1
|
Wang J, Lu X, Zhuge B, Zong H. Enhancing the catalytic efficiency of M32 carboxypeptidase by semi-rational design and its applications in food taste improvement. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7375-7385. [PMID: 38666395 DOI: 10.1002/jsfa.13558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/02/2024] [Accepted: 04/26/2024] [Indexed: 05/09/2024]
Abstract
BACKGROUND Carboxypeptidase is an exopeptidase that hydrolyzes amino acids at the C-terminal end of the peptide chain and has a wide range of applications in food. However, in industrial applications, the relatively low catalytic efficiency of carboxypeptidases is one of the main limiting factors for industrialization. RESULTS The study has enhanced the catalytic efficiency of Bacillus megaterium M32 carboxypeptidase (BmeCPM32) through semi-rational design. Firstly, the specific activity of the optimal mutant, BmeCPM32-M2, obtained through single-site mutagenesis and combinatorial mutagenesis, was 2.2-fold higher than that of the wild type (187.9 versus 417.8 U mg-1), and the catalytic efficiency was 2.9-fold higher (110.14 versus 325.75 s-1 mmol-1). Secondly, compared to the wild type, BmeCPM32-M2 exhibited a 1.8-fold increase in half-life at 60 °C, with no significant changes in its enzymatic properties (optimal pH, optimal temperature). Finally, BmeCPM32-M2 significantly increased the umami intensity of soy protein isolate hydrolysate by 55% and reduced bitterness by 83%, indicating its potential in developing tasty protein components. CONCLUSION Our research has revealed that the strategy based on protein sequence evolution and computational residue mutation energy led to an improved catalytic efficiency of BmeCPM32. Molecular dynamics simulations have revealed that a smaller substrate binding pocket and increased enzyme-substrate affinity are the reasons for the enhanced catalytic efficiency. Furthermore the number of hydrogen bonds and solvent and surface area may contribute to the improvement of thermostability. Finally, the de-bittering effect of BmeCPM32-M2 in soy protein isolate hydrolysate suggests its potential in developing palatable protein components. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jinjiang Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xinyao Lu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Bin Zhuge
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Hong Zong
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
2
|
Ruiz-Lara G, Costa-Silva TA, Muso-Cachumba JJ, Cevallos Espinel J, Fontes MG, Garcia-Maya M, Rahman KM, Rangel-Yagui CDO, Monteiro G. Nonclinical Evaluation of Single-Mutant E. coli Asparaginases Obtained by Double-Mutant Deconvolution: Improving Toxicological, Immune and Inflammatory Responses. Int J Mol Sci 2024; 25:6008. [PMID: 38892196 PMCID: PMC11172649 DOI: 10.3390/ijms25116008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Acute lymphoblastic leukaemia is currently treated with bacterial L-asparaginase; however, its side effects raise the need for the development of improved and efficient novel enzymes. Previously, we obtained low anti-asparaginase antibody production and high serum enzyme half-life in mice treated with the P40S/S206C mutant; however, its specific activity was significantly reduced. Thus, our aim was to test single mutants, S206C and P40S, through in vitro and in vivo assays. Our results showed that the drop in specific activity was caused by P40S substitution. In addition, our single mutants were highly stable in biological environment simulation, unlike the double-mutant P40S/S206C. The in vitro cell viability assay demonstrated that mutant enzymes have a higher cytotoxic effect than WT on T-cell-derived ALL and on some solid cancer cell lines. The in vivo assays were performed in mice to identify toxicological effects, to evoke immunological responses and to study the enzymes' pharmacokinetics. From these tests, none of the enzymes was toxic; however, S206C elicited lower physiological changes and immune/allergenic responses. In relation to the pharmacokinetic profile, S206C exhibited twofold higher activity than WT and P40S two hours after injection. In conclusion, we present bioengineered E. coli asparaginases with high specific enzyme activity and fewer side effects.
Collapse
Affiliation(s)
- Grace Ruiz-Lara
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (G.R.-L.); (J.J.M.-C.); (M.G.F.); (C.d.O.R.-Y.)
| | - Tales A. Costa-Silva
- Center for Natural and Human Sciences, Federal University of ABC, Santo André 09210-580, SP, Brazil;
| | - Jorge Javier Muso-Cachumba
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (G.R.-L.); (J.J.M.-C.); (M.G.F.); (C.d.O.R.-Y.)
| | | | - Marina Gabriel Fontes
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (G.R.-L.); (J.J.M.-C.); (M.G.F.); (C.d.O.R.-Y.)
| | - Mitla Garcia-Maya
- Randall Division of Cell and Molecular Biophysics, King’s College London, London SE1 1UL, UK;
| | | | - Carlota de Oliveira Rangel-Yagui
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (G.R.-L.); (J.J.M.-C.); (M.G.F.); (C.d.O.R.-Y.)
| | - Gisele Monteiro
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (G.R.-L.); (J.J.M.-C.); (M.G.F.); (C.d.O.R.-Y.)
| |
Collapse
|
3
|
Dumina M, Zhdanov D, Zhgun A, Pokrovskaya M, Aleksandrova S, Veselovsky A, El’darov M. Enhancing the Catalytic Activity of Thermo-Asparaginase from Thermococcus sibiricus by a Double Mesophilic-like Mutation in the Substrate-Binding Region. Int J Mol Sci 2023; 24:9632. [PMID: 37298582 PMCID: PMC10253665 DOI: 10.3390/ijms24119632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
L-asparaginases (L-ASNases) of microbial origin are the mainstay of blood cancer treatment. Numerous attempts have been performed for genetic improvement of the main properties of these enzymes. The substrate-binding Ser residue is highly conserved in L-ASNases regardless of their origin or type. However, the residues adjacent to the substrate-binding Ser differ between mesophilic and thermophilic L-ASNases. Based on our suggestion that the triad, including substrate-binding Ser, either GSQ for meso-ASNase or DST for thermo-ASNase, is tuned for efficient substrate binding, we constructed a double mutant of thermophilic L-ASNase from Thermococcus sibiricus (TsA) with a mesophilic-like GSQ combination. In this study, the conjoint substitution of two residues adjacent to the substrate-binding Ser55 resulted in a significant increase in the activity of the double mutant, reaching 240% of the wild-type enzyme activity at the optimum temperature of 90 °C. The mesophilic-like GSQ combination in the rigid structure of the thermophilic L-ASNase appears to be more efficient in balancing substrate binding and conformational flexibility of the enzyme. Along with increased activity, the TsA D54G/T56Q double mutant exhibited enhanced cytotoxic activity against cancer cell lines with IC90 values from 2.8- to 7.4-fold lower than that of the wild-type enzyme.
Collapse
Affiliation(s)
- Maria Dumina
- Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 117312 Moscow, Russia; (D.Z.); (A.Z.)
| | - Dmitry Zhdanov
- Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 117312 Moscow, Russia; (D.Z.); (A.Z.)
- Institute of Biomedical Chemistry, 119121 Moscow, Russia (A.V.)
| | - Alexander Zhgun
- Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 117312 Moscow, Russia; (D.Z.); (A.Z.)
| | | | | | | | - Michael El’darov
- Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 117312 Moscow, Russia; (D.Z.); (A.Z.)
| |
Collapse
|
4
|
Seyedi SH, Alhagh MS, Ahmadizad M, Ardalan N, Hosseininezhadian Koushki E, Farshadfar C, Amjadi B. Structural screening into the recognition of a potent inhibitor against non-structural protein 16: a molecular simulation to inhibit SARS-CoV-2 infection. J Biomol Struct Dyn 2022; 40:14115-14130. [PMID: 34762019 DOI: 10.1080/07391102.2021.2001374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
COVID-19 infection is caused by endemic crown infection (SARS-CoV-2) and is associated with lung damage and severe immune response. Non-Structural Proteins are the central components of coronaviral transcription and replication machinery in SARS-CoV-2 and also stimulate mRNA cap methylation to avoid the immune response. Non-Structural Protein 16 (NSP16) is one of the primary targets for the drug discovery of coronaviruses. Discovering an effective inhibitor against the NSP16 in comparison with Sinefungin was the main purpose of this investigation. Binding free-energy calculations, computational methods of molecular dynamics, docking, and virtual screening were utilized in this study. The ZINC and PubChem databases were applied to screen some chemical compounds regarding Sinefungin as a control inhibitor. Based on structural similarity to Sinefungin, 355 structures were obtained from the mentioned databases. Subsequently, this set of compounds were monitored by AutoDock Vina software, and ultimately the potent inhibitor (PUBCHEM512713) was chosen. At the next stage, molecular dynamics were carried out by GROMACS software to evaluate the potential elected compounds in a simulated environment and in a timescale of 100 nanoseconds. MM-PBSA investigation exhibited that the value of binding free energy for PUBCHEM512713 (-30.829 kJ.mol-1) is more potent than Sinefungin (-11.941 kJ.mol-1). Furthermore, the results of ADME analysis illustrated that the pharmacokinetics, drug-likeness, and lipophilicity parameters of PUBCHEM512713 are admissible for human utilization. Finally, our data suggested that PUBCHEM512713 is an effective drug candidate for inhibiting the NSP16 and is suitable for in vitro and in vivo studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Seyed Hamid Seyedi
- Department of Biochemistry, Science and Research Branch, Islamic Azad University, Sanandaj, Iran
| | - Mohammad Shakib Alhagh
- Department of Microbiology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mehran Ahmadizad
- Department of Biochemistry, Science and Research Branch, Islamic Azad University, Sanandaj, Iran
| | - Noeman Ardalan
- Department of Microbiology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Chiako Farshadfar
- Department of Biochemistry, Science and Research Branch, Islamic Azad University, Sanandaj, Iran
| | - Barzan Amjadi
- Department of Biochemistry, Science and Research Branch, Islamic Azad University, Sanandaj, Iran
| |
Collapse
|
5
|
Strzelczyk P, Zhang D, Wlodawer A, Lubkowski J. The E. coli L-asparaginase V27T mutant: structural and functional characterization and comparison with theoretical predictions. FEBS Lett 2022; 596:3060-3068. [PMID: 36310372 PMCID: PMC10673687 DOI: 10.1002/1873-3468.14526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 01/14/2023]
Abstract
Bacterial L-asparaginases have been used for over 40 years as anticancer drugs. Ardalan et al. (Medical Hypotheses 112, 7-17, 2018) proposed that the V27T mutant of Escherichia coli type II L-asparaginase, EcAII(V27T), should display altered biophysical and catalytic properties compared to the wild-type enzyme, EcAII(wt), rendering it more favourable as a pharmaceutical. They postulated that EcAII(V27T) would exhibit reduced glutaminolytic activity and be more stable compared to EcAII(wt). Their postulates, however, were purely theoretical. Here, we characterized experimentally selected properties of EcAII(V27T). We found asparaginolytic activity of this mutant unchanged, whereas its glutaminolytic activity was fourfold lower compared with EcAII(wt). We did not observe significant differences in stabilities of EcAII(wt) and EcAII(V27T). Crystal structures of the complexes with L-Asp and L-Glu showed considerable differences in binding modes of both substrates.
Collapse
Affiliation(s)
- Pawel Strzelczyk
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Di Zhang
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Alexander Wlodawer
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Jacek Lubkowski
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| |
Collapse
|
6
|
Enhancing the Catalytic Activity of Type II L-Asparaginase from Bacillus licheniformis through Semi-Rational Design. Int J Mol Sci 2022; 23:ijms23179663. [PMID: 36077061 PMCID: PMC9456134 DOI: 10.3390/ijms23179663] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 01/10/2023] Open
Abstract
Low catalytic activity is a key factor limiting the widespread application of type II L-asparaginase (ASNase) in the food and pharmaceutical industries. In this study, smart libraries were constructed by semi-rational design to improve the catalytic activity of type II ASNase from Bacillus licheniformis. Mutants with greatly enhanced catalytic efficiency were screened by saturation mutations and combinatorial mutations. A quintuple mutant ILRAC was ultimately obtained with specific activity of 841.62 IU/mg and kcat/Km of 537.15 min−1·mM−1, which were 4.24-fold and 6.32-fold more than those of wild-type ASNase. The highest specific activity and kcat/Km were firstly reported in type II ASNase from Bacillus licheniformis. Additionally, enhanced pH stability and superior thermostability were both achieved in mutant ILRAC. Meanwhile, structural alignment and molecular dynamic simulation demonstrated that high structure stability and strong substrate binding were beneficial for the improved thermal stability and enzymatic activity of mutant ILRAC. This is the first time that enzymatic activity of type II ASNase from Bacillus licheniformis has been enhanced by the semi-rational approach, and results provide new insights into enzymatic modification of L-asparaginase for industrial applications.
Collapse
|
7
|
Shayan S, Jamaran S, Askandar RH, Rahimi A, Elahi A, Farshadfar C, Ardalan N. The SARS-Cov-2 Proliferation Blocked by a Novel and Potent Main Protease Inhibitor via Computer-aided Drug Design. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:399-418. [PMID: 34903997 PMCID: PMC8653640 DOI: 10.22037/ijpr.2021.114846.15061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The recent prevalence of novel "coronavirus disease 2019" has expanded quickly globally, causing a universal pandemic. Herein, an effort was constructed to design a potent drug to inhibit the main protease of SARS-Cov-2 (3CLp) by means of structure-based drug design. A large library of the compounds was used for virtual screening. After molecular docking and ADME studies, we selected a compound with a better binding affinity to the 3CLp active site and acceptable ADME properties compared to the selected positive control drug. Molecular dynamic (MD) simulation (200 ns) and Molecular Mechanics-Poisson Boltzmann Surface Area (MM-PBSA) were used for further analysis. MD simulation outcomes have proved that the 3CLp-ZINC31157475 complex possesses a considerable value of dynamic properties such as flexibility, stability, compactness, and binding energy. Our MM-PBSA computation illustrates that ZINC31157475 is more potent (-88.03 kcal mol-1) than nelfinavir (-19.54 kcal mol-1) against COVID-19 3CLp. Further, we have determined that the main residues of the 3CLp interact with ligands from per-residue binding energy. In conclusion, we suggest that ZINC31157475 can potentially treat COVID-19 by inhibition of the 3CLp. However, in-vitro and in-vivo study is essential for approval of this suggestion.
Collapse
Affiliation(s)
- Sepideh Shayan
- Department of Biochemistry, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Shahab Jamaran
- Department of Microbiology, Faculty of Biological Sciences, Arak Branch, Islamic Azad University, Arak, Iran.
| | | | - Arian Rahimi
- Young Researchers and Elite Club, East Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Azam Elahi
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Chiako Farshadfar
- Department of Biochemistry, Faculty of Biological Sciences, Science and Research Branch, Islamic Azad University, Sanandaj, Iran.
| | - Noeman Ardalan
- Department of Microbiology, Faculty of Biological Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|