1
|
Fan J, He K, Zhang Y, Li R, Yi X, Li S. HMGB1: new biomarker and therapeutic target of autoimmune and autoinflammatory skin diseases. Front Immunol 2025; 16:1569632. [PMID: 40308590 PMCID: PMC12040678 DOI: 10.3389/fimmu.2025.1569632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 03/26/2025] [Indexed: 05/02/2025] Open
Abstract
High-mobility group box 1 (HMGB1) is expressed in almost all human cells. During cell activation and cell death, the nucleoprotein HMGB1 can translocate to the extracellular space, thus mediating the early inflammatory response as an alarmin or damage-associated molecular pattern (DAMP). Extracellular HMGB1 interacts with immune cells by binding to pattern recognition Toll-like receptors (TLRs), including TLR2 and TLR4, and the receptor for advanced glycation end products (RAGE), thus mediating the immune response to protect the host against pathogens and maintain immune balance. HMGB1 is reportedly upregulated and is a critical biomarker for monitoring disease activity in several chronic inflammatory or autoimmune disorders, including multiple sclerosis, rheumatoid arthritis, inflammatory bowel disease, systemic lupus erythematosus and vitiligo. Additionally, the inhibition of HMGB1 expression or its activity has beneficial effects on disease activity in animal models of autoimmune diseases. Thus, HMGB1 is an indispensable biomarker and an important therapeutic target for autoimmune diseases. This review provides a detailed summary of the biological function of HMGB1 and provides a comprehensive outlook in terms of HMGB-focused diagnostic and therapeutic applications in autoimmune skin diseases.
Collapse
Affiliation(s)
- Jinrong Fan
- The College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Kaiqiao He
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yonghui Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Ruijing Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xiuli Yi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Shuli Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
2
|
Liu YK, Liu LS, Zhu BC, Chen XF, Tian LH. Sp1-mediated miR-193b suppresses atopic dermatitis by regulating HMGB1. Kaohsiung J Med Sci 2023; 39:769-778. [PMID: 37166084 DOI: 10.1002/kjm2.12693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 03/24/2023] [Accepted: 04/09/2023] [Indexed: 05/12/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic and recurrent inflammatory skin disease. Keratinocyte dysfunction plays a central role in AD development. MicroRNA is a novel player in many inflammatory and immune skin diseases. In this study, we investigated the potential function and regulatory mechanism of miR-193b in AD. Inflamed human keratinocytes (HaCaT) were established by tumor necrosis factor (TNF)-α/interferon (IFN)-γ stimulation. Cell viability was measured using MTT assay, while the cell cycle was analyzed using flow cytometry. The cytokine levels were examined by enzyme-linked immunosorbent assay. The interaction between Sp1, miR-193b, and HMGB1 was analyzed using dual luciferase reporter and/or chromatin immunoprecipitation (ChIP) assays. Our results revealed that miR-193b upregulation enhanced the proliferation of TNF-α/IFN-γ-treated keratinocytes and repressed inflammatory injury. miR-193b negatively regulated high mobility group box 1 (HMGB1) expression by directly targeting HMGB1. Furthermore, HMGB1 knockdown promoted keratinocyte proliferation and inhibited inflammatory injury by repressing nuclear factor kappa-B (NF-κB) activation. During AD progression, HMGB1 overexpression abrogated increase of keratinocyte proliferation and repression of inflammatory injury caused by miR-193b overexpression. Moreover, transcription factor Sp1 was identified as the biological partner of the miR-193b promoter in promoting miR-193b expression. Therefore, Sp1 upregulation promotes keratinocyte proliferation and represses inflammatory injury during AD development via promoting miR-193b expression and repressing HMGB1/NF-κB activation.
Collapse
Affiliation(s)
- Ying-Ke Liu
- Department of Dermatology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan Province, People's Republic of China
| | - Lei-Shan Liu
- Department of Dermatology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan Province, People's Republic of China
| | - Bo-Chen Zhu
- Department of Dermatology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan Province, People's Republic of China
| | - Xiu-Fang Chen
- Department of Dermatology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan Province, People's Republic of China
| | - Li-Hong Tian
- Department of Dermatology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan Province, People's Republic of China
| |
Collapse
|
3
|
Wang J, Xie KH, Ren W, Han RY, Xiao LH, Yu J, Tan RZ, Wang L, Liao DZ. Huanglian Jiedu plaster ameliorated X-ray-induced radiation dermatitis injury by inhibiting HMGB1-mediated macrophage-inflammatory interaction. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115917. [PMID: 36414215 DOI: 10.1016/j.jep.2022.115917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/27/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huanglian Jiedu plaster (HJP) is a kind of Chinese patent medicine that contains four medicinal plants. It has been clinically proven to be beneficial for the treatment of tumor-associated radiation dermatitis. However, the underlying mechanism of HJP on radiation dermatitis remains unclear. AIM OF THE STUDY This study aims to investigate the therapeutic effect of HJP on X-ray-induced radiation dermatitis, and how HJP improves the inflammatory response and skin damage of radiation dermatitis. MATERIALS AND METHODS In this study, We selected a case of esophageal cancer as a clinical demonstration of the efficacy of radiation dermatitis. The patient received a total radiation dose of 7000cGY, and treatment by HJP for 14 days.RD mouse models were established through continuous irradiation with X-ray (800cGY) on the right hind limb of mice for 5 days, and the treatment group mice was applied HJP to the irradiated skin for 15 days from modeling. An inflammatory cellular model was induced through irradiation with X-ray (100cGY) in JB6 cells and a co-culture system of JB6 cell and macrophage was established to examine the effect and mechanism of HJP on the inflammatory interaction of these two cells. The activation of HMGB1-TLR4-NF-κB signaling pathway, and the levels of epidermal injury related factors and inflammatory cytokins were subsequently detected. RESULTS The results showed that HJP can significantly alleviate X-ray-induced skin injury, inhibiting skin inflammation and reducing the expression of inflammatory cytokins (IL-1β, IL-6, TNF-α) and epidermal damage related factors (Integrin β1, CXCL9 and Cytokeratin17), as well as significantly down-regulated the protein level of HMGB1 (a key DAMPs factor) in vivo and in vitro. Cell co-culture experiments demonstrated that HMGB1 released from X-ray-induced JB6 cells can promote inflammatory response of macrophage, which then feedback aggravate epithelial cell damage, notably, HJP can significantly improve radiation skin lesion by inhibiting HMGB1-mediated inflammatory interaction between epithelial cells and macrophages. CONCLUSION In summary, these findings indicated the role of HJP in the treatment of RD by inhibiting the inflammatory interaction between macrophage and JB6 cells mediated by HMGB1, which may provide a reliable therapeutic method for RD. Furthermore, HMGB1 may be an effective target for HJP to inhibit inflammation and ameliorate skin damage in RD.
Collapse
Affiliation(s)
- Jie Wang
- Oncology, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China.
| | - Ke-Huan Xie
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China.
| | - Wei Ren
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China.
| | - Rang-Yue Han
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China.
| | - Li-Hong Xiao
- Oncology, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China.
| | - Jie Yu
- Oncology, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China.
| | - Rui-Zhi Tan
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China.
| | - Li Wang
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China.
| | - Da-Zhong Liao
- Oncology, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China.
| |
Collapse
|
4
|
In Vitro Antiosteoporosis Activity and Hepatotoxicity Evaluation in Zebrafish Larvae of Bark Extracts of Prunus jamasakura Medicinal Plant. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8582318. [PMID: 33029177 PMCID: PMC7532380 DOI: 10.1155/2020/8582318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/25/2020] [Accepted: 09/03/2020] [Indexed: 11/18/2022]
Abstract
Osteoporosis is one of the main health problems in the world today characterized by low bone mass and deterioration in bone microarchitecture. In recent years, the use of natural products approach to treat it has been in the increase. In this study, in vitro antiosteoporosis activity and hepatotoxicity of P. jamasakura bark extracts were evaluated. Methods. Mouse bone marrow macrophage (BMM) cells were incubated with tartrate-resistant acid phosphate (TRAP) buffers and p-nitrophenyl phosphate and cultured with different P. jamasakura bark extracts at concentrations of 0, 6.25, 12.5, 25, and 50 μg/ml in the presence of the receptor activator of nuclear factor kappa-Β ligand (RANKL) for 6 days. The osteoclast TRAP activity and cell viability were measured. Nitric oxide (NO) assay was conducted using murine macrophage-like RAW 264.7 cells treated with P. jamasakura ethanolic and methanolic bark extracts at concentrations of 0, 6.25, 12.5, 25, 50, 100, and 200 μg/ml. For hepatotoxicity assessment, zebrafish larvae were exposed to P. jamasakura bark extracts, 0.05% dimethyl sulfoxide as a negative control, and 5 μM tamoxifen as a positive control. The surviving larvae were anesthetized and assessed for hepatocyte apoptosis. Results. TRAP activity was significantly inhibited (p < 0.001) at all concentrations of P. jamasakura extracts compared to the control treatment. At 50 μg/ml, both ethanolic and methanolic extracts of P. jamasakura exhibited significant (p < 0.01) BMM cell viability compared to the control treatment. P. jamasakura ethanolic and methanolic extracts had significant inhibitory (p < 0.01) effects on lipopolysaccharide (LPS)-induced NO production at 200 μg/ml and exhibited significant (p < 0.01) and (p < 0.05) stimulative effects, respectively, on RAW 264.7 cell viability. No overt hepatotoxicity was observed in the liver of zebrafish larvae in any of the treatments. Conclusion. The TRAP activity of P. jamasakura bark gives a foundation for further studies to enhance future development of antiosteoporosis drug.
Collapse
|
5
|
Wang J, Li R, Peng Z, Hu B, Rao X, Li J. HMGB1 participates in LPS‑induced acute lung injury by activating the AIM2 inflammasome in macrophages and inducing polarization of M1 macrophages via TLR2, TLR4, and RAGE/NF‑κB signaling pathways. Int J Mol Med 2019; 45:61-80. [PMID: 31746367 PMCID: PMC6889921 DOI: 10.3892/ijmm.2019.4402] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 09/30/2019] [Indexed: 12/22/2022] Open
Abstract
High mobility group box 1 (HMGB1), a crucial proinflammatory cytokine, was reported to activate the absent in melanoma 2 (AIM2) inflammasome, which are both essential in acute lung injury (ALI). However, their interaction mechanism has remained elusive. Macrophages are known to express the AIM2 inflammasome and the main receptors [receptor for advanced glycation end products (RAGE), Toll‑like receptor 2/4 (TLR‑2/TLR‑4)] of HMGB1 to transmit intracellular signals. The present study aimed to indicate whether HMGB1 participates in the process of lipopolysaccharides (LPS)‑induced ALI through activating the AIM2 inflammasome in macrophages, as well as inducing polarization of M1 macrophages via TLR2, TLR4 and RAGE/ nuclear factor‑κB (NF‑κB) signaling pathways. In an in vivo mouse model of LPS‑induced ALI, anti‑HMGB1, recombinant (r)HMGB1, LPS from Rhodobacter sphaeroides (LPS‑RS, TLR2/4 antagonist) or FPS‑ZM1 (RAGE antagonist) were administrated. In in vitro studies, bone marrow‑derived macrophages from mice primed with LPS were stimulated with or without anti‑HMGB1, rHMGB1, LPS‑RS, or FPS‑ZM1. The findings revealed that anti‑HMGB1, LPS‑RS and FPS‑ZM1 significantly decreased infiltration of inflammatory cells, wet‑to‑dry ratio, myeloperoxidase activity in the lung, the levels of cytokines, as well as macrophages and neutrophil infiltration in the bronchoalveolar lavage fluid. However, rHMGB1 aggravated the inflammatory response in ALI. Mechanistically, anti‑HMGB1, LPS‑RS and FPS‑ZM1 attenuated activation of TLR2, TLR4, and RAGE/NF‑κB signaling pathways and expression of the AIM2 inflammasome in macrophages. However, rHMGB1 enhanced their expression levels and induced polarization of M1 macrophages. These results indicated that HMGB1 could participate in the pathogenesis of ALI by activating the AIM2 inflammasome in macrophages, as well as inducing polarization of M1 macrophages through TLR2, TLR4 and RAGE/NF‑κB signaling pathways.
Collapse
Affiliation(s)
- Jing Wang
- Department of Intensive Care Unit, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Ruiting Li
- Department of Intensive Care Unit, Wuhan Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Zhiyong Peng
- Department of Intensive Care Unit, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Bo Hu
- Department of Intensive Care Unit, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Xin Rao
- Department of Intensive Care Unit, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Jianguo Li
- Department of Intensive Care Unit, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
6
|
Sakuranetin downregulates inducible nitric oxide synthase expression by affecting interleukin-1 receptor and CCAAT/enhancer-binding protein β. J Nat Med 2018; 73:353-368. [PMID: 30467676 DOI: 10.1007/s11418-018-1267-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/07/2018] [Indexed: 12/31/2022]
Abstract
Pruni Cortex is a herbal drug from the bark of the Japanese flowering cherries, Prunus jamasakura or Prunus verecunda, and is included in the traditional Japanese herbal (Kampo) formula Jumihaidokuto, which is administered orally to patients suffering from inflammatory skin diseases. The flavanones contained in Pruni Cortex (e.g., sakuranetin and naringenin) have potent anti-inflammatory, anti-allergic, and anti-microbial activities. Although the effects of Pruni Cortex on skin disease have been well studied, reports regarding its pharmacological effects on the liver are limited. In this study, we extracted the bark of Prunus jamasakura and purified it to isolate the pharmacologically active constituents by monitoring nitric oxide (NO) production in rat hepatocytes that were treated with the pro-inflammatory cytokine, interleukin (IL)-1β. Sakuranetin and (-)-naringenin, which were present in an ethyl acetate-soluble fraction of the bark extract, significantly inhibited NO induction and inducible nitric oxide synthase (iNOS) expression. These two flavanones decreased the expression of type 1 IL-1 receptor gene and phosphorylation of Akt, also known as protein kinase B, which is regulated by phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K). Furthermore, sakuranetin decreased the phosphorylation of the activator isoforms of CCAAT/enhancer-binding protein β (C/EBPβ), which synergistically activates the transcription of the iNOS gene with nuclear factor κB (NF-κB). Therefore, sakuranetin inhibited the co-activating activity of C/EBPβ with NF-κB, leading to the suppression of iNOS gene expression in hepatocytes. Taken together, sakuranetin in Pruni Cortex downregulated the iNOS gene by inhibiting PI3K/Akt signal transduction and the phosphorylation of C/EBPβ. These results imply that sakuranetin may be primarily responsible for the anti-inflammatory effects of Pruni Cortex in the liver.
Collapse
|
7
|
Xu XY, Meng X, Li S, Gan RY, Li Y, Li HB. Bioactivity, Health Benefits, and Related Molecular Mechanisms of Curcumin: Current Progress, Challenges, and Perspectives. Nutrients 2018; 10:E1553. [PMID: 30347782 PMCID: PMC6213156 DOI: 10.3390/nu10101553] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/08/2018] [Accepted: 10/16/2018] [Indexed: 12/12/2022] Open
Abstract
Curcumin is a principal curcuminoid of turmeric (Curcuma longa), which is commonly used as a spice in cooking and a yellow pigment in the food processing industry. Recent studies have demonstrated that curcumin has a variety of biological activities and pharmacological performances, providing protection and promotion of human health. In addition to presenting an overview of the gut metabolism of curcumin, this paper reviews the current research progress on its versatile bioactivity, such as antioxidant, anti-inflammatory, and immune-regulatory activities, and also intensively discusses its health benefits, including the protective or preventive effects on cancers and diabetes, as well as the liver, nervous system, and cardiovascular systems, highlighting the potential molecular mechanisms. Besides, the beneficial effects of curcumin on human are further stated based on clinical trials. Considering that there is still a debate on the beneficial effects of curcumin, we also discuss related challenges and prospects. Overall, curcumin is a promising ingredient of novel functional foods, with protective efficacy in preventing certain diseases. We hope this comprehensive and updated review will be helpful for promoting human-based studies to facilitate its use in human health and diseases in the future.
Collapse
Affiliation(s)
- Xiao-Yu Xu
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Xiao Meng
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China.
| | - Ren-You Gan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Ya Li
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Hua-Bin Li
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
- South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
8
|
Watanabe K, Karuppagounder V, Sreedhar R, Kandasamy G, Harima M, Velayutham R, Arumugam S. Basidiomycetes-X, an edible mushroom, alleviates the development of atopic dermatitis in NC/Nga mouse model. Exp Mol Pathol 2018; 105:322-327. [PMID: 30312598 DOI: 10.1016/j.yexmp.2018.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 11/30/2022]
Abstract
Basidiomycetes-X (BDM-X) is a novel edible mushroom recently identified as a new fungi species and is effective against oxidative stress and anti-inflammation associated with immune response. However the effect of BDM-X on atopic dermatitis (AD) has not been elucidated. In this study, we have investigated the effect of BDM-X on AD skin lesions in NC/Nga mouse model. AD-like lesion was induced by the application of house dust mite extract (DfE) to the dorsal skin of NC/Nga mouse. After AD induction, BDM-X was administered once daily for 2 weeks. We have analyzed the effects of BDM-X on dermatitis severity, histopathological changes and changes in inflammatory and proinflammatory proteins expressions in DfE induced AD mice skin. Treatment with BDM-X attenuated the development of AD-like clinical symptoms and effectively inhibited hyperkeratosis, parakeratosis, acanthosis and mast cells in AD mice skin. Furthermore, BDM-X treatment inhibited DfE induced tumor necrosis factor (TNF)α, high mobility group protein (HMG)B1, nuclear factor kappa (NFκ)B and inflammatory cytokines. These results indicate that BDM-X inhibits AD through modulating Th1 and Th2 responses and diminishing the mast cells infiltration in the skin lesions in NC/Nga mice.
Collapse
Affiliation(s)
- Kenichi Watanabe
- Department of Laboratory Medicine and Clinical Epidemiology for Prevention of Noncommunicable Diseases, Niigata University Graduate School of Medical and Dental Sciences, 757, Ichibancho, Asahimachidori, Chuo ku, Niigata City 951-8510, Japan; Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1, Higashijima, Akiha ku, Niigata 956-8603, Japan.
| | - Vengadeshprabhu Karuppagounder
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1, Higashijima, Akiha ku, Niigata 956-8603, Japan; Department of Orthopedics and Rehabilitation, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Remya Sreedhar
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1, Higashijima, Akiha ku, Niigata 956-8603, Japan
| | - Geetha Kandasamy
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Meilei Harima
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1, Higashijima, Akiha ku, Niigata 956-8603, Japan; Faculty of Allied Health Sciences, Niigata University of Rehabilitation, 2-16, Kaminoyama, Murakami, Niigata 958-0053, Japan
| | - Ravichandiran Velayutham
- National Institute of Pharmaceutical Education and Research, Chuilal Bhawan, 168 Manicktala Main Road, Kolkata 700054, West Bengal, India
| | - Somasundaram Arumugam
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1, Higashijima, Akiha ku, Niigata 956-8603, Japan; National Institute of Pharmaceutical Education and Research, Chuilal Bhawan, 168 Manicktala Main Road, Kolkata 700054, West Bengal, India.
| |
Collapse
|
9
|
Afrin R, Arumugam S, Rahman A, Wahed MII, Karuppagounder V, Harima M, Suzuki H, Miyashita S, Suzuki K, Yoneyama H, Ueno K, Watanabe K. Curcumin ameliorates liver damage and progression of NASH in NASH-HCC mouse model possibly by modulating HMGB1-NF-κB translocation. Int Immunopharmacol 2017; 44:174-182. [PMID: 28110063 DOI: 10.1016/j.intimp.2017.01.016] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/22/2016] [Accepted: 01/10/2017] [Indexed: 12/21/2022]
Abstract
Curcumin, a phenolic compound, has a wide spectrum of therapeutic effects such as antitumor, anti-inflammatory, anti-cancer and so on. The study aimed to investigate the underlying mechanisms of curcumin to protect liver damage and progression of non-alcoholic steatohepatitis (NASH) in a novel NASH-hepatocellular carcinoma (HCC) mouse model. To induce this model neonatal C57BL/6J male mice were exposed to low-dose streptozotocin and were fed a high-fat diet (HFD) from the age of 4weeks to 14weeks. Curcumin was given at 100mg/kg dose daily by oral gavage started at the age of 10weeks and continued until 14weeks along with HFD feeding. We found that curcumin improved the histopathological changes of the NASH liver via reducing the level of steatosis, fibrosis associated with decreasing serum aminotransferases. In addition, curcumin treatment markedly reduced the hepatic protein expression of oxidative stress, pro-inflammatory cytokines, and chemokines including interferon (IFN) γ, interleukin-1β and IFNγ-inducible protein 10, in NASH mice. Furthermore, curcumin treatment significantly reduced the cytoplasmic translocation of high mobility group box 1 (HMGB1) and the protein expression of toll like receptor 4. Nuclear translocation of nuclear factor kappa B (NF-κB) was also dramatically attenuated by the curcumin in NASH liver. Curcumin treatment effectively reduced the progression of NASH to HCC by suppressing the protein expression of glypican-3, vascular endothelial growth factor, and prothrombin in the NASH liver. Our data suggest that curcumin reduces the progression of NASH and liver damage, which may act via inhibiting HMGB1-NF-κB translocation.
Collapse
Affiliation(s)
- Rejina Afrin
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603, Japan
| | - Somasundaram Arumugam
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603, Japan
| | - Azizur Rahman
- Department of Immunology and Medical Zoology, Faculty of Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata City 951-8510, Japan
| | - Mir Imam Ibne Wahed
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603, Japan; Department of Pharmacy, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Vengadeshprabhu Karuppagounder
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603, Japan
| | - Meilei Harima
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603, Japan
| | - Hiroshi Suzuki
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603, Japan
| | - Shizuka Miyashita
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603, Japan
| | - Kenji Suzuki
- Department of Clinical Engineering and Medical Technology, Niigata University of Health and Welfare, Niigata 950-3198, Japan
| | | | - Kazuyuki Ueno
- Department of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603, Japan
| | - Kenichi Watanabe
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603, Japan.
| |
Collapse
|
10
|
Karuppagounder V, Arumugam S, Thandavarayan RA, Sreedhar R, Giridharan VV, Pitchaimani V, Afrin R, Harima M, Krishnamurthy P, Suzuki K, Nakamura M, Ueno K, Watanabe K. Naringenin ameliorates skin inflammation and accelerates phenotypic reprogramming from M1 to M2 macrophage polarization in atopic dermatitis NC/Nga mouse model. Exp Dermatol 2016; 25:404-7. [DOI: 10.1111/exd.12962] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Vengadeshprabhu Karuppagounder
- Department of Clinical Pharmacology; Faculty of Pharmaceutical Sciences; Niigata University of Pharmacy and Applied Life Sciences; Niigata Japan
| | - Somasundaram Arumugam
- Department of Clinical Pharmacology; Faculty of Pharmaceutical Sciences; Niigata University of Pharmacy and Applied Life Sciences; Niigata Japan
| | - Rajarajan Amirthalingam Thandavarayan
- Department of Clinical Pharmacology; Faculty of Pharmaceutical Sciences; Niigata University of Pharmacy and Applied Life Sciences; Niigata Japan
- Department of Cardiovascular Sciences; Houston Methodist Research Institute; Houston TX USA
| | - Remya Sreedhar
- Department of Clinical Pharmacology; Faculty of Pharmaceutical Sciences; Niigata University of Pharmacy and Applied Life Sciences; Niigata Japan
| | - Vijayasree V. Giridharan
- Department of Psychiatry and Behavioral Sciences; Translational Psychiatry Program; McGovern Medical School; Houston TX USA
| | - Vigneshwaran Pitchaimani
- Department of Clinical Pharmacology; Faculty of Pharmaceutical Sciences; Niigata University of Pharmacy and Applied Life Sciences; Niigata Japan
| | - Rejina Afrin
- Department of Clinical Pharmacology; Faculty of Pharmaceutical Sciences; Niigata University of Pharmacy and Applied Life Sciences; Niigata Japan
| | - Meilei Harima
- Department of Clinical Pharmacology; Faculty of Pharmaceutical Sciences; Niigata University of Pharmacy and Applied Life Sciences; Niigata Japan
| | - Prasanna Krishnamurthy
- Department of Cardiovascular Sciences; Houston Methodist Research Institute; Houston TX USA
| | - Kenji Suzuki
- Department of Gastroenterology; Niigata University Graduate School of Medical and Dental Sciences; Niigata City Japan
| | - Masahiko Nakamura
- Department of Cardiology; Yamanashi Prefectural Central Hospital; Yamanashi Japan
| | - Kazuyuki Ueno
- Department of Pharmaceutical Sciences; Niigata University of Pharmacy and Applied Life Sciences; Niigata Japan
| | - Kenichi Watanabe
- Department of Clinical Pharmacology; Faculty of Pharmaceutical Sciences; Niigata University of Pharmacy and Applied Life Sciences; Niigata Japan
| |
Collapse
|
11
|
Role of PI3K/Akt signal pathway on proliferation of mesangial cell induced by HMGB1. Tissue Cell 2016; 48:121-5. [PMID: 26822343 DOI: 10.1016/j.tice.2015.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/22/2015] [Accepted: 12/30/2015] [Indexed: 12/24/2022]
Abstract
Mesangial cell (MC) proliferation is an important event in LN. Our previous studies have shown that extracellular High Mobility Group Box-1 protein (HMGB1) plays a critical role in pathophysiological mechanism of lupus nephritis (LN) and HMGB1 could induce MC proliferation. The purpose of this study is to investigate the effect of phosphatidylinositide 3-kinase (PI3K)/protein kinase B (Akt) signal pathway activation on mesangial cell proliferation induced by HMGB1 and whether Toll-like receptor 2 (TLR2) plays an important role in this progress. The results showed that HMGB1 induced overexpression of p85, p110 and p-Akt in mouse mesangial cell (MMC) and increased the proliferative level of MMC cells. In addition, HMGB1 induced a physical interaction between TLR2 and p85. The TLR2 neutralization antibody and LY294002 both reduced the MMC proliferation levels induced by HMGB1 and also blocked the HMGB1-dependent phosphorylation of the Akt. Thus, HMGB1 increases interaction between TLR2 with p85 and in sequence phosphorylates Akt at ser473, thereafter mediates MMC proliferation, which contributed significantly to the pathophysiology of MMCs dysfunction.
Collapse
|