1
|
Xu W, Huang X, Yuan J, Wang Y, Wu M, Ni H, Dong L. The potential for synthesized invasive plant biochar with hydroxyapatite to mitigate allelopathy of Solidago canadensis. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2833. [PMID: 36864716 DOI: 10.1002/eap.2833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/06/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Few studies tried to explore the mitigation effect and underlying mechanisms of biochar and their complex for negative allelopathy from invasive plants, which may provide a new way in the invasive plant management. Herein, an invasive plant (Solidago canadensis)-derived biochar (IBC) and its composite with hydroxyapatite (HAP/IBC) were synthesized by high temperature pyrolysis, and characterized by scanning electron microscopy, energy dispersion spectrometer, X-ray diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. Then, both the batch adsorption and pot experiments were conducted to compare the removal effects of kaempferol-3-O-β-D-glucoside (C21 H20 O11 , kaempf), an allelochemical from S. canadensis, on IBC and HAP/IBC, respectively. HAP/IBC showed a stronger affinity for kaempf than IBC due to its higher specific surface area, more functional groups (P-O, P-O-P, PO4 3- ), stronger crystallization [Ca3 (PO4 )2 ]. The maximum kaempf adsorption capacity on HAP/IBC was six times higher than on IBC (10.482 mg/g > 1.709 mg/g) via π-π interactions, functional groups, and metal complexation. The kaempf adsorption process could be fitted best by both pseudo-second-order kinetic and Langmuir isotherm models. Furthermore, HAP/IBC addition into soils could enhance and even recover the germination rate and/or seedling growth of tomato inhibited by negative allelopathy from the invasive S. canadensis. These results indicate that the composite of HAP/IBC could more effectively mitigate the allelopathy from S. canadensis than IBC, which may be a potential efficient approach to control the invasive plant and improve invaded soils.
Collapse
Affiliation(s)
- Wenna Xu
- School of Life Science, Shaoxing University, Shaoxing, People's Republic of China
| | - Xueyi Huang
- School of Life Science, Shaoxing University, Shaoxing, People's Republic of China
| | - Jiajie Yuan
- Shaoxing Customs, Hangzhou Customs District, Shaoxing, People's Republic of China
| | - Yanhong Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Mengmin Wu
- School of Life Science, Shaoxing University, Shaoxing, People's Republic of China
| | - Hongtai Ni
- School of Life Science, Shaoxing University, Shaoxing, People's Republic of China
| | - Lijia Dong
- School of Life Science, Shaoxing University, Shaoxing, People's Republic of China
| |
Collapse
|
2
|
Perera PCD, Chmielowiec C, Szymura TH, Szymura M. Effects of extracts from various parts of invasive Solidago species on the germination and growth of native grassland plant species. PeerJ 2023; 11:e15676. [PMID: 37529210 PMCID: PMC10389070 DOI: 10.7717/peerj.15676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/12/2023] [Indexed: 08/03/2023] Open
Abstract
Allelopathy is an important factor influencing whether an invasive plant species can become successfully established in a new range through disrupting the germination and growth of native plant species. Goldenrods (Solidago species) are one of the most widespread invasive taxa in Central Europe of North American origin. Owing to their high environmental impact and wide distribution range, invasive Solidago species should be controlled in Europe, and the areas invaded by them should be restored. Numerous studies have reported the allelopathic effects of Solidago gigantea and Solidago canadensis, but the results are inconsistent regarding differences in the allelopathic effects of particular plant parts and in the sensitivity to Solidago allelopathic effects among native species as well as between the two invasive species themselves. In this study, we aimed to analyse the effect of water extracts from S. canadensis and S. gigantea parts (roots, rhizomes, stems, leaves, and inflorescences) on the germination and initial growth of seedlings of 13 grassland species that typically grow in Central Europe. The tested grassland species differed in susceptibility to Solidago allelopathy, with the most resistant species being Schedonorus pratensis, Lolium perenne, Trifolium pratense, Daucus carota and Leucanthemum vulgare. The inhibitory effect of 10% water extracts from leaves and flowers were stronger than those from rhizomes, roots, and stems without leaves, regardless of the Solidago species. Our study results imply that reducing the allelopathic effect of Solidago during habitat restoration requires removal of the aboveground parts, including fallen leaves. The allelopathic effects of roots and rhizomes seem to be of secondary importance.
Collapse
Affiliation(s)
| | - Cezary Chmielowiec
- Institute of Agroecology and Plant Production, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | | | - Magdalena Szymura
- Institute of Agroecology and Plant Production, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
3
|
Kama R, Javed Q, Bo Y, Imran MA, Filimban FZ, Li Z, Nong X, Diatta S, Ren G, Eldin SM, Iqbal R, Ali I, Iqbal J, Sun J. Identity and Diversity of Invasive Plant Affecting the Growth of Native Lactuca indica. ACS OMEGA 2023; 8:17983-17991. [PMID: 37251179 PMCID: PMC10210172 DOI: 10.1021/acsomega.3c01139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023]
Abstract
Despite the significant number of studies that have recently focused on plant invasion and invasive plants' success, many uncertainties still exist on the effects of invasive plant identity and diversity on the native plant response under different levels of diversity. A mixed planting experiment was conducted using the native Lactuca indica (L. indica) and four invasive plants. The treatments consisted of 1, 2, 3, and 4 levels of invasive plants richness in different combinations in competition with the native L. indica. Here, the results showed that native plant response depends on the invasive plant identity and invasive plant diversity, which increases the native plant total biomass under 2-3 levels of invasive plant richness and decreases under high invasive plant density. This plant diversity effect was more significant in the native plant relative interaction index, which shows negative values except under a single invasion with Solidago canadensis and Pilosa bidens. The native plant leaf nitrogen level increased under four levels of invasive plant richness, which means more affected by invasive plant identity than invasive plant diversity. Finally, this study demonstrated that native plant response under invasion depends on the identity and diversity of invasive plants.
Collapse
Affiliation(s)
- Rakhwe Kama
- Institute
of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- Institute
of Farmland Irrigation of CAAS, Xinxiang 453002, China
| | - Qaiser Javed
- Institute
of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yanwen Bo
- Institute
of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Muhammad A. Imran
- Shenzhen
International Graduate School, Tsinghua
University, Shenzhen 518055, China
| | - Faten Zubair Filimban
- Division
of Plant Sciences Department of Biology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Zhongyang Li
- Institute
of Farmland Irrigation of CAAS, Xinxiang 453002, China
| | - Xuhua Nong
- Key
Laboratory of Tropical Medicinal Resource Chemistry of Ministry of
Education, Hainan Normal University, Haikou 571158, China
| | - Sekouna Diatta
- Laboratory
of Ecology, Faculty of Sciences and Technology, Cheikh Anta Diop University of Dakar, Dakar 50005, Senegal
| | - Guangqian Ren
- Institute
of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sayed M Eldin
- Center
of Research, Faculty of Engineering, Future
University in Egypt, New Cairo 11835, Egypt
| | - Rashid Iqbal
- Department
of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Iftikhar Ali
- Center
for Plant Science and Biodiversity, University
of Swat, Charbagh 19120, Pakistan
- Department
of Genetics and Development, Columbia University
Irving Medical Center, New York, New York 10032, United States
| | - Javed Iqbal
- Department
of Botany, Bacha Khan University, Charsadda 24420, Khyber Pakhtunkhwa, Pakistan
| | - Jianfan Sun
- Institute
of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- Key
Laboratory of Tropical Medicinal Resource Chemistry of Ministry of
Education, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
4
|
Zhong S, Xu Z, Li Y, Li C, Yu Y, Wang C, Du D. What modulates the impacts of acid rain on the allelopathy of the two Asteraceae invasives? ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:114-126. [PMID: 36652123 DOI: 10.1007/s10646-023-02623-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Most of the allelopathic studies have focused on the independent allelopathy of one invasive plant, but have ignored the co-allelopathy of the two invasives. The variations in the type of acid rain can modulate the invasiveness of invasives via the changes in the allelopathy. Thus, it is vital to elucidate the allelopathy of invasives, particularly the co-allelopathy of the two invasives, under acid rain with different types, to illuminate the mechanisms driving the co-invasion of two invasives under diversified acid rain. However, little progress has been finished in this aspect presently. This study aimed to evaluate the co-allelopathy of two Asteraceae invasives Solidago canadensis L. and Erigeron annuus L. treated with acid rain with different nitrogen-to-sulfur ratios on seed germination and seedling growth of the horticultural Asteraceae species Lactuca sativa L. via a hydroponic experiment. Aqueous extracts of the two Asteraceae invasives generated obvious allelopathy on L. sativa. S. canadensis aqueous extracts caused stronger allelopathy. There may be an antagonistic effect for the co-allelopathy of the two Asteraceae invasives. Nitric acid at pH 5.6 weakened the allelopathy of the two Asteraceae invasives, but the other types of acid rain strengthened the allelopathy of the two Asteraceae invasives. The allelopathy of the two Asteraceae invasives increases with the increasing acidity of acid rain, but the allelopathy of the two Asteraceae invasives decreases with the increasing nitrogen-to-sulfur ratio of acid rain. Accordingly, the species number of invasives, and the acidity and type of acid rain modulated the impacts of acid rain on the allelopathy of the two Asteraceae invasives.
Collapse
Affiliation(s)
- Shanshan Zhong
- School of Emergency Management, Jiangsu University, Zhenjiang, 212013, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Zhelun Xu
- School of Emergency Management, Jiangsu University, Zhenjiang, 212013, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yue Li
- School of Emergency Management, Jiangsu University, Zhenjiang, 212013, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Chuang Li
- School of Emergency Management, Jiangsu University, Zhenjiang, 212013, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Youli Yu
- School of Emergency Management, Jiangsu University, Zhenjiang, 212013, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Congyan Wang
- School of Emergency Management, Jiangsu University, Zhenjiang, 212013, China.
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, China.
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China.
| | - Daolin Du
- School of Emergency Management, Jiangsu University, Zhenjiang, 212013, China.
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
5
|
Ren G, Yang B, Cui M, Yu H, Fan X, Dai Z, Sun J, Li G, Zhang H, Du D. Additive effects of warming and nitrogen addition on the performance and competitiveness of invasive Solidago canadensis L. FRONTIERS IN PLANT SCIENCE 2022; 13:1017554. [PMID: 36407577 PMCID: PMC9671518 DOI: 10.3389/fpls.2022.1017554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/14/2022] [Indexed: 05/04/2023]
Abstract
Changes in temperature and nitrogen (N) deposition determine the growth and competitive dominance of both invasive and native plants. However, a paucity of experimental evidence limits understanding of how these changes influence plant invasion. Therefore, we conducted a greenhouse experiment in which invasive Solidago canadensis L. was planted in mixed culture with native Artemisia argyi Levl. et Van under combined conditions of warming and N addition. Our results show that due to the strong positive effect of nitrogen addition, the temperature increases and nitrogen deposition interaction resulted in greatly enhanced species performance. Most of the relative change ratios (RCR) of phenotypic traits differences between S. canadensis and A. argyi occur in the low invasion stage, and six of eight traits had higher RCR in response to N addition and/or warming in native A. argyi than in invasive S. canadensis. Our results also demonstrate that the effects of the warming and nitrogen interaction on growth-related traits and competitiveness of S. canadensis and A. argyi were usually additive rather than synergistic or antagonistic. This conclusion suggests that the impact of warming and nitrogen deposition on S. canadensis can be inferred from single factor studies. Further, environmental changes did not modify the competitive relationship between invasive S. canadensis and native A. argyi but the relative yield of S. canadensis was significantly greater than A. argyi. This finding indicated that we can rule out the influence of environmental changes such as N addition and warming which makes S. canadensis successfully invade new habitats through competition. Correlation analysis showed that invasive S. canadensis may be more inclined to mobilize various characteristics to strengthen competition during the invasion process, which will facilitate S. canadensis becoming the superior competitor in S. canadensis-A. argyi interactions. These findings contribute to our understanding of the spreading of invasive plants such as S. canadensis under climate change and help identify potential precautionary measures that could prevent biological invasions.
Collapse
Affiliation(s)
- Guangqian Ren
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, China
| | - Bin Yang
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Miaomiao Cui
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Haochen Yu
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Xue Fan
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Zhicong Dai
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, China
| | - Jianfan Sun
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Guanlin Li
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Haiyan Zhang
- School of Inspection and Testing Certification, Changzhou Vocational Institute of Engineering, Changzhou, China
| | - Daolin Du
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, China
- *Correspondence: Daolin Du,
| |
Collapse
|
6
|
Cheng H, Wu B, Wang S, Wei M, Wang C. Nitrogen application and osmotic stress antagonistically affect wheat seed germination and seedling growth. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 23:1289-1300. [PMID: 33689505 DOI: 10.1080/15226514.2021.1895715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Atmospheric nitrogen (N) deposition (AtNiDe) and drought stress (DS) have strongly affected plant growth. However, previous research has primarily focused on the effects of AtNiDe with various levels and DS on plant growth (especially seed germination and seedling growth). This study aimed to evaluate the single and combined effects of AtNiDe with four types (compounds: NH4-N, NO3-N, CO(NH2)2-N, and a mixture of the three types of N) and DS (three levels: control, low, and high) on wheat seed germination and seedling growth. The AtNiDe treatment increased wheat seed germination and seedling growth. Mixed N exerted a greater positive effect on wheat seed germination and seedling growth than single N forms. Organic N also had a greater positive effect on wheat seed germination and seedling growth than reduced inorganic N. The DS treatment decreased wheat seed germination and seedling growth. The AtNiDe treatment alleviated the adverse effects of DS on wheat seed germination and seedling growth. Mixed N had the greatest effect on alleviating the adverse effects of DS on wheat seed germination and seedling growth. Thus, AtNiDe and DS antagonistically affected wheat seed germination and seedling growth. NOVELTY STATEMENT This study assessed the single and combined effects of atmospheric nitrogen deposition with four types and drought stress at three levels on wheat seed germination and seedling growth. Generally, nitrogen and drought antagonistically affected wheat seed germination and seedling growth.
Collapse
Affiliation(s)
- Huiyuan Cheng
- Institute of Environment and Ecology and School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Bingde Wu
- Institute of Environment and Ecology and School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
- School of Chemistry and Chemical Engineering, Zhaotong University, Zhaotong, China
| | - Shu Wang
- Institute of Environment and Ecology and School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Mei Wei
- Institute of Environment and Ecology and School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Congyan Wang
- Institute of Environment and Ecology and School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
7
|
Does N deposition mitigate the adverse impacts of drought stress on plant seed germination and seedling growth? ACTA OECOLOGICA 2020. [DOI: 10.1016/j.actao.2020.103650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Wei M, Wang S, Wu B, Cheng H, Wang C. Heavy metal pollution improves allelopathic effects of Canada goldenrod on lettuce germination. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:832-838. [PMID: 32335983 DOI: 10.1111/plb.13126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Large amounts of heavy metals have been released into the environment. Thus, the allelopathic effects of invasive alien species on the germination performance of co-occurring indigenous species may be altered or even heightened with the rapid growth in heavy metal pollution. This study evaluated the impacts of Canada goldenrod (Solidago canadensis L.) leaf extracts at concentrations of 0, 10 or 20 gl 1 on the germination of lettuce under different forms of heavy metal pollution (Cu2+ , Pb2+ or a combination of Cu2+ and Pb2+ ; 35 mgl 1) during incubation in Petri dishes for 10 days. Goldenrod leaf extracts (high concentration) reduced growth of aboveground and belowground parts of lettuce as well as competition for light and soil nutrients. However, low concentrations of goldenrod leaf extracts dramatically improved growth of lettuce roots, competition for light, soil nutrient availability, leaf photosynthetic area and growth competitiveness. The combination of goldenrod leaf extracts and heavy metal pollution was synergistic on most lettuce germination parameters, probably because high concentrations of goldenrod leaf extracts together with heavy metal pollution had a synergistic negative impact on lettuce germination. Consequently, increased levels of heavy metal pollution may favour invasion of invasive alien species while largely suppressing germination of indigenous species.
Collapse
Affiliation(s)
- M Wei
- Institute of Environment and Ecology & School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - S Wang
- Institute of Environment and Ecology & School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - B Wu
- Institute of Environment and Ecology & School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - H Cheng
- Institute of Environment and Ecology & School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - C Wang
- Institute of Environment and Ecology & School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, China
| |
Collapse
|
9
|
Wei M, Wang S, Wu B, Cheng H, Wang C. Combined allelopathy of Canada goldenrod and horseweed on the seed germination and seedling growth performance of lettuce. LANDSCAPE AND ECOLOGICAL ENGINEERING 2020. [DOI: 10.1007/s11355-020-00421-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Wang C, Wu B, Jiang K. Allelopathic effects of Canada goldenrod leaf extracts on the seed germination and seedling growth of lettuce reinforced under salt stress. ECOTOXICOLOGY (LONDON, ENGLAND) 2019; 28:103-116. [PMID: 30547327 DOI: 10.1007/s10646-018-2004-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/24/2018] [Indexed: 05/20/2023]
Abstract
Allelopathic effects on the seed germination and seedling growth of the natives play a crucial role in the successful invasion of numerous invaders. Meanwhile, soil salinity is an emerging driver of the spread of many invaders, especially in the colonization of saline habitats. Thus, the allelopathic effects of the invaders on the seed germination and seedling growth of the natives may be altered or even reinforced under salt stress. This study aims to address the allelopathic effects of the notorious invader Canada goldenrod (Solidago canadensis L.; goldenrod hereafter) on the seed germination and seedling growth of the native lettuce (Lactuca sativa L.; lettuce hereafter) under a gradient of salt stress. Goldenrod leaf extracts with high concentration significantly decreased root length, leaf shape index, germination percentage, germination potential, germination index, germination vigor index, and germination rate index of lettuce. However, goldenrod leaf extracts with low concentration significantly increased root length and leaf width of lettuce. Goldenrod leaf extracts with high concentration display more serious allelopathic effects on the seed germination and seedling growth of lettuce than those with low concentration. Salt stress regardless of concentration significantly decreased seedling height, root length, leaf shape index, and seedling biomass (fresh weight) of lettuce. The combined goldenrod leaf extracts and salt stress have a synergistic effect on seedling height, root length, leaf shape index, germination percentage, germination potential, germination index, and germination rate index of lettuce. Thus, the allelopathic effects of the invaders on the seed germination and seedling growth of the natives may be reinforced under salt stress. Accordingly, salt stress may be beneficial to the further invasion of the invaders mainly via the reduced growth performance of the natives.
Collapse
Affiliation(s)
- Congyan Wang
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security & School of the Environment and Safety Engineering, Jiangsu University, 212013, Zhenjiang, P. R. China.
| | - Bingde Wu
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security & School of the Environment and Safety Engineering, Jiangsu University, 212013, Zhenjiang, P. R. China
| | - Kun Jiang
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security & School of the Environment and Safety Engineering, Jiangsu University, 212013, Zhenjiang, P. R. China
| |
Collapse
|
11
|
Wang C, Jiang K, Wu B, Zhou J, Lv Y. Silver nanoparticles with different particle sizes enhance the allelopathic effects of Canada goldenrod on the seed germination and seedling development of lettuce. ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:1116-1125. [PMID: 30083995 DOI: 10.1007/s10646-018-1966-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/09/2018] [Indexed: 05/25/2023]
Abstract
Allelopathic effects on the seed germination and seedling development of co-occurring native plant species (natives hereafter) are regarded as an important driver facilitating invasion of many invasive plant species (invaders hereafter). The release of silver nanoparticles (AgNPs) into the environment may affect the allelopathic effects of the invaders on the seed germination and seedling development of natives. This study aims to assess the allelopathic effects (using leaf extracts) of Canada goldenrod (Solidago canadensis L.) on the seed germination and seedling development of native lettuce (Lactuca sativa L.) treated with AgNPs with different particle sizes. Canada goldenrod leaf extracts with high concentration exhibit stronger allelopathic effects on the seedling height and root length of lettuce than those treated with low concentration. AgNPs of all particle sizes significantly decreased seed germination and seedling development indices of lettuce. AgNPs with larger particle sizes exerted stronger toxicity on leaf length and width of lettuce than those with smaller particle sizes. Thus, nanoparticles with larger particle sizes might mediate the production of increased sizes of cell wall pore size and large absorption of such substances by plant roots can be harmful. AgNPs significantly enhanced the allelopathic effects of Canada goldenrod on the seed germination and seedling development of lettuce. Small particle size AgNPs may play a more essential role in the enhanced allelopathic effects of low concentrations of Canada goldenrod leaf extracts; however, large particle size AgNPs may play a more important role in the enhanced allelopathic effects of high concentrations of Canada goldenrod leaf extracts.
Collapse
Affiliation(s)
- Congyan Wang
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security & School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Kun Jiang
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security & School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Bingde Wu
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security & School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jiawei Zhou
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security & School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yanna Lv
- School of Pharmacy, Weifang Medical University, Weifang, 261053, China
| |
Collapse
|
12
|
Liu C, Guo X, Wang K, Sun Y, Li W, Liu Q, Liu Q. Nitrogen deposition does not alleviate the adverse effects of shade on Camellia japonica (Naidong) seedlings. PLoS One 2018; 13:e0201896. [PMID: 30092088 PMCID: PMC6084955 DOI: 10.1371/journal.pone.0201896] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 07/24/2018] [Indexed: 11/19/2022] Open
Abstract
Camellia japonica (Naidong), a Tertiary relict species with a unique biological and cultural characteristic, is a special ecotype of C. japonica and is the northernmost distributed populations of C. japonica in the world. This study investigated the interactive responses of C. japonica (Naidong) to shade and nitrogen deposition focusing on seedling growth, leaf morphology and leaf physiology under two light regimes (15% and 65% of full sunlight to represent deep shade and slight shade respectively) and three nitrogen deposition regimes (0, 6 and 12 g N m-2 year-1) in a greenhouse. After 123 d of treatment, the results showed that the deep shade reduced the growth of seedlings significantly compared to slight shade, but improved the specific leaf area, leaf water content, chlorophyll content and Fv/Fm of plants. Moderate nitrogen (6 g N m-2 year-1) supply increased the crown area, specific leaf area, leaf water content, chlorophyll content and water use efficiency of seedlings. However, high nitrogen (12 g N m-2 year-1) supply reduced the basal diameter, crown area, specific leaf area and leaf water content. No significant interaction of shade and nitrogen deposition on C. japonica (Naidong) was found. There is a threshold of nitrogen deposition for the growth of C. japonica (Naidong). Camellia japonica (Naidong) populations should be protected by collecting of germplasm resources and carrying out the ex situ conservation.
Collapse
Affiliation(s)
- Cuiju Liu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, China
| | - Xiao Guo
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, China
- * E-mail: (XG); (QL)
| | - Kuiling Wang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, China
| | - Yingkun Sun
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, China
| | - Wei Li
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, China
| | - Qingchao Liu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, China
| | - Qinghua Liu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, China
- * E-mail: (XG); (QL)
| |
Collapse
|