 3, Chung-Yang Road, Hualien, 97004, Taiwan
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Yu-Chun Chang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, 406, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, 406, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan.
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, 970, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 404, Taiwan.
- Department of Biotechnology, Asia University, Taichung, 413, Taiwan.
| |
Collapse
|
4
|
Fang J, Xu Y, Lin C, Yang J, Zhai D, Zhuang Q, Qiu W, Wang Y, Zhang L. Increasing serum miR-223-3p indicates the onset, severe development, and adverse prognosis of bronchiectasis: a retrospective study. BMC Pulm Med 2024; 24:354. [PMID: 39039507 PMCID: PMC11264367 DOI: 10.1186/s12890-024-03170-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND miR-223-3p has been demonstrated as a Pseudomonas aeruginosa colonization-related miRNA in bronchiectasis (BE), but its clinical value in BE has not been revealed, which is of great significance for the clinical diagnosis and monitoring of BE. This study aimed to identify a reliable biomarker for screening BE and predicting patients' outcomes. METHODS The serum expression of miR-223-3p was compared between healthy individuals (n = 101) and BE patients (n = 133) and evaluated its potential in distinguishing BE patients. The severity of BE patients was estimated by BSI and FACED score, and the correlation of miR-223-3p with inflammation and severity of BE patients was evaluated by Pearson correlation analysis. BE patients were followed up for 3 years, and the predictive value of miR-223-3p in prognosis was assessed by logistic regression analysis. RESULTS Significant upregulation of miR-223-3p was observed in BE patients, which significantly distinguished BE patients and showed positive correlations with C-reactive protein (CRP), procalcitonin (PCT), interleukin 6 (IL-6), and neutrophil-to-lymphocyte ratio (NLR) of BE patients. Additionally, miR-223-3p was also positively correlated with BSI and FACED scores, indicating its correlation with inflammation and severity of BE. BE patients with adverse prognoses showed a higher serum miR-223-3p level, which was identified as an adverse prognostic factor and discriminated patients with different prognoses. CONCLUSION Increasing serum miR-223-3p can be considered a biomarker for the onset, severity, and prognosis of BE.
Collapse
Affiliation(s)
- Jia Fang
- Respiratory Medicine Center, The First Dongguan Affiliated Hospital of Guangdong Medical University, No. 42, Jiaoping Road, Tangxia Town, Dongguan, 523710, China
| | - Yao Xu
- Medical Laboratory Center, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, 523710, China
| | - Chenghui Lin
- Respiratory Medicine Center, The First Dongguan Affiliated Hospital of Guangdong Medical University, No. 42, Jiaoping Road, Tangxia Town, Dongguan, 523710, China
| | - Jiewen Yang
- Department of Emergency, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, 523710, China
| | - Dongxu Zhai
- Department of Gastroenterology, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, 523710, China
| | - Qingyuan Zhuang
- Department of Clinical Pharmacy, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, 523710, China
| | - Wangli Qiu
- Respiratory Medicine Center, The First Dongguan Affiliated Hospital of Guangdong Medical University, No. 42, Jiaoping Road, Tangxia Town, Dongguan, 523710, China
| | - Yun Wang
- Respiratory Medicine Center, The First Dongguan Affiliated Hospital of Guangdong Medical University, No. 42, Jiaoping Road, Tangxia Town, Dongguan, 523710, China.
| | - Longjuan Zhang
- Department of Ultrasonography, The First Dongguan Affiliated Hospital of Guangdong Medical University, No. 42, Jiaoping Road, Tangxia Town, Dongguan, 523710, China.
| |
Collapse
|
5
|
Santarosa Vieira AG, da Silva LS, Albino da Silva EC, Laus AC, Faria TMV, van Helvoort Lengert A, Martins GE, de Oliveira MA, Reis RM, Lopes LF, Pinto MT. Comprehensive microRNA expression analysis of pediatric gonadal germ cell tumors: unveiling novel biomarkers and signatures. Mol Oncol 2024; 18:1593-1607. [PMID: 38725152 PMCID: PMC11161733 DOI: 10.1002/1878-0261.13617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/11/2023] [Accepted: 02/15/2024] [Indexed: 06/09/2024] Open
Abstract
microRNAs (miRNAs) are small endogenous noncoding RNAs, and alterations in their expression may contribute to oncogenesis. Discovering a unique miRNA pattern holds the potential for early detection and novel treatment possibilities in cancer. This study aimed to evaluate miRNA expression in pediatric patients with gonadal germ cell tumors (GCTs), focusing on characterizing the miRNA profiles of each histological subtype and identifying a distinct histological miRNA signature for a total of 42 samples of pediatric gonadal GCTs. The analysis revealed distinct miRNA expression profiles for all histological types, regardless of the primary site. We identified specific miRNA expression signatures for each histological type, including 34 miRNAs for dysgerminomas, 13 for embryonal carcinomas, 25 for yolk sac tumors, and one for immature teratoma, compared to healthy controls. Furthermore, we identified 26 miRNAs that were commonly expressed in malignant tumors, with six miRNAs (miR-302a-3p, miR-302b-3p, miR-371a-5p, miR-372-3p, miR-373-3p, and miR-367-3p) showing significant overexpression. Notably, miR-302b-3p exhibited a significant association with all the evaluated clinical features. Our findings suggest that miRNAs have the potential to aid in the diagnosis, prognosis, and management of patients with malignant GCTs.
Collapse
Affiliation(s)
- Ana Glenda Santarosa Vieira
- Barretos Children's Cancer Hospital from Hospital de AmorBrazil
- Brazilian Childhood Germ Cell Tumor Study GroupThe Brazilian Pediatric Oncology Society (SOBOPE)São PauloBrazil
- Pediatric Cancerology's Department of Santa Casa de Misericórdia de SantosBrazil
| | | | | | | | | | | | - Gisele Eiras Martins
- Barretos Children's Cancer Hospital from Hospital de AmorBrazil
- Brazilian Childhood Germ Cell Tumor Study GroupThe Brazilian Pediatric Oncology Society (SOBOPE)São PauloBrazil
| | | | - Rui Manuel Reis
- Molecular Oncology Research CenterBarretos Cancer HospitalBrazil
- Life and Health Sciences Research Institute (ICVS), Medical SchoolUniversity of MinhoBragaPortugal
- ICVS/3B's‐PT Government Associate LaboratoryBragaPortugal
| | - Luiz Fernando Lopes
- Barretos Children's Cancer Hospital from Hospital de AmorBrazil
- Brazilian Childhood Germ Cell Tumor Study GroupThe Brazilian Pediatric Oncology Society (SOBOPE)São PauloBrazil
| | - Mariana Tomazini Pinto
- Molecular Oncology Research CenterBarretos Cancer HospitalBrazil
- Pediatric Oncology Research Group (GPOPed), Molecular Oncology Research CenterBarretos Cancer HospitalBrazil
| |
Collapse
|
6
|
Jari M, Abdoli S, Bazi Z, Shamsabadi FT, Roshanmehr F, Shahbazi M. Enhancing protein production and growth in chinese hamster ovary cells through miR-107 overexpression. AMB Express 2024; 14:16. [PMID: 38302631 PMCID: PMC10834913 DOI: 10.1186/s13568-024-01670-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/16/2024] [Indexed: 02/03/2024] Open
Abstract
Chinese Hamster Ovary (CHO) cells are widely employed as host cells for biopharmaceutical production. The manufacturing of biopharmaceuticals poses several challenges, including restricted growth potential and inadequate productivity of the host cells. MicroRNAs play a crucial role in regulating gene expression and are considered highly promising tools for cell engineering to enhance protein production. Our study aimed to evaluate the effects of miR-107, which is recognized as an onco-miR, on erythropoietin-producing CHO cells (CHO-hEPO). To assess the impact of miR-107 on CHO cells, a DNA plasmid containing miR-107 was introduced to CHO-hEPO cells through transfection. Cell proliferation and viability were assessed using the trypan blue dye exclusion method. Cell cycle analysis was conducted by utilizing propidium iodide (PI) staining. The quantification of EPO was determined using an immunoassay test. Moreover, the impact of miR-107 on the expression of downstream target genes was evaluated using qRT-PCR. Our findings highlight and underscore the substantial impact of transient miR-107 overexpression, which led to a remarkable 2.7-fold increase in EPO titers and a significant 1.6-fold increase in the specific productivity of CHO cells (p < 0.01). Furthermore, this intervention resulted in significant enhancements in cell viability and growth rate (p < 0.05). Intriguingly, the overexpression of miR‑107 was linked to the downregulation of LATS2, PTEN, and TSC1 genes while concurrently driving upregulation in transcript levels of MYC, YAP, mTOR, and S6K genes within transgenic CHO cells. In conclusion, this study collectively underscores the feasibility of utilizing cancer-associated miRNAs as a powerful tool for CHO cell engineering. However, more in-depth exploration is warranted to unravel the precise molecular intricacies of miR-107's effects in the context of CHO cells.
Collapse
Affiliation(s)
- Maryam Jari
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Shastkola Road, Falsafi Complex, Gorgan, Zip code: 4934174611, Iran
- Department of Medical Biotechnology School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Shahriyar Abdoli
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Shastkola Road, Falsafi Complex, Gorgan, Zip code: 4934174611, Iran
- Department of Medical Biotechnology School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Zahra Bazi
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Shastkola Road, Falsafi Complex, Gorgan, Zip code: 4934174611, Iran
- Department of Medical Biotechnology School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Fatemeh Tash Shamsabadi
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Shastkola Road, Falsafi Complex, Gorgan, Zip code: 4934174611, Iran
- Department of Medical Biotechnology School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Farnaz Roshanmehr
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Shastkola Road, Falsafi Complex, Gorgan, Zip code: 4934174611, Iran
- Department of Medical Biotechnology School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Majid Shahbazi
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Shastkola Road, Falsafi Complex, Gorgan, Zip code: 4934174611, Iran.
- AryaTina Gene (ATG) Biopharmaceutical Company Gorgan, Gorgan, Iran.
| |
Collapse
|
7
|
Guo X, Huang M, Yang D, Luo Z. Expression and Clinical Significance of Plasma miR-223 in Patients with Diabetic Nephropathy. Int J Endocrinol 2023; 2023:9663320. [PMID: 38179188 PMCID: PMC10764645 DOI: 10.1155/2023/9663320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/27/2023] [Accepted: 12/13/2023] [Indexed: 01/06/2024] Open
Abstract
Background MicroRNA-223 (miR-223) is associated with diabetes and kidney diseases and serves as a novel marker for diagnosing diabetic kidney disease (DKD). This study was conducted to investigate the plasma expression of miR-223 and its clinical significance in type 2 diabetes (T2DM) and diabetic nephropathy (DN) patients. Methods In this research, 20 patients with T2DM and DN, 19 patients with T2DM, and 17 healthy volunteers were finally enrolled. miR-223 expression was detected by quantitative real-time PCR (qPCR), and the diagnostic value of miR-223 in DN was further analyzed. Results miR-223 was downregulated in the DN group compared to that in the T2DM group (P=0.031) and the control group (P < 0.001). Pearson's correlation analysis showed a negative correlation of miR-223 levels with an albumin-creatinine ratio (ACR) (r = -0.481; P=0.044), urine β2-microglobulin (β2-MG) (r = -0.494; P=0.037), urine α1-microglobulin (α1-MG) (r = -0.537; P=0.022), creatinine (Cr) (r = -0.664; P < 0.01), cystatin C (Cyc-C) (r = -0.553; P=0.017), and glycosylated hemoglobin (HbA1c) (r = -0.761; P < 0.01). The findings of a binary regression analysis indicated that miR-223, ACR, Cr, and α1-MG were the risk factors for DN (OR: 2.019, 1.166, 1.031, and 1.031; all P < 0.05). Furthermore, miR-223 had a favorable diagnostic value for DN (AUC: 0.752; sensitivity: 0.722; specificity: 0.842) (2.5 was utilized as the diagnostic cutoff point). Conclusion miR-223 was lowly expressed in DN patients, and the evaluation of miR-223 may be a good approach for diagnosing DN.
Collapse
Affiliation(s)
- Xingrong Guo
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Endocrinology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Meiying Huang
- Department of Nephrology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Dawei Yang
- Department of Geriatric Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Zuojie Luo
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
8
|
Machado-Neto JA, Carlos JAEG, Lima K. miRNAs as prognostic predictors in acute myeloid leukemia. Transl Cancer Res 2023; 12:1656-1659. [PMID: 37588737 PMCID: PMC10425646 DOI: 10.21037/tcr-23-716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/08/2023] [Indexed: 08/18/2023]
Affiliation(s)
| | | | - Keli Lima
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Internal Medicine, Hematology Division, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Liu Y, Cao Y, Yang X, Chen H, Yang H, Liu Y, Gu W. High expression of miR-107 and miR-17 predicts poor prognosis and guides treatment selection in acute myeloid leukemia. Transl Cancer Res 2023; 12:913-927. [PMID: 37180663 PMCID: PMC10174997 DOI: 10.21037/tcr-22-2484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/19/2023] [Indexed: 03/21/2023]
Abstract
Background The prognostic significance of miR-107 and miR-17 in patients with acute myeloid leukemia (AML) remains unclear. Methods A total of 173 patients with de novo AML from the Cancer Genome Atlas database were enrolled in this study and further divided into a chemotherapy group (98 cases) and an allogeneic hematopoietic stem cell transplantation (allo-HSCT) group (75 cases) according to their therapy regimen. Results In the chemotherapy cohort, high miR-107 or miR-17 expression was associated with poorer overall survival (OS) and event-free survival (EFS). On the other hand, there were no significant differences in OS and EFS between the high- and low-expression subgroups in the allo-HSCT group. Next, we stratified the total number of patients with AML into high- and low-expression groups according to the median expression levels of miR-107 or miR-17. In the high miR-107 or miR-17 expression group, patients treated with allo-HSCT had longer OS than those treated with chemotherapy. In the low miR-107 or miR-17 expression group, no significant differences in OS and EFS were observed between the two therapy subgroups. When patients were further clustered into three groups (both low miR-107 and low miR-17, either high miR-107 or high miR-17, and both high miR-107 and high miR-17), patients with both high miR-107 and high miR-17 expression had the worst OS and EFS of the entire group and of the chemotherapy group. On the other hand, there were no significant differences in OS and EFS among the three subgroups in the allo-HSCT group. Cox regression confirmed the concurrence of high expression of miR-107 and miR-17 might act as an independent prognostic factor for EFS and OS in the entire group and the chemotherapy group. Bioinformatics analysis showed differentially expressed genes (DEGs) associated with miR-107 and miR-17 expression were mainly enriched in multiple metabolic processes. Conclusions The combination of miR-107 and miR-17 provides prognostic significance for patients with AML and should be considered in the clinical selection of the optimal treatment regimen when deciding between chemotherapy and allo-HSCT.
Collapse
Affiliation(s)
- Yue Liu
- Department of Hematology, The First People’s Hospital of Changzhou and The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yang Cao
- Department of Hematology, The First People’s Hospital of Changzhou and The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xiaojun Yang
- Department of Blood Transfusion, The First People’s Hospital of Changzhou and The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Huijuan Chen
- Department of Hematology, The First People’s Hospital of Changzhou and The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Haonan Yang
- Department of Hematology, The First People’s Hospital of Changzhou and The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yan Liu
- Department of Hematology, The First People’s Hospital of Changzhou and The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Weiying Gu
- Department of Hematology, The First People’s Hospital of Changzhou and The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
10
|
Zhao K, Zeng L, Cai Z, Liu M, Sun T, Li Z, Liu R. RNA sequencing-based identification of the regulatory mechanism of microRNAs, transcription factors, and corresponding target genes involved in vascular dementia. Front Neurosci 2022; 16:917489. [PMID: 36203804 PMCID: PMC9531238 DOI: 10.3389/fnins.2022.917489] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Vascular dementia (VaD) is the second most common form of dementia with uncertain mechanisms and no effective treatments. microRNAs (miRNAs) and transcription factors (TFs) are considered regulatory factors of genes involved in many diseases. Therefore, this work investigated the aberrantly expressed miRNAs, TFs, corresponding target genes, and their co-regulatory networks in the cortex of rats with bilateral common carotid artery occlusion (2VO) to uncover the potential mechanism and biomarkers of VaD. Differentially expressed genes (DEGs), miRNAs (DEMs), and TFs (DETFs) were identified using RNA sequencing, and their interaction networks were constructed using Cytoscape. The results showed that rats with 2VO had declined cognitive abilities and neuronal loss in the cortex than sham rats. DEGs, DEMs, and DETFs were discriminated between rats with 2VO and sham rats in the cortex, as shown by the 13 aberrantly expressed miRNAs, 805 mRNAs, and 63 TFs. The miRNA-TF-target gene network was constructed, showing 523 nodes and 7237 edges. Five miRNAs (miR-5132-5p, miR-764-3p, miR-223-3p, miR-145-5p, and miR-122-5p), ten TFs (Mxi1, Nfatc4, Rxrg, Zfp523, Foxj2, Nkx6-1, Klf4, Klf5, Csrnp1, and Prdm6), and seven target genes (Serpine1, Nedd4l, Pxn, Col1a1, Plec, Trip12, and Tpm1) were chosen as the significant nodes to construct feed-forward loops (FFLs). Gene Ontology and pathway enrichment analysis revealed that these miRNA and TF-associated genes are mostly involved in the PI3K/Akt, neuroactive ligand–receptor interaction, calcium signaling, and Wnt signaling pathways, along with central locations around the cell membrane. They exert functions such as growth factor binding, integrin binding, and extracellular matrix structural constituent, with representative biological processes like vasculature development, cell–substrate adhesion, cellular response to growth factor stimulus, and synaptic transmission. Furthermore, the expression of three miRNAs (miR-145-5p, miR-122-5p, and miR-5132-5p), six TFs (Csrnp1, Klf4, Nfatc4, Rxrg, Foxj2, and Klf5), and five mRNAs (Serpine1, Plec, Nedd4l, Trip12, and Tpm1) were significantly changed in rats with VaD, in line with the outcome of RNA sequencing. In the potential FFL, miR-145-5p directly bound Csrnp1 and decreased its mRNA expression. These results might help the understanding of the underlying regulatory mechanisms of miRNA-TF-genes, providing potential therapeutic targets in VaD.
Collapse
|
11
|
Clinical and Novel Biomarkers in Penile Carcinoma: A Prospective Review. J Pers Med 2022; 12:jpm12091364. [PMID: 36143149 PMCID: PMC9502223 DOI: 10.3390/jpm12091364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Penile carcinoma is a rare urological neoplasia in men compared to other more common tumors, such as prostate, kidney, or bladder tumors. However, this neoplasm continues to affect a large number of patients worldwide, with developing countries presenting the highest incidence and mortality rates. Important risk factors such as the human papilloma virus, a factor affecting a large number of patients, have been described; however, few studies have evaluated screening programs in populations at risk for this disease, which severely affects the quality of life of older men. The management of these patients is usually complex, requiring surgical interventions that are not without risk and that have a great impact on the functionality of the male reproductive system. In addition, in cases of disseminated disease or with significant locoregional involvement, patients are evaluated by multidisciplinary oncological committees that can adjust the application of aggressive neoadjuvant or adjuvant chemotherapy on numerous occasions without clear improvement in survival. Chemotherapy regimens are usually aggressive, and unlike in other urological neoplasms, few advances have been made in the use of immunotherapy in these patients. The study of serological and histological biomarkers may help to better understand the underlying pathophysiology of these tumors and select patients who have a higher risk of metastatic progression. Similarly, the analysis of molecular markers will improve the availability of targeted therapies for the management of patients with disseminated disease that would benefit prognosis. Therefore, the purpose of this article is to summarize the main advances that have occurred in the development of serological and histological markers and their therapeutic implications in patients diagnosed with penile carcinoma, explaining the limitations that have been observed and analyzing future perspectives in the management of this disease.
Collapse
|
12
|
Constâncio V, Tavares NT, Henrique R, Jerónimo C, Lobo J. MiRNA biomarkers in cancers of the male reproductive system: are we approaching clinical application? Andrology 2022; 11:651-667. [PMID: 35930290 DOI: 10.1111/andr.13258] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Specific cancer types face specific clinical management challenges. Owing to their stability, robustness and fast, easy, and cost-effective detection, microRNAs (miRNAs) are attractive candidate biomarkers to the clinic. OBJECTIVES Based on a comprehensive review of the relevant literature in the field, we explore the potential of miRNAs as biomarkers to answer relevant clinical dilemmas inherent to cancers of the male reproductive tract (prostate (PCa), testis (TGCTs) and penis (PeCa)) and identify some of the challenges/limitations hampering their widely application. RESULTS AND DISCUSSION We conclude that the use of miRNAs as biomarkers is at different stages for these distinct cancer types. While for TGCTs, miRNA-371a-3p is universally accepted to fill in important clinicals gaps and is moving fast towards clinical implementation, for PCa almost no overlap of miRNAs exists between studies, denoting the absence of a consistent miRNA biomarker, and for PeCa the field of miRNAs has just recently started, with only a few studies attempting to explore their clinical usefulness. CONCLUSION Technological advances influencing miRNA detection and quantification will be instrumental to continue to move forward with implementation of miRNAs in the clinic as biomarkers for non-invasive diagnosis, risk stratification, treatment monitoring and follow-up. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Vera Constâncio
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Centre (Porto.CCC), R. Dr. António Bernardino de Almeida, Porto, 4200-072, Portugal.,Doctoral Programme in Biomedical Sciences, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, Porto, 4050-513, Portugal
| | - Nuno Tiago Tavares
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Centre (Porto.CCC), R. Dr. António Bernardino de Almeida, Porto, 4200-072, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Centre (Porto.CCC), R. Dr. António Bernardino de Almeida, Porto, 4200-072, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto / Porto Comprehensive Cancer Centre (Porto.CCC), R. Dr. António Bernardino de Almeida, Porto, 4200-072, Portugal.,Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, Porto, 4050-513, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Centre (Porto.CCC), R. Dr. António Bernardino de Almeida, Porto, 4200-072, Portugal.,Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, Porto, 4050-513, Portugal
| | - João Lobo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Centre (Porto.CCC), R. Dr. António Bernardino de Almeida, Porto, 4200-072, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto / Porto Comprehensive Cancer Centre (Porto.CCC), R. Dr. António Bernardino de Almeida, Porto, 4200-072, Portugal.,Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, Porto, 4050-513, Portugal
| |
Collapse
|
13
|
Li K, Le X, Wang J, Fan C, Sun J. Tumor Location May Independently Predict Survival in Patients With M0 Squamous Cell Carcinoma of the Penis. Front Oncol 2022; 12:927088. [PMID: 35865480 PMCID: PMC9294313 DOI: 10.3389/fonc.2022.927088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundTo determine the association between tumor location and both clinicopathological characteristics and the survival of patients with M0 squamous cell carcinoma of the penis (SCCP).MethodsData of 455 patients diagnosed with M0 SCCP between 1975 and 2018 were collected from the Surveillance, Epidemiology, and End Results (SEER) database of the United States National Cancer Institute. The effects of tumor location on overall survival (OS) and penile carcinoma-specific survival (PCSS) were analyzed using the Kaplan–Meier method. The Cox proportional hazards regression model was used to determine the impact of tumor location on PCSS.ResultsSCCP was more likely to occur in the prepuce or glans (90%). Although no significant difference was observed between the OS of patients with M0 SCCP in the prepuce or glans and those with M0 SCCP in the body of the penis (p = 0.307), the former had better PCSS (p = 0.024). Moreover, M0 SCCP in the prepuce or glans was also significantly associated with better PCSS in patients with advanced age (age ≥ 60 years, p = 0.011), other ethnicities (p = 0.003), T2–T4 stage (p = 0.036), larger tumors (≥3 cm, p = 0.001), no regional lymph nodes removed (p = 0.044), and radical surgery (p = 0.027). Multivariate analysis confirmed that tumor location is an independent prognostic factor for patients with M0 SCCP [hazard ratio (HR) 1.881, p = 0.026].ConclusionsTumor location is an independent prognostic factor for patients with M0 SCCP, and tumors in the prepuce or glans portend better PCSS.
Collapse
Affiliation(s)
| | | | | | - Caibin Fan
- *Correspondence: Caibin Fan, ; Jian Sun,
| | - Jian Sun
- *Correspondence: Caibin Fan, ; Jian Sun,
| |
Collapse
|
14
|
Zhao S, Tan Y, Qin J, Xu H, Liu L, Wan H, Zhang C, Fan W, Qu S. MicroRNA-223-3p promotes pyroptosis of cardiomyocyte and release of inflammasome factors via downregulating the expression level of SPI1 (PU.1). Toxicology 2022; 476:153252. [PMID: 35792203 DOI: 10.1016/j.tox.2022.153252] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/20/2022] [Accepted: 06/30/2022] [Indexed: 01/10/2023]
Abstract
Diabetic cardiomyopathy (DCM) is a common heart disease in patients with diabetes mellitus (DM), and is sometimes its main cause of death. Among all the causes of DCM, myocardial cell death is considered to be the most basic pathological change. Furthermore, studies have shown that pyroptosis, the pro-inflammatory programmed cell death, contributes to the progress of DCM. MicroRNAs (miRNAs) also have been proved to take part in the formation of DCM. However, it is not clear whether and how miRNAs regulate myocardial cell pyroptosis in DCM development. In our study, the results showed that the expression of miR-223-3p was significantly increased in cardiomyocytes induced by high glucose, whereas the down-regulation of miR-223-3p weakened it. To understand the the signal transduction mechanism of miR-223-3p leading to pyroptosis, we found inhibition of miR-223-3p expression down-reguulated caspase-1, pro-inflammatory cytokines IL-1β and other pyroptosis-associated poteins. Moreover, miR-223-3p repressed SPI1 expression. Furthermore, we silenced SPI1 with siRNA to mimick the effect of miR-223-3p, up-regulating the expression of caspase-1 and resulting to pyroptosis. The above findings inspired us to propose a new signaling pathway to regulate scoria of cardiomyocytes under hyperglycemia: miR-223-3p↑→ SPI1↓→ caspase-1↑ → IL-1β and other pyroptosis-associated poteins↑→ pyroptosis↑. In summary, miR-223-3p could be a potential therapeutic target for DCM.
Collapse
Affiliation(s)
- Simin Zhao
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, and The Second Affiliated Hospital, Hengyang Medical School,University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Yao Tan
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, and The Second Affiliated Hospital, Hengyang Medical School,University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Jianning Qin
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, and The Second Affiliated Hospital, Hengyang Medical School,University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Haiqiang Xu
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, and The Second Affiliated Hospital, Hengyang Medical School,University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Lingyun Liu
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, and The Second Affiliated Hospital, Hengyang Medical School,University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Hengquan Wan
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, and The Second Affiliated Hospital, Hengyang Medical School,University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Chi Zhang
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, and The Second Affiliated Hospital, Hengyang Medical School,University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Wenjing Fan
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, and The Second Affiliated Hospital, Hengyang Medical School,University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Shunlin Qu
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, and The Second Affiliated Hospital, Hengyang Medical School,University of South China, Hengyang City, Hunan Province 421001, PR China
| |
Collapse
|
15
|
miRNA and mRNA Expression Profiles Associated with Lymph Node Metastasis and Prognosis in Penile Carcinoma. Int J Mol Sci 2022; 23:ijms23137103. [PMID: 35806108 PMCID: PMC9266734 DOI: 10.3390/ijms23137103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023] Open
Abstract
Penile cancer (PeC) is a rare disease, and no prognostic biomarkers have been adopted in clinical practice yet. The objective of the present study was to identify differentially expressed miRNAs (DEmiRs) and genes (DEGs) as potential biomarkers for lymph node metastasis and other prognostic factors in PeC. Tumor samples were prospectively obtained from 24 patients with squamous cell carcinoma of the penis. miRNA microarray analysis was performed comparing tumors from patients with inguinal lymph node metastatic and localized disease, and the results were validated by qRT-PCR. Eighty-three gene expression levels were also compared between groups through qRT-PCR. Moreover, DEmiRs and DEGs expression levels were correlated with clinicopathological variables, cancer-specific (CSS), and overall survival (OS). TAC software, TM4 MeV 4.9 software, SPSS v.25.0, and R software v.4.0.2 were used for statistical analyses. We identified 21 DEmiRs in microarray analysis, and seven were selected for validation. miR-744-5p and miR-421 were overexpressed in tissue samples of metastatic patients, and high expression of miR-421 was also associated with lower OS. We found seven DEGs (CCND1, EGFR, ENTPD5, HOXA10, IGF1R, MYC, and SNAI2) related to metastatic disease. A significant association was found between increased MMP1 expression and tumor size, grade, pathological T stage, and perineural invasion. Other genes were also associated with clinicopathological variables, CSS and OS. Finally, we found changes in mRNA–miRNA regulation that contribute to understanding the mechanisms involved in tumor progression. Therefore, we identified miRNA and mRNA expression profiles as potential biomarkers associated with lymph node metastasis and prognosis in PeC, in addition to disruption in mRNA–miRNA regulation during disease progression.
Collapse
|
16
|
Pinho JD, Silva GEB, Teixeira-Júnior AAL, Rocha TMS, Batista LL, de Sousa AM, Calixto JDRR, Burbano RR, de Souza CRT, Khayat AS. Non-Coding RNA in Penile Cancer. Front Oncol 2022; 12:812008. [PMID: 35651809 PMCID: PMC9150447 DOI: 10.3389/fonc.2022.812008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/11/2022] [Indexed: 11/25/2022] Open
Abstract
Penile cancer (PC) still presents a health threat for developing countries, in particular Brazil. Despite this, little progress has been made on the study of markers, including molecular ones, that can aid in the correct management of the patient, especially concerning lymphadenectomy. As in other neoplasms, non-coding RNAs (ncRNAs) have been investigated for penile cancer, with emphasis on microRNAs, piRNAs (PIWI-interacting small RNAs), and long non-coding RNAs (LncRNAs). In this context, this review aims to assemble the available knowledge on non-coding RNA linked in PC, contributing to our understanding of the penile carcinogenesis process and addressing their clinical relevance. ncRNAs are part of the novel generation of biomarkers, with high potential for diagnosis and prognosis, orientating the type of treatment. Furthermore, its versatility regarding the use of paraffin samples makes it possible to carry out retrospective studies.
Collapse
Affiliation(s)
- Jaqueline Diniz Pinho
- Zé Doca Center for Higher Studies, State University of Maranhão, Zé Doca, Brazil
- Laboratory of Immunofluorescence and Electron Microscopy, University Hospital of the Federal University of Maranhão, São Luís, Brazil
- Oncology Research Center, João de Barros Barreto University Hospital, Federal University of Pará, Belém, Brazil
- *Correspondence: Jaqueline Diniz Pinho,
| | - Gyl Eanes Barros Silva
- Laboratory of Immunofluorescence and Electron Microscopy, University Hospital of the Federal University of Maranhão, São Luís, Brazil
| | - Antonio Augusto Lima Teixeira-Júnior
- Laboratory of Immunofluorescence and Electron Microscopy, University Hospital of the Federal University of Maranhão, São Luís, Brazil
- Department of Genetics, University of Sao Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Thalita Moura Silva Rocha
- Laboratory of Immunofluorescence and Electron Microscopy, University Hospital of the Federal University of Maranhão, São Luís, Brazil
| | - Lecildo Lira Batista
- Oncology Research Center, João de Barros Barreto University Hospital, Federal University of Pará, Belém, Brazil
- Coordination of Medicine, Federal University of Amapá, Macapá, Brazil
| | - Amanda Marques de Sousa
- Oncology Research Center, João de Barros Barreto University Hospital, Federal University of Pará, Belém, Brazil
| | | | | | | | - André Salim Khayat
- Oncology Research Center, João de Barros Barreto University Hospital, Federal University of Pará, Belém, Brazil
| |
Collapse
|
17
|
Shi L, Feng L, Tong Y, Jia J, Li T, Wang J, Jiang Z, Yu M, Xia H, Jin Q, Jiang X, Cheng Y, Ju L, Liu J, Zhang Q, Lou J. Genome wide profiling of miRNAs relevant to the DNA damage response induced by hexavalent chromium exposure (DDR-related miRNAs in response to Cr (VI) exposure). ENVIRONMENT INTERNATIONAL 2021; 157:106782. [PMID: 34329887 DOI: 10.1016/j.envint.2021.106782] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
AIM We aimed to explore the expression of miRNAs and their potential roles in the DNA damage response (DDR) induced by Cr (VI) exposure in human B lymphoblast cells (HMy2.CIR cells) and in a population of Cr (VI)-exposed humans. METHODS Differentially expressed miRNAs were found by a combination of miRNA sequencing and RT-qPCR validation in HMy2.CIR cells treated with K2Cr2O7. Differentially expressed miRNAs related to DDR were selected for functional study. The expression levels of differential miRNAs were also investigated in chromate workers. RESULTS A total of 214 differentially expressed miRNAs were identified by sequencing, and the expression of 5 miRNAs among 25 associated with DDR was found to be consistent between sequencing and validation studies.Functional studies showed that miR-148a-3p, miR-21-5p, and miR-424-3p might be related to Cr (VI)-induced cell apoptosis, and miR-221-3p might participate in Cr (VI)-induced DDR. We also found that the expression of miR-21-5p and miR-424-3p was upregulated in chromate workers. CONCLUSIONS Cr (VI) exposure could significantly impact miRNAs expression in vitro and in chromate workers. Functional studies showed that miR-148a-3p, miR-21-5p and miR-221-3p might take a crucial role in the cellular DDR induced by Cr (VI) exposure.
Collapse
Affiliation(s)
- Li Shi
- School of Public Health (Institute of Occupational Diseases), Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, Zhejiang, China
| | - Lingfang Feng
- School of Public Health (Institute of Occupational Diseases), Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, Zhejiang, China
| | - Yan Tong
- Affiliated Hangzhou First People's Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China
| | - Junlin Jia
- Center for Biostatistics, Bioinformatics and Big Data, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tao Li
- School of Public Health (Institute of Occupational Diseases), Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, Zhejiang, China
| | - Jing Wang
- School of Public Health (Institute of Occupational Diseases), Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, Zhejiang, China
| | - Zhaoqiang Jiang
- School of Public Health (Institute of Occupational Diseases), Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, Zhejiang, China
| | - Min Yu
- School of Public Health (Institute of Occupational Diseases), Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, Zhejiang, China
| | - Hailing Xia
- School of Public Health (Institute of Occupational Diseases), Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, Zhejiang, China
| | - Qi Jin
- School of Public Health (Institute of Occupational Diseases), Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, Zhejiang, China
| | - Xiyi Jiang
- School of Public Health (Institute of Occupational Diseases), Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, Zhejiang, China
| | - Yongran Cheng
- School of Public Health (Institute of Occupational Diseases), Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, Zhejiang, China
| | - Li Ju
- School of Public Health (Institute of Occupational Diseases), Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, Zhejiang, China
| | - Jiaqi Liu
- School of Public Health (Institute of Occupational Diseases), Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, Zhejiang, China
| | - Quan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Jianlin Lou
- School of Public Health (Institute of Occupational Diseases), Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, Zhejiang, China.
| |
Collapse
|
18
|
Xu R, Yu SS, Yao RR, Tang RC, Liang JW, Pang X, Zhang J. Interferon-Inducible LINC02605 Promotes Antiviral Innate Responses by Strengthening IRF3 Nuclear Translocation. Front Immunol 2021; 12:755512. [PMID: 34804040 PMCID: PMC8602795 DOI: 10.3389/fimmu.2021.755512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/11/2021] [Indexed: 11/26/2022] Open
Abstract
Non-coding RNAs represent a class of important regulators in immune response. Previously, LINC02605 was identified as a candidate regulator in innate immune response by lncRNA microarray assays. In this study, we systematically analyzed the functions and the acting mechanisms of LINC02605 in antiviral innate immune response. LINC02605 was up-regulated by RNA virus, DNA virus, and type I IFNs in NF-κB and Jak-stat dependent manner. Overexpression of LINC02605 promotes RNA virus-induced type I interferon production and inhibited viral replication. Consistently, knockdown of LINC02605 resulted in reduced antiviral immune response and increased viral replication. Mechanistically, LINC02605 released the inhibition of hsa-miR-107 on the expression of phosphatase and tensin homolog (PTEN). By microRNA mimics and inhibitors, hsa-miR-107 was demonstrated to not only inhibit PTEN’s expression but also negatively regulate the antiviral immune response. Knockdown of LINC02605 led to the reduction of PTEN expression both in mRNA and protein levels. Overexpression of LINC02605 had an opposite impact. Moreover, LINC02605 attenuated the serine 97 phosphorylation level of interferon regulatory factor 3 (IRF3) by promoting PTEN expression. Nucleoplasmic fragmentation assay showed that knocking down LINC02605 inhibited the nuclear translocation of IRF3, rendering the host cells more susceptible to viral invasion, while overexpression showed opposite effects. Therefore, LINC02605 is an induced lncRNA by viral infection and plays a positive feedback in antiviral immune response through modulating the nuclear translocation of IRF3.
Collapse
Affiliation(s)
- Rui Xu
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Peking University Health Science Center, Beijing, China
| | - Shuang-Shuang Yu
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Peking University Health Science Center, Beijing, China
| | - Ran-Ran Yao
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Peking University Health Science Center, Beijing, China
| | - Rong-Chun Tang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Peking University Health Science Center, Beijing, China
| | - Jia-Wei Liang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Peking University Health Science Center, Beijing, China
| | - Xuewen Pang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Peking University Health Science Center, Beijing, China
| | - Jun Zhang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Peking University Health Science Center, Beijing, China
| |
Collapse
|
19
|
Furuya TK, Murta CB, Murillo Carrasco AG, Uno M, Sichero L, Villa LL, Cardilli L, Coelho RF, Guglielmetti GB, Cordeiro MD, Leite KRM, Nahas WC, Chammas R, Pontes J. Disruption of miRNA-mRNA Networks Defines Novel Molecular Signatures for Penile Carcinogenesis. Cancers (Basel) 2021; 13:cancers13194745. [PMID: 34638231 PMCID: PMC8507530 DOI: 10.3390/cancers13194745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/13/2021] [Accepted: 09/18/2021] [Indexed: 11/16/2022] Open
Abstract
Penile cancer (PeC) carcinogenesis is not fully understood, and no biomarkers are reported in clinical practice. We aimed to investigate molecular signatures based on miRNA and mRNA and perform an integrative analysis to identify molecular drivers and pathways for PeC development. Affymetrix miRNA microarray was used to identify differentially expressed miRNAs (DEmiRs) comparing 11 tumoral tissues (TT) paired with non-neoplastic tissues (NNT) with further validation in an independent cohort (n = 13). We also investigated the mRNA expression of 83 genes in the total sample. Experimentally validated targets of DEmiRs, miRNA-mRNA networks, and enriched pathways were evaluated in silico. Eight out of 69 DEmiRs identified by microarray analysis were validated by qRT-PCR (miR-145-5p, miR-432-5p, miR-487b-3p, miR-30a-5p, miR-200a-5p, miR-224-5p, miR-31-3p and miR-31-5p). Furthermore, 37 differentially expressed genes (DEGs) were identified when comparing TT and NNT. We identified four downregulated DEmiRs (miR-30a-5p, miR-432-5p, miR-487b-3p, and miR-145-5p) and six upregulated DEGs (IL1A, MCM2, MMP1, MMP12, SFN and VEGFA) as potential biomarkers in PeC by their capacity of discriminating TT and NNT with accuracy. The integration analysis showed eight dysregulated miRNA-mRNA pairs in penile carcinogenesis. Taken together, our findings contribute to a better understanding of the regulatory roles of miRNAs and altered transcripts levels in penile carcinogenesis.
Collapse
Affiliation(s)
- Tatiane Katsue Furuya
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), Sao Paulo CEP 01246-000, SP, Brazil; (A.G.M.C.); (M.U.); (L.S.); (L.L.V.); (R.C.)
- Correspondence: (T.K.F.); (C.B.M.)
| | - Claudio Bovolenta Murta
- Departamento de Urologia, ICESP, HCFMUSP, Sao Paulo CEP 01246-000, SP, Brazil; (R.F.C.); (G.B.G.); (M.D.C.); (K.R.M.L.); (W.C.N.); (J.P.J.)
- Correspondence: (T.K.F.); (C.B.M.)
| | - Alexis Germán Murillo Carrasco
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), Sao Paulo CEP 01246-000, SP, Brazil; (A.G.M.C.); (M.U.); (L.S.); (L.L.V.); (R.C.)
| | - Miyuki Uno
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), Sao Paulo CEP 01246-000, SP, Brazil; (A.G.M.C.); (M.U.); (L.S.); (L.L.V.); (R.C.)
| | - Laura Sichero
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), Sao Paulo CEP 01246-000, SP, Brazil; (A.G.M.C.); (M.U.); (L.S.); (L.L.V.); (R.C.)
| | - Luisa Lina Villa
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), Sao Paulo CEP 01246-000, SP, Brazil; (A.G.M.C.); (M.U.); (L.S.); (L.L.V.); (R.C.)
| | - Leonardo Cardilli
- Departamento de Patologia, ICESP, HCFMUSP, Sao Paulo CEP 01246-000, SP, Brazil;
| | - Rafael Ferreira Coelho
- Departamento de Urologia, ICESP, HCFMUSP, Sao Paulo CEP 01246-000, SP, Brazil; (R.F.C.); (G.B.G.); (M.D.C.); (K.R.M.L.); (W.C.N.); (J.P.J.)
| | - Giuliano Betoni Guglielmetti
- Departamento de Urologia, ICESP, HCFMUSP, Sao Paulo CEP 01246-000, SP, Brazil; (R.F.C.); (G.B.G.); (M.D.C.); (K.R.M.L.); (W.C.N.); (J.P.J.)
| | - Mauricio Dener Cordeiro
- Departamento de Urologia, ICESP, HCFMUSP, Sao Paulo CEP 01246-000, SP, Brazil; (R.F.C.); (G.B.G.); (M.D.C.); (K.R.M.L.); (W.C.N.); (J.P.J.)
| | - Katia Ramos Moreira Leite
- Departamento de Urologia, ICESP, HCFMUSP, Sao Paulo CEP 01246-000, SP, Brazil; (R.F.C.); (G.B.G.); (M.D.C.); (K.R.M.L.); (W.C.N.); (J.P.J.)
| | - William Carlos Nahas
- Departamento de Urologia, ICESP, HCFMUSP, Sao Paulo CEP 01246-000, SP, Brazil; (R.F.C.); (G.B.G.); (M.D.C.); (K.R.M.L.); (W.C.N.); (J.P.J.)
| | - Roger Chammas
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), Sao Paulo CEP 01246-000, SP, Brazil; (A.G.M.C.); (M.U.); (L.S.); (L.L.V.); (R.C.)
| | - José Pontes
- Departamento de Urologia, ICESP, HCFMUSP, Sao Paulo CEP 01246-000, SP, Brazil; (R.F.C.); (G.B.G.); (M.D.C.); (K.R.M.L.); (W.C.N.); (J.P.J.)
| |
Collapse
|
20
|
Pinho JD, Barros Silva GE, Teixeira Júnior AAL, Belfort MRDC, Mendes JMM, Calixto JDRR, Nogueira LR, Burbano RR, Khayat AS. Downregulation of miR-145 is associated with perineural invasion in penile carcinoma. Transl Androl Urol 2021; 10:2019-2026. [PMID: 34159082 PMCID: PMC8185688 DOI: 10.21037/tau-20-1378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background Human papillomavirus (HPV) infection is a risk factor for penile cancer (PC). The miR-145 expression has been correlated to this virus genomic amplification. In this context, this work aims to determine the expression level of miR-145 in penile tumors infected by high-risk HPV and correlate it with the clinicopathological characteristics of the tumor and protein expression of p53. Methods Formalin-fixed paraffin-embedded from 52 patients with PC, at diagnosis and prior to any cancer treatment, were obtained. HPV identification was performed by nested type PCR, and miR-145 expression was obtained by qRT-PCR. Immunohistochemical analysis of p53 and Ki-67 was performed. Results Tumoral miR-145 expression was significantly lower compared to adjacent tissue. Additionally, there was a significant reduction of miR-145 expression in invasion perineural, histological associated HPV, and absence of p53 expression in positive HPV cases. HPV infection was detected in 86.5%, the most frequent HPV16. Reduced disease-free survival was observed in patients with low expression of miR-145. Conclusions Our data suggest that the underexpression of miR-145 may be triggered by HPV action, decreasing protein expression of p53, and being correlated with perineural invasion. Therefore, the deregulation of miR-145 provides clues as to the potential role in penile carcinogenesis and is also a potential candidate for validation in noninvasive samples.
Collapse
Affiliation(s)
- Jaqueline Diniz Pinho
- University State of Maranhão, Zé Doca, MA, Brazil.,Laboratory of Imunofluorescence and Electron Microscopy, Hospital Universitário Presidente Dutra (HUUFMA), São Luís, Brazil.,Núcleo de Pesquisa em Oncologia, João de Barros Barreto University Hospital, Belém, PA, Brazil
| | - Gyl Eanes Barros Silva
- Laboratory of Imunofluorescence and Electron Microscopy, Hospital Universitário Presidente Dutra (HUUFMA), São Luís, Brazil.,Department of Pathology, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Antonio Augusto Lima Teixeira Júnior
- Laboratory of Imunofluorescence and Electron Microscopy, Hospital Universitário Presidente Dutra (HUUFMA), São Luís, Brazil.,Departamento of Genetics, University of Sao Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marta Regina de Castro Belfort
- Laboratory of Imunofluorescence and Electron Microscopy, Hospital Universitário Presidente Dutra (HUUFMA), São Luís, Brazil
| | - Juliana Melo Macedo Mendes
- Laboratory of Imunofluorescence and Electron Microscopy, Hospital Universitário Presidente Dutra (HUUFMA), São Luís, Brazil
| | | | | | | | - André Salim Khayat
- Núcleo de Pesquisa em Oncologia, João de Barros Barreto University Hospital, Belém, PA, Brazil
| |
Collapse
|
21
|
Chen HA, Li CC, Lin YJ, Wang TF, Chen MC, Su YH, Yeh YL, Padma VV, Liao PH, Huang CY. Hsa-miR-107 regulates chemosensitivity and inhibits tumor growth in hepatocellular carcinoma cells. Aging (Albany NY) 2021; 13:12046-12057. [PMID: 33901009 PMCID: PMC8109096 DOI: 10.18632/aging.202908] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/25/2021] [Indexed: 01/19/2023]
Abstract
Hepatocellular carcinoma is a common type of liver cancer. Resistance to chemotherapeutic agents is a major problem in cancer therapy. MicroRNAs have been reported in cancer development and tumor growth; however, the relationship between chemoresistance and hepatocellular carcinoma needs to be fully investigated. Here, we treated hepatocellular carcinoma cell line (HA22T) with a histone deacetylase inhibitor to establish hepatocellular carcinoma-resistant cells (HDACi-R) and investigated the molecular mechanisms of chemoresistance in HCC cells. Although histone deacetylase inhibitor could not enhance cell death in HDACi-R but upregulation of miR-107 decreased cell viability both in parental cells and resistance cells, decreased the expression of cofilin-1, enhanced ROS-induced cell apoptosis, and dose-dependently sensitized HDACi-R to HDACi. Further, miR-107 upregulation resulted in tumor cell disorganization in both HA22T and HDACi-R in a mice xenograft model. Our findings demonstrated that miR-107 downregulation leads to hepatocellular carcinoma cell resistance in HDACi via a cofilin-1-dependent molecular mechanism and ROS accumulation.
Collapse
Affiliation(s)
- Hsin-An Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City 250, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 250, Taiwan.,Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei City 250, Taiwan
| | - Chi-Cheng Li
- Center of Stem Cell & Precision Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Yu-Jung Lin
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Tso-Fu Wang
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Ming-Cheng Chen
- Division of Colorectal Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Yen-Hao Su
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City 250, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 250, Taiwan.,Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei City 250, Taiwan
| | - Yu-Lan Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua 500, Taiwan.,Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 356, Taiwan
| | - V Vijaya Padma
- Department of Biotechnology, Bharathiar University, Coimbatore 641046, India
| | - Po-Hsiang Liao
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan.,Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 413, Taiwan
| |
Collapse
|
22
|
Li X, Guo Y, Wang X, Ge A, Wang H, Fan K, Guo C. Clinical significance of serum miR-487b in HBV-related hepatocellular carcinoma and its potential mechanism. Infect Dis (Lond) 2021; 53:546-554. [PMID: 33783293 DOI: 10.1080/23744235.2021.1901981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a malignant tumour with high mortality. In recent years, microRNA (miRNA) has been recognized in the diagnosis and prognosis of cancer. miR-487b has been found to play a role in a variety of cancers. The purpose of this study is to explore the role of miR-487b in the diagnosis and prognosis of hepatitis B virus (HBV)-related HCC, and its influence on the biological behaviour of HCC cells. METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) method was used to detect the expression level of miR-487b in the serum of HCC patients, HBV patients, and healthy people. The ROC curve was used to evaluate the role of miR-487b in the diagnosis of HCC. The prognostic significance of miR-487b in HCC was analyzed by the Kaplan-Meier survival curve and Cox regression model. The effects of miR-487b on cell proliferation, migration, and invasion were explored through MTT assay and transwell assays. RESULTS The expression level of miR-487b in the serum of HBV-related HCC patients was significantly higher than that of CHB patients and normal healthy people. The expression level of miR-487b can distinguish HCC patients from CHB patients or normal healthy people. High expression of miR-487b was associated with poor prognosis, which could be used as an independent prognostic factor for HCC. The upregulation of miR-487b promoted cell proliferation, migration, and invasion. CONCLUSION miR-487b can be used as a biomarker for the diagnosis and prognosis of HCC.
Collapse
Affiliation(s)
- Xiuping Li
- Department of Laboratory, Zibo Municipal Hospital, Zibo, Shandong, China
| | - Yuzhen Guo
- Department of Laboratory, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Xiyan Wang
- Department of Gastroenterology, Rizhao Central Hospital, Rizhao, Shandong, China
| | - Anning Ge
- Department of Infectious Diseases, People's Hospital of Rizhao, Rizhao, Shandong, China
| | - Hui Wang
- Department of Infectious Diseases, People's Hospital of Rizhao, Rizhao, Shandong, China
| | - Kaiyun Fan
- Department of Infectious Diseases, People's Hospital of Rizhao, Rizhao, Shandong, China
| | - Changtong Guo
- Department of Infectious Diseases, People's Hospital of Rizhao, Rizhao, Shandong, China
| |
Collapse
|
23
|
Ayoubian H, Heinzelmann J, Hölters S, Khalmurzaev O, Pryalukhin A, Loertzer P, Heinzelbecker J, Lohse S, Geppert C, Loertzer H, Wunderlich H, Bohle RM, Stöckle M, Matveev VB, Hartmann A, Junker K. miRNA Expression Characterizes Histological Subtypes and Metastasis in Penile Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:1480. [PMID: 33807023 PMCID: PMC8004785 DOI: 10.3390/cancers13061480] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
Although microRNAs are described as promising biomarkers in many tumor types, little is known about their role in PSCC. Thus, we attempted to identify miRNAs involved in tumor development and metastasis in distinct histological subtypes considering the impact of HPV infection. In a first step, microarray analyses were performed on RNA from formalin-fixed, paraffin-embedded tumor (22), and normal (8) tissue samples. Microarray data were validated for selected miRNAs by qRT-PCR on an enlarged cohort, including 27 tumor and 18 normal tissues. We found 876 significantly differentially expressed miRNAs (p ≤ 0.01) between HPV-positive and HPV-negative tumor samples by microarray analysis. Although no significant differences were detected between normal and tumor tissue in the whole cohort, specific expression patterns occurred in distinct histological subtypes, such as HPV-negative usual PSCC (95 differentially expressed miRNAs, p ≤ 0.05) and HPV-positive basaloid/warty subtypes (247 differentially expressed miRNAs, p ≤ 0.05). Selected miRNAs were confirmed by qRT-PCR. Furthermore, microarray data revealed 118 miRNAs (p ≤ 0.01) that were significantly differentially expressed in metastatic versus non-metastatic usual PSCC. The lower expression levels for miR-137 and miR-328-3p in metastatic usual PSCC were validated by qRT-PCR. The results of this study confirmed that specific miRNAs could serve as potential diagnostic and prognostic markers in single PSCC subtypes and are associated with HPV-dependent pathways.
Collapse
Affiliation(s)
- Hiresh Ayoubian
- Department of Urology and Paediatric Urology, Saarland University, 66421 Homburg, Germany; (H.A.); (J.H.); (S.H.); (O.K.); (P.L.); (J.H.); (M.S.)
| | - Joana Heinzelmann
- Department of Urology and Paediatric Urology, Saarland University, 66421 Homburg, Germany; (H.A.); (J.H.); (S.H.); (O.K.); (P.L.); (J.H.); (M.S.)
- Department of Ophthalmology, Martin-Luther-University Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Sebastian Hölters
- Department of Urology and Paediatric Urology, Saarland University, 66421 Homburg, Germany; (H.A.); (J.H.); (S.H.); (O.K.); (P.L.); (J.H.); (M.S.)
| | - Oybek Khalmurzaev
- Department of Urology and Paediatric Urology, Saarland University, 66421 Homburg, Germany; (H.A.); (J.H.); (S.H.); (O.K.); (P.L.); (J.H.); (M.S.)
- Department of Urology, Federal State Budgetary Institution “N.N. Blokhin National Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, 115478 Moscow, Russia;
| | - Alexey Pryalukhin
- Institute of Pathology, Saarland University Medical Centre, 66421 Homburg, Germany; (A.P.); (R.M.B.)
| | - Philine Loertzer
- Department of Urology and Paediatric Urology, Saarland University, 66421 Homburg, Germany; (H.A.); (J.H.); (S.H.); (O.K.); (P.L.); (J.H.); (M.S.)
- Westpfalz-Klinikum, Clinic of Urology and Paediatric Urology, 67655 Kaiserslautern, Germany;
| | - Julia Heinzelbecker
- Department of Urology and Paediatric Urology, Saarland University, 66421 Homburg, Germany; (H.A.); (J.H.); (S.H.); (O.K.); (P.L.); (J.H.); (M.S.)
| | - Stefan Lohse
- Institute of Virology, Saarland University, 66421 Homburg, Germany;
| | - Carol Geppert
- Institute of Pathology, University Erlangen-Nuremberg, 91054 Erlangen, Germany; (C.G.); (A.H.)
| | - Hagen Loertzer
- Westpfalz-Klinikum, Clinic of Urology and Paediatric Urology, 67655 Kaiserslautern, Germany;
| | - Heiko Wunderlich
- St. Georg Klinikum, Clinic of Urology and Paediatric Urology, 99817 Eisenach, Germany;
| | - Rainer M. Bohle
- Institute of Pathology, Saarland University Medical Centre, 66421 Homburg, Germany; (A.P.); (R.M.B.)
| | - Michael Stöckle
- Department of Urology and Paediatric Urology, Saarland University, 66421 Homburg, Germany; (H.A.); (J.H.); (S.H.); (O.K.); (P.L.); (J.H.); (M.S.)
| | - Vsevolod Borisovich Matveev
- Department of Urology, Federal State Budgetary Institution “N.N. Blokhin National Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, 115478 Moscow, Russia;
| | - Arndt Hartmann
- Institute of Pathology, University Erlangen-Nuremberg, 91054 Erlangen, Germany; (C.G.); (A.H.)
| | - Kerstin Junker
- Department of Urology and Paediatric Urology, Saarland University, 66421 Homburg, Germany; (H.A.); (J.H.); (S.H.); (O.K.); (P.L.); (J.H.); (M.S.)
| |
Collapse
|
24
|
Si H, Wang H, Xiao H, Fang Y, Wu Z. Anti-Tumor Effect of Celastrol on Hepatocellular Carcinoma by the circ_SLIT3/miR-223-3p/CXCR4 Axis. Cancer Manag Res 2021; 13:1099-1111. [PMID: 33574707 PMCID: PMC7872924 DOI: 10.2147/cmar.s278023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/16/2020] [Indexed: 01/20/2023] Open
Abstract
Background Celastrol is a potential anti-tumor agent in hepatocellular carcinoma (HCC). Identifying the molecular determinants of the anti-HCC effect of celastrol is still challenging. In this study, we undertook to associate circular RNAs (circRNAs) with the anti-HCC molecular determinants of celastrol. Methods Cell colony formation, proliferation, migration, invasion and apoptosis were determined using the colony formation, 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-2H-tetrazolium bromide (MTS), transwell and flow cytometry assays, respectively. The levels of circRNA slit guidance ligand 3 (circ_SLIT3), miR-223-3p and C-X-C motif chemokine receptor 4 (CXCR4) were gauged by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. Ribonuclease R (RNase R) and actinomycin D assays were performed to assess the stability of circ_SLIT3. Targeted relationships among circ_SLIT3, miR-223-3p and CXCR4 were confirmed by the dual-luciferase reporter assay. In vivo assays were performed to detect the roles of celastrol and circ_SLIT3 on tumor growth in vivo. Results Celastrol repressed HCC cell proliferation, migration, invasion, and enhanced apoptosis in vitro and suppressed tumor growth in vivo. Celastrol down-regulated circ_SLIT3 expression in HCC cells, and celastrol exerted an anti-tumor effect on HCC in vitro and in vivo by down-regulating circ_SLIT3. Mechanistically, circ_SLIT3 directly interacted with miR-223-3p, and circ_SLIT3 controlled CXCR4 expression by sponging miR-223-3p. Moreover, miR-223-3p was involved in the celastrol/circ_SLIT3-mediated regulation on HCC progression. Furthermore, celastrol exerted the anti-HCC effect in vitro through the miR-223-3p/CXCR4 axis. Conclusion Our present work first identified the circ_SLIT3/miR-223-3p/CXCR4 axis as a novel mechanism of the anti-HCC effect of celastrol, providing a new insight into the involvement of circRNAs in the anti-tumor molecular determinants of celastrol.
Collapse
Affiliation(s)
- Hailong Si
- First School of Clinical Medical, Shaanxi University of Traditional Chinese Medicine, Xianyang, 712000, People's Republic of China
| | - Huiling Wang
- First School of Clinical Medical, Shaanxi University of Traditional Chinese Medicine, Xianyang, 712000, People's Republic of China
| | - Haijuan Xiao
- Department of Oncology, Affiliated Hospital of the Shaanxi University of Traditional Chinese Medicine, Xianyang, 712000, People's Republic of China
| | - Yu Fang
- First School of Clinical Medical, Shaanxi University of Traditional Chinese Medicine, Xianyang, 712000, People's Republic of China
| | - Zhaoli Wu
- Department of Oncology, Affiliated Hospital of the Shaanxi University of Traditional Chinese Medicine, Xianyang, 712000, People's Republic of China
| |
Collapse
|