1
|
Wang A, Song Q, Li Y, Fang H, Ma X, Li Y, Wei B, Pan C. Effect of traditional Chinese medicine on metabolism disturbance in ischemic heart diseases. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118143. [PMID: 38583735 DOI: 10.1016/j.jep.2024.118143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ischemic heart diseases (IHD), characterized by metabolic dysregulation, contributes majorly to the global morbidity and mortality. Glucose, lipid and amino acid metabolism are critical energy production for cardiomyocytes, and disturbances of these metabolism lead to the cardiac injury. Traditional Chinese medicine (TCM), widely used for treating IHD, have been demonstrated to effectively and safely regulate the cardiac metabolism reprogramming. AIM OF THE REVIEW This study discussed and analyzed the disturbed cardiac metabolism induced by IHD and development of formulas, extracts, single herb, bioactive compounds of TCM ameliorating IHD injury via metabolism regulation, with the aim of providing a basis for the development of clinical application of therapeutic strategies for TCM in IHD. MATERIALS AND METHODS With "ischemic heart disease", "myocardial infarction", "myocardial ischemia", "metabolomics", "Chinese medicine", "herb", "extracts" "medicinal plants", "glucose", "lipid metabolism", "amino acid" as the main keywords, PubMed, Web of Science, and other online search engines were used for literature retrieval. RESULTS IHD exhibits a close association with metabolism disorders, including but not limited to glycolysis, the TCA cycle, oxidative phosphorylation, branched-chain amino acids, fatty acid β-oxidation, ketone body metabolism, sphingolipid and glycerol-phospholipid metabolism. The therapeutic potential of TCM lies in its ability to regulate these disturbed cardiac metabolisms. Additionally, the active ingredients of TCM have depicted wonderful effects in cardiac metabolism reprogramming in IHD. CONCLUSION Drawing from the principles of TCM, we have pinpointed specific herbal remedies for the treatment of IHD, and leveraged advanced metabolomics technologies to uncover the effect of these TCMs on metabolomics alteration. In the future, further clinical experimental studies should be included to explore whether more TCM medicines can play a therapeutic role in IHD by reversing cardiac metabolism disorders; multi-omics would be conducted to explore more pathways and genes targeting such metabolism reprogramming by TCMs, and to seek more TCM therapies for IHD.
Collapse
Affiliation(s)
- Anpei Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Qiubin Song
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Yi Li
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Hai Fang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Xiaoji Ma
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Yunxia Li
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Bo Wei
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China.
| | - Chengxue Pan
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China.
| |
Collapse
|
2
|
Shibata M, Sugimoto M, Watanabe N, Namiki A. Exploring Novel Biomarkers for an Acute Coronary Syndrome Diagnosis Utilizing Plasma Metabolomics. Int J Mol Sci 2024; 25:6674. [PMID: 38928380 PMCID: PMC11204280 DOI: 10.3390/ijms25126674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/29/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Acute coronary syndrome (ACS) is a life-threatening condition that requires a prompt diagnosis and therapeutic intervention. Although serum troponin I and creatinine kinase-MB (CK-MB) are established biomarkers for ACS, reaching diagnostic values for ACS may take several hours. In this study, we attempted to explore novel biomarkers for ACS with higher sensitivity than that of troponin I and CK-MB. The metabolomic profiles of 18 patients with ACS upon hospital arrival and those of the age-matched control (HC) group of 24 healthy volunteers were analyzed using liquid chromatography time-of-flight mass spectrometry. Volcano plots showed 24 metabolites whose concentrations differed significantly between the ACS and HC groups. Using these data, we developed a multiple logistic regression model for the ACS diagnosis, in which lysine, isocitrate, and tryptophan were selected as minimum-independent metabolites. The area under the receiver operating characteristic curve value for discriminating ACS from HC was 1.00 (95% confidence interval [CI]: 1.00-1.00). In contrast, those for troponin I and CK-MB were 0.917 (95% confidence interval [CI]: 0.812-1.00) and 0.988 (95% CI: 0.966-1.00), respectively. This study showed the potential for combining three plasma metabolites to discriminate ACS from HC with a higher sensitivity than troponin I and CK-MB.
Collapse
Affiliation(s)
- Masayuki Shibata
- Division of Cardiology, Kanto Rosai Hospital, Kawasaki 211-8510, Japan
| | - Masahiro Sugimoto
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0052, Japan
| | - Norikazu Watanabe
- Division of Cardiology, Kanto Rosai Hospital, Kawasaki 211-8510, Japan
| | - Atsuo Namiki
- Division of Cardiology, Kanto Rosai Hospital, Kawasaki 211-8510, Japan
| |
Collapse
|
3
|
Glutathione system enhancement for cardiac protection: pharmacological options against oxidative stress and ferroptosis. Cell Death Dis 2023; 14:131. [PMID: 36792890 PMCID: PMC9932120 DOI: 10.1038/s41419-023-05645-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023]
Abstract
The glutathione (GSH) system is considered to be one of the most powerful endogenous antioxidant systems in the cardiovascular system due to its key contribution to detoxifying xenobiotics and scavenging overreactive oxygen species (ROS). Numerous investigations have suggested that disruption of the GSH system is a critical element in the pathogenesis of myocardial injury. Meanwhile, a newly proposed type of cell death, ferroptosis, has been demonstrated to be closely related to the GSH system, which affects the process and outcome of myocardial injury. Moreover, in facing various pathological challenges, the mammalian heart, which possesses high levels of mitochondria and weak antioxidant capacity, is susceptible to oxidant production and oxidative damage. Therefore, targeted enhancement of the GSH system along with prevention of ferroptosis in the myocardium is a promising therapeutic strategy. In this review, we first systematically describe the physiological functions and anabolism of the GSH system, as well as its effects on cardiac injury. Then, we discuss the relationship between the GSH system and ferroptosis in myocardial injury. Moreover, a comprehensive summary of the activation strategies of the GSH system is presented, where we mainly identify several promising herbal monomers, which may provide valuable guidelines for the exploration of new therapeutic approaches.
Collapse
|
4
|
Angelovski M, Hadzi-Petrushev N, Mitrokhin V, Kamkin A, Mladenov M. Myocardial infarction and oxidative damage in animal models: objective and expectations from the application of cysteine derivatives. Toxicol Mech Methods 2023; 33:1-17. [PMID: 35450505 DOI: 10.1080/15376516.2022.2069530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Reactive oxygen species (ROS) and associated oxidative stress are the main contributors to pathophysiological changes following myocardial infarction (MI), which is the principal cause of death from cardiovascular disease. The glutathione (GSH)/glutathione peroxidase (GPx) system appears to be the main and most active cardiac antioxidant mechanism. Hence, enhancement of the myocardial GSH system might have protective effects in the setting of MI. It follows that by increasing antioxidant capacity, the heart will be able to reduce the damage associated with MI and even prevent/weaken the occurrence of oxidative stress, which is highly ranked among the factors responsible for the occurrence of acute MI. For these reasons, the primary goal of future investigations should be to address the effects of different antioxidative compounds and especially cysteine derivatives like N-acetyl cysteine (NAC) and L-2-oxothiazolidine-4-carboxylic acid (OTC) as precursors responsible for the enhancement of the GSH-related antioxidant system's capacity. It is assumed that this will lay down the basis for elucidation of the mechanisms throughout which applicable doses of OTC will manifest a potentially positive impact in the reduction of adverse effects of acute MI. The inclusion of OTC in the models for prediction of the distribution of oxygen in infarcted animal hearts can help to upgrade existing computational models. Such a model would be based on computational geometries of the heart, but the inclusion of biochemical redox features in addition to angiogenic therapy, despite improvement of the post-infarcted oxygenated outcome could enhance the accuracy of the predictive values of oxygenation.
Collapse
Affiliation(s)
- Marija Angelovski
- Institute of Biology, Faculty of Natural Science and Mathematics, Ss Cyril and Methodius University, Skopje, North Macedonia
| | - Nikola Hadzi-Petrushev
- Institute of Biology, Faculty of Natural Science and Mathematics, Ss Cyril and Methodius University, Skopje, North Macedonia
| | - Vadim Mitrokhin
- Department of Fundamental and Applied Physiology, Russian National Research Medical University, Moscow, Russia
| | - Andre Kamkin
- Department of Fundamental and Applied Physiology, Russian National Research Medical University, Moscow, Russia
| | - Mitko Mladenov
- Institute of Biology, Faculty of Natural Science and Mathematics, Ss Cyril and Methodius University, Skopje, North Macedonia.,Department of Fundamental and Applied Physiology, Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
5
|
Shao H, Dong L, Feng Y, Wang C, Tong H. The protective effect of L-glutamine against acute Cantharidin-induced Cardiotoxicity in the mice. BMC Pharmacol Toxicol 2020; 21:71. [PMID: 33004081 PMCID: PMC7528483 DOI: 10.1186/s40360-020-00449-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 09/22/2020] [Indexed: 01/19/2023] Open
Abstract
Background Cantharidin (CTD) is a compound which have the potential to be exploited as an antitumor drug, and it has been demonstrated antitumor effects in a variety of cancers. However, the use is limited due to its severe toxicity. It has reported that it can induce fatal cardiac arrhythmias. Fortunately, we found that L-glutamine can alleviate cardiac toxicity caused by cantharidin in mice. Methods To investigate the protective effect of L-glutamine, we used a high dose of cantharidin in mice to create a model of cardiotoxicity. In the experimental mice, glutamine was given orally half an hour before they were administrated with cantharidin. The mice of control group were intraperitoneally injected with DMSO solution. The general state of all mice, cardiac mass index, electrocardiogram change and biological markers were determined. Hematoxylin-eosin staining (HE staining) of heart tissue was carried out in each group to reflect the protective effect of glutamine. To investigate the mechanisms underlying the injury and cardio-protection, multiple oxidative stress indexes were determined and succinate dehydrogenase activity was evaluated. Result The results showed that L-glutamine (Gln) pretreatment reduced weight loss and mortality. It also decreased the biological markers (p < 0.05), improved electrocardiogram and histological changes that CTD induced cardiotoxicity in mice. Subsequently, the group pretreated with L-glutamine before CTD treatment increases in MDA but decreases in SOD and GSH, in comparison to the group treated with CTD alone. Besides, succinate dehydrogenase activity also was improved when L-glutamine was administrated before cantharidin compared to cantharidin. Conclusions This study provided evidence that L-glutamine could protect cardiac cells against the acute cantharidin-induced cardiotoxicity and the protective mechanism of glutamine may be related to the myocardial cell membrane or the tricarboxylic acid cycle in the mitochondria.
Collapse
Affiliation(s)
- Haozhen Shao
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.,School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 10029, China
| | - Lei Dong
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 10029, China
| | - Yanyan Feng
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 10029, China
| | - Chunhui Wang
- Fangshan Hospital of Beijing University of Chinese Medicine, Beijing, 102400, China.
| | - Hongxuan Tong
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China. .,School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 10029, China.
| |
Collapse
|
6
|
Chinese patent medicine Xin-Ke-Shu inhibits Ca 2+ overload and dysfunction of fatty acid β -oxidation in rats with myocardial infarction induced by LAD ligation. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1079:85-94. [DOI: 10.1016/j.jchromb.2018.01.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/08/2018] [Accepted: 01/29/2018] [Indexed: 01/06/2023]
|
7
|
Habibian M, Sadeghi G, Karimi A. Effects of purslane (<i>Portulaca oleracea</i> L.) powder on growth performance, blood indices, and antioxidant status in broiler chickens with triiodothyronine-induced ascites. Arch Anim Breed 2017. [DOI: 10.5194/aab-60-315-2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Abstract. This study was carried out to evaluate the effects of dietary supplementation of purslane powder (PP) on performance, blood indices, and antioxidant status in broilers with triiodothyronine (T3)-induced ascites. In total, 240 one-day-old male broiler chicks (Ross 308) were randomly assigned to four treatments, with four replicates per treatment and 15 birds per replicate. The experimental diets included (i) a control diet, (ii) a control diet plus 1.5 mg kg−1 of T3 (T3 diet), (iii) a T3 diet with the addition of 1.5 g kg−1 of PP, and (iv) a T3 diet with the addition of 3 g kg−1 of PP. Feed intake and body weight were measured at 10, 24, 39, and 49 days of experiment. Blood and liver samples were collected from two birds in each replicate at 24 and 49 days of experiment. The T3-treated birds had higher (P < 0. 05) right ventricle to total ventricle (RV ∕ TV) ratio and mortality due to ascites compared with the control. In addition, during the entire experimental period (0 to 49 days of experiment) the T3-treated birds had lower (P < 0. 05) feed intake, body weight gain, and production efficiency index and higher (P < 0. 05) feed conversion ratio compared with the control. Dietary supplementation of PP reduced (P < 0. 05) mortality due to ascites and RV ∕ TV ratio, while the production efficiency index was increased (P < 0. 05) by the addition of PP to the diet. The T3-treated birds had higher (P < 0. 05) red blood cell counts, hematocrit percentage, and hemoglobin concentration compared with the control at 24 and 49 days of experiment. Dietary supplementation of PP substantially alleviated (P < 0. 05) the negative effects of T3 on hematocrit and hemoglobin values at both 24 and 49 days of experiment and on red blood cells counts at 49 days of experiment. The T3 birds showed an increase (P < 0. 05) in activities of lactate dehydrogenase, alanine aminotransferase, and aspartate aminotransferase at 49 days of experiment. However, the detrimental effect of T3 on alanine aminotransferase activity was attenuated (P < 0. 05) by dietary supplementation of PP. The plasma and liver activities of superoxide dismutase, catalase, and glutathione peroxidase were lower (P < 0. 05) in T3-treated birds compared with the control at 24 and 49 days of experiment, whereas malondialdehyde concentrations were elevated (P < 0. 05) by dietary T3 administration. Dietary supplementation of PP, especially at 3 g kg−1, increased (P < 0. 05) the plasma and liver activities of antioxidant enzymes, and reduced (P < 0. 05) the plasma and liver concentrations of malondialdehyde near to the control levels. It is concluded that the supplementation of 3 g kg−1 of PP in diet improves oxidative status and reduces ascites incidence in broiler chickens without impairing their growth performance.
Collapse
|
8
|
Szpetnar M, Luchowska-Kocot D, Boguszewska-Czubara A, Kurzepa J. The Influence of Manganese and Glutamine Intake on Antioxidants and Neurotransmitter Amino Acids Levels in Rats' Brain. Neurochem Res 2016; 41:2129-39. [PMID: 27161372 PMCID: PMC4947112 DOI: 10.1007/s11064-016-1928-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/25/2016] [Accepted: 04/18/2016] [Indexed: 01/11/2023]
Abstract
Depending on the concentration, Mn can exert protective or toxic effect. Potential mechanism for manganese neurotoxicity is manganese-induced oxidative stress. Glutamine supplementation could reduce manganese-induced neurotoxicity and is able to influence the neurotransmission processes. The aim of this study was to investigate whether the long term administration of manganese (alone or in combination with glutamine) in dose and time dependent manner could affect the selected parameters of oxidative-antioxidative status (superoxide dismutase and glutathione peroxidase activities, concentrations of vitamin C and malonic dialdehyde) and concentrations of excitatory (Asp, Glu) and inhibitory amino acids (GABA, Gly) in the brain of rats. The experiments were carried out on 2-months-old albino male rats randomly divided into 6 group: Mn300 and Mn500—received solution of MnCl2 to drink (dose 300 and 500 mg/L, respectively), Gln group—solution of glutamine (4 g/L), Mn300-Gln and Mn500-Gln groups—solution of Mn at 300 and 500 mg/L and Gln at 4 g/L dose. The control group (C) received deionized water. Half of the animals were euthanized after three and the other half—after 6 weeks of experiment. The exposure of rats to Mn in drinking water contributes to diminishing of the antioxidant enzymes activity and the increase in level of lipid peroxidation. Glutamine in the diet admittedly increases SOD and GPx activity, but it is unable to restore the intracellular redox balance. The most significant differences in the examined amino acids levels in comparison to both control and Gln group were observed in the group of rats receiving Mn at 500 mg/L dose alone or with Gln. It seems that Gln is amino acid which could improve antioxidant status and affect the concentrations of the neurotransmitters.
Collapse
Affiliation(s)
- Maria Szpetnar
- Chair and Department of Medical Chemistry, Medical University of Lublin, 4A Chodźki Street, 20-093, Lublin, Poland
| | - Dorota Luchowska-Kocot
- Chair and Department of Medical Chemistry, Medical University of Lublin, 4A Chodźki Street, 20-093, Lublin, Poland.
| | - Anna Boguszewska-Czubara
- Chair and Department of Medical Chemistry, Medical University of Lublin, 4A Chodźki Street, 20-093, Lublin, Poland
| | - Jacek Kurzepa
- Chair and Department of Medical Chemistry, Medical University of Lublin, 4A Chodźki Street, 20-093, Lublin, Poland
| |
Collapse
|
9
|
Glutamine protects cardiomyocytes from hypoxia/reoxygenation injury under high glucose conditions through inhibition of the transforming growth factor-β1-Smad3 pathway. Arch Biochem Biophys 2016; 596:43-50. [DOI: 10.1016/j.abb.2016.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 03/02/2016] [Indexed: 12/25/2022]
|
10
|
The effect of high dietary fructose on the kidney of adult albino rats and the role of curcumin supplementation: A biochemical and histological study. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2016. [DOI: 10.1016/j.bjbas.2015.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
11
|
Omega-3 Fatty Acid Protects Against Arsenic Trioxide-Induced Cardiotoxicity In Vitro and In Vivo. Cardiovasc Toxicol 2016; 17:109-119. [DOI: 10.1007/s12012-016-9361-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Fathi M, Heidari M, Ahmadisefat AA, Habibian M, Moeini MM. Influence of dietary glutamine supplementation on performance, biochemical indices and enzyme activities in broilers with cold-induced ascites. ANIMAL PRODUCTION SCIENCE 2016. [DOI: 10.1071/an15300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study was conducted to investigate the effects of dietary glutamine supplementation on performance and biochemical indices of broilers with cold-induced ascites. A total of 240 1-day-old male broiler chicks (Ross 308) were randomly allotted to three treatment groups, with four replicate pens per treatment and 20 birds per pen. The control birds were kept in a thermoneutral chamber and fed a basal diet, whereas the other two experimental groups were kept in a cold chamber to induce ascites and fed the basal diet supplemented with either 0 or 100 mg of glutamine/kg. The cold-treated birds consumed less (P < 0.05) feed and had lower (P < 0.05) weight gain compared with the control birds. Dietary glutamine supplementation had no effect (P > 0.05) on broiler performance. The cold-treated birds had higher (P < 0.05) right ventricle to total ventricle ratio and mortality due to ascites compared with the control birds. However, mortality due to ascites and right ventricle to total ventricle ratio was reduced (P < 0.05) by dietary glutamine supplementation. The cold-treated birds had higher (P < 0.05) red blood cell counts, haematocrit percentage and haemoglobin concentration compared with the control birds at 21 and 42 days of age. The activities of plasma lactate dehydrogenase, aspartate aminotransferase and alanine aminotransferase were increased (P < 0.05) in cold-treated birds compared with the control birds at 42 days of age, but dietary glutamine supplementation reduced (P < 0.05) the activities of alanine aminotransferase and aspartate aminotransferase near to the control levels. The plasma and liver glutathione peroxidase activities were increased (P < 0.05) in cold-treated birds compared with the control birds at 21 and 42 days of age, whereas the reverse was true for malondialdehyde concentrations. The glutathione peroxidase activity was increased (P < 0.05), whereas the malondialdehyde concentration was decreased (P < 0.05) by dietary glutamine supplementation compared with the cold-treated birds at 42 days of age. The results indicated that the beneficial effect of glutamine is probably related to its ability to maintain near to normal free radical scavenging enzymes and the level of glutathione peroxidase bioactivity, thereby protecting cell membranes from oxidative damage via decreased lipid peroxidation.
Collapse
|
13
|
Thomas S, Senthilkumar GP, Sivaraman K, Bobby Z, Paneerselvam S, Harichandrakumar KT. Effect of s-methyl-L-cysteine on oxidative stress, inflammation and insulin resistance in male wistar rats fed with high fructose diet. IRANIAN JOURNAL OF MEDICAL SCIENCES 2015; 40:45-50. [PMID: 25650289 PMCID: PMC4300480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 04/27/2013] [Accepted: 06/09/2013] [Indexed: 11/18/2022]
Abstract
BACKGROUND S-methyl cysteine (SMC) is a hydrophilic cysteine-containing compound naturally found in garlic and onion. The purpose of the present study was to investigate the protective effect of SMC on oxidative stress, inflammation and insulin resistance in an experiment of metabolic syndrome. METHODS Male Wistar rats were divided into five groups (6 rats in each group), namely; control, control+S-methyl cysteine (SMC), high fructose diet (HFD), HFD+SMC and HFD+metformin. The 60% fructose used for 8 weeks and SMC in the dose of 100 mg/kg bw/day/rat was used in the study. The fasting glucose, insulin, insulin resistance, and tumor necrosis factor alpha and erythrocyte enzymatic antioxidants were measured. RESULTS Increased levels of plasma glucose, insulin, malondialdehyde, tumor necrosis factor-alpha, and insulin resistance and decreased levels of glutathione, glutathione peroxidase, and catalase were found in rats on a high fructose diet. Oral administration of SMC (100 mg/kg bw/day/rat) for 60 days resulted in significant attenuation of plasma glucose, insulin, tumor necrosis factor-alpha, insulin resistance and improved antioxidant enzyme activities. CONCLUSION Oral treatment of SMC is effective in improving insulin resistance while attenuating metabolic syndrome, inflammation, and oxidative stress in male rats fed with fructose rich diet.
Collapse
Affiliation(s)
- Sithara Thomas
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | | | - Kuppuswamy Sivaraman
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Zachariah Bobby
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Sankar Paneerselvam
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Kotten Thazhath Harichandrakumar
- Department of Medical Biometrics and Informatics, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| |
Collapse
|
14
|
Is long term creatine and glutamine supplementation effective in enhancing physical performance of military police officers? J Hum Kinet 2014; 43:131-8. [PMID: 25713653 PMCID: PMC4332172 DOI: 10.2478/hukin-2014-0098] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The objective of this study was to analyze the effect of supplementation with creatine and glutamine on physical fitness of military police officers. Therefore, an experimental double blind study was developed, with the final sample composed by 32 men randomly distributed into three groups: a group supplemented with creatine (n=10), glutamine (n=10) and a placebo group (n=12) and evaluated in three distinct moments, in an interval of three months (T1, T2 and T3). The physical training had a weekly frequency of 5 sessions × 90 min, including strength exercises, local muscular resistance, flexibility and both aerobic and anaerobic capacity. After analyzing the effect of time, group and interaction (group × time) for measures that indicated the physical capabilities of the subjects, a significant effect of time for the entire variable was identified (p<0,05). However, these differences were not observed when the univaried intragroups and intergroups analysis was performed (p>0,05). In face of the results it was concluded that supplementation with creatine and glutamine showed no ergogenic effect on physical performance in military police officers.
Collapse
|
15
|
Badole SL, Jangam GB, Chaudhari SM, Ghule AE, Zanwar AA. L-glutamine supplementation prevents the development of experimental diabetic cardiomyopathy in streptozotocin-nicotinamide induced diabetic rats. PLoS One 2014; 9:e92697. [PMID: 24651718 PMCID: PMC3961427 DOI: 10.1371/journal.pone.0092697] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 02/25/2014] [Indexed: 01/14/2023] Open
Abstract
The objective of the present investigation was to evaluate the effect of L-glutamine on cardiac myopathy in streptozotocin-nicotinamide induced diabetic rats. Diabetes was induced in overnight fasted Sprague Dawely rats by using intraperitonial injection of streptozotocin (55 mg/kg). Nicotinamide (100 mg/kg, i.p.) was administered 20 min before administration of streptozotocin. Experimental rats were divided into Group I: non-diabetic control (distilled water; 10 ml/kg, p.o.), II: diabetic control (distilled water, 10 ml/kg, p.o.), III: L-glutamine (500 mg/kg, p.o.) and IV: L-glutamine (1000 mg/kg, p.o.). All groups were diabetic except group I. The plasma glucose level, body weight, electrocardiographic abnormalities, hemodynamic changes and left ventricular contractile function, biological markers of cardiotoxicity, antioxidant markers were determined after 4 months after STZ with nicotinamide injection. Histopathological changes of heart tissue were carried out by using H and E stain. L-glutamine treatment improved the electrocardiographic, hemodynamic changes; LV contractile function; biological markers; oxidative stress parameters and histological changes in STZ induced diabetic rats. Results from the present investigation demonstrated that L-glutamine has seemed a cardioprotective activity.
Collapse
Affiliation(s)
- Sachin L. Badole
- Department of Pharmacology, PES's Modern College of Pharmacy, Yamuna Nagar, Nigadi, Pune, India
- * E-mail:
| | - Ganesh B. Jangam
- Department of Pharmacology, PES's Modern College of Pharmacy, Yamuna Nagar, Nigadi, Pune, India
| | - Swapnil M. Chaudhari
- Department of Pharmacology, PES's Modern College of Pharmacy, Yamuna Nagar, Nigadi, Pune, India
| | - Arvindkumar E. Ghule
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Erandwane, Pune, India
| | - Anand A. Zanwar
- Center for Innovation in Nutrition Health Disease, Interactive Research School for Health Affairs, Medical college campus, Bharati Vidyapeeth Deemed University, Dhankawadi, Pune, India
| |
Collapse
|
16
|
Turkez H, Geyikoglu F, Yousef MI, Celik K, Bakir TO. Ameliorative effect of supplementation with L-glutamine on oxidative stress, DNA damage, cell viability and hepatotoxicity induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in rat hepatocyte cultures. Cytotechnology 2012; 64:687-99. [PMID: 22453904 PMCID: PMC3488374 DOI: 10.1007/s10616-012-9449-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 03/05/2012] [Indexed: 12/11/2022] Open
Abstract
The most potent of the dioxins, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), is a persistent and ubiquitous environmental contaminant. And the health impact of exposure to TCDD is of great concern to the general public. Recent data indicate that L-glutamine (Gln) has antioxidant properties and may influence hepatotoxicity. The objective of the present study was undertaken to explore the effectiveness of Gln in alleviating the hepatotoxicity of TCDD on primary cultured rat hepatocytes. Gln (0.5, 1 and 2 mM) was added to cultures alone or simultaneously with TCDD (0.005 and 0.01 mM). The hepatocytes were treated with TCDD and Gln for 48 h. Then cell viability was detected by [3-(4,5-dimethyl-thiazol-2-yl) 2,5-diphenyltetrazolium bromide] (MTT) assay and lactate dehydrogenase (LDH) release, while total antioxidant capacity (TAC), total glutathione (TGSH) and total oxidative stress (TOS) levels were determined to evaluate the oxidative injury. The DNA damage was also analyzed by liver micronucleus assay (MN) and 8-oxo-2-deoxyguanosine (8-OH-dG). The results of MTT and LDH assays showed that TCDD decreased cell viability but not L-glutamine. TCDD also increased TOS level in rat hepatocytes and significantly decreased TAC and TGSH levels. On the basis of increasing doses, the dioxin in a dose-dependent manner caused significant increases of micronucleated hepatocytes (MNHEPs) and 8-OH-dG as compared to control culture. Whereas, in cultures exposured with Gln alone, TOS levels were not changed and TAC and TGSH together were significantly increased in dose-dependent fashion. The presence of Gln with TCDD modulated the hepatotoxic effects of TCDD on primary hepatocytes cultures. Noteworthy, Gln has a protective effect against TCDD-mediated DNA damages. As conclusion, we reported here an increased potential therapeutic significance of L-glutamine in TCDD-mediated hepatic injury for the first time.
Collapse
Affiliation(s)
- Hasan Turkez
- Department of Molecular Biology and Genetics, Faculty of Sciences, Erzurum Technical University, Erzurum, Turkey
| | - Fatime Geyikoglu
- Department of Biology, Faculty of Sciences, Atatürk University, 25240 Erzurum, Turkey
| | - Mokhtar I. Yousef
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526 Egypt
| | - Kubra Celik
- Department of Biology, Faculty of Sciences, Atatürk University, 25240 Erzurum, Turkey
| | - Tulay O. Bakir
- Department of Biology, Faculty of Sciences, Atatürk University, 25240 Erzurum, Turkey
| |
Collapse
|
17
|
Harnett CC, Guerin PJ, Furtak T, Gauthier ER. Control of late apoptotic events by the p38 stress kinase in L-glutamine-deprived mouse hybridoma cells. Cell Biochem Funct 2012; 31:417-26. [PMID: 23080342 DOI: 10.1002/cbf.2916] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/18/2012] [Accepted: 09/19/2012] [Indexed: 01/08/2023]
Abstract
L-Glutamine (Gln) starvation rapidly triggers apoptosis in Sp2/0-Ag14 (Sp2/0) murine hybridoma cells. Here, we report on the role played by the stress-activated kinase p38 mitogen-activated protein kinase (MAPK) in this process. p38 activation was detected 2 h after Gln withdrawal and, although treatment with the p38 inhibitor SB203580 did not prevent caspase activation in Gln-starved cells, it reduced the occurrence of both nuclear condensation/fragmentation and apoptotic body formation. Similarly, transfection of Sp2/0 cells with a dominant negative p38 MAPK reduced the incidence of nuclear pyknosis and apoptotic body formation following 2 h of Gln starvation. Gln withdrawal-induced apoptosis was blocked by the overexpression of the anti-apoptotic protein Bcl-xL or by the caspase inhibitor Z-VAD-fmk. Interestingly, Bcl-xL expression inhibited p38 activation, but Z-VAD-fmk treatment did not, indicating that activation of this MAPK occurs downstream of mitochondrial dysfunction and is independent of caspases. Moreover, the anti-oxidant N-acetyl-l-cysteine prevented p38 phosphorylation, showing that p38 activation is triggered by an oxidative stress. Altogether, our findings indicate that p38 MAPK does not contribute to the induction of apoptosis in Gln-starved Sp2/0 cells. Rather, Gln withdrawal leads to mitochondrial dysfunction, causing an oxidative stress and p38 activation, the latter contributing to the formation of late morphological features of apoptotic Sp2/0 cells.
Collapse
Affiliation(s)
- Curtis C Harnett
- Biomolecular Sciences Program, Laurentian University, Sudbury, ON, Canada
| | | | | | | |
Collapse
|
18
|
Türkez H, Geyikoğlu F, Yousef MI. Modulatory effect of l-glutamine on 2,3,7,8 tetrachlorodibenzo-p-dioxin-induced liver injury in rats. Toxicol Ind Health 2011; 28:663-72. [DOI: 10.1177/0748233711420474] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The aim of this study was to explore the effectiveness of l-glutamine (Gln) in alleviating the toxicity of 2,3,7,8-tetrachlorodibenzo- p-dioxin (TCDD) in liver of rats. Rats were intraperitoneally administered Gln and TCDD doses daily for 21 days. In the liver of rats, the biochemical tests, pathological examination and micronucleus (MN) test were performed. TCDD significantly decreased the activities of antioxidant enzymes and serious pathological findings. Moreover, the rate of MNs in hepatocytes increased after treatment with dioxin. In rats treated with Gln alone, the MNs remained unchanged, but the ratio of glutathione (GSH) and the activity of glutathione peroxidase (GSH-Px) were significantly increased. Gln also prevented the suppression of GSH-Px (except for superoxide dismutase and catalase) and GSH in the livers of animals exposed to TCDD and displayed a strong protective effect against MNs. Thus, our findings for Gln might provide new insight into the development of therapeutic and preventive approaches in TCDD toxicity.
Collapse
Affiliation(s)
- Hasan Türkez
- Department of Biology, Atatürk University, Erzurum, Turkey
| | | | - Mokhtar I Yousef
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| |
Collapse
|
19
|
Taleb-Dida N, Krouf D, Bouchenak M. Globularia alypum aqueous extract decreases hypertriglyceridemia and ameliorates oxidative status of the muscle, kidney, and heart in rats fed a high-fructose diet. Nutr Res 2011; 31:488-95. [DOI: 10.1016/j.nutres.2011.05.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 04/07/2011] [Accepted: 05/09/2011] [Indexed: 11/25/2022]
|
20
|
Effect of amaranth seeds in diet on oxidative status in plasma and selected tissues of high fructose-fed rats. Food Chem 2011. [DOI: 10.1016/j.foodchem.2010.10.081] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Pasko P, Barton H, Zagrodzki P, Izewska A, Krosniak M, Gawlik M, Gawlik M, Gorinstein S. Effect of diet supplemented with quinoa seeds on oxidative status in plasma and selected tissues of high fructose-fed rats. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2010; 65:146-51. [PMID: 20354792 DOI: 10.1007/s11130-010-0164-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Oxidative stress plays an important role as a mediator of damage produced by fructose metabolism. This work was designed to investigate the effect of diet supplemented with quinoa seeds on oxidative stress in plasma, heart, kidney, liver, spleen, lung, testis and pancreas of fructose administered rats. Fructose administration (310 g/kg fodder for 5 weeks) caused oxidative stress that was manifested by the increase in plasma malondialdehyde (MDA) (p<0.05), and by the non-significant changes in the enzymatic antioxidant potential in plasma and most of tissues. Co-administration of quinoa seeds (310 g/kg fodder) maintained normal activities of some enzymes. It also influenced the oxidative stress as was evidenced by decreasing MDA in plasma, and decreasing the activities of antioxidant enzymes (erythrocyte superoxide dismutase - eSOD, catalase -CAT, plasma glutathione peroxidase - pGPX). These findings demonstrate that quinoa seeds can act as a moderate protective agent against potential of fructose-induced changes in rats by reducing lipid peroxidation and by enhancing the antioxidant capacity of blood (plasma) and heart, kidney, testis, lung and pancreas.
Collapse
Affiliation(s)
- Pawel Pasko
- Department of Food Chemistry and Nutrition, Medical College, The Jagiellonian University, Medyczna 9, Kraków, 30-688, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Hoffman JR, Ratamess NA, Kang J, Rashti SL, Kelly N, Gonzalez AM, Stec M, Anderson S, Bailey BL, Yamamoto LM, Hom LL, Kupchak BR, Faigenbaum AD, Maresh CM. Examination of the efficacy of acute L-alanyl-L-glutamine ingestion during hydration stress in endurance exercise. J Int Soc Sports Nutr 2010; 7:8. [PMID: 20181080 PMCID: PMC2851582 DOI: 10.1186/1550-2783-7-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 02/03/2010] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The effect of acute L-alanyl-L-glutamine (AG; Sustamine) ingestion on performance changes and markers of fluid regulation, immune, inflammatory, oxidative stress, and recovery was examined in response to exhaustive endurance exercise, during and in the absence of dehydration. METHODS Ten physically active males (20.8 +/- 0.6 y; 176.8 +/- 7.2 cm; 77.4 +/- 10.5 kg; 12.3 +/- 4.6% body fat) volunteered to participate in this study. During the first visit (T1) subjects reported to the laboratory in a euhydrated state to provide a baseline (BL) blood draw and perform a maximal exercise test. In the four subsequent randomly ordered trials, subjects dehydrated to -2.5% of their baseline body mass. For T2, subjects achieved their goal weight and were not rehydrated. During T3 - T5, subjects reached their goal weight and then rehydrated to 1.5% of their baseline body mass by drinking either water (T3) or two different doses (T4 and T5) of the AG supplement (0.05 g.kg-1 and 0.2 g.kg-1, respectively). Subjects then exercised at a workload that elicited 75% of their VO2 max on a cycle ergometer. During T2 - T5 blood draws occurred once goal body mass was achieved (DHY), immediately prior to the exercise stress (RHY), and immediately following the exercise protocol (IP). Resting 24 hour (24P) blood samples were also obtained. Blood samples were analyzed for glutamine, potassium, sodium, aldosterone, arginine vasopressin (AVP), C-reactive protein (CRP), interleukin-6 (IL-6), malondialdehyde (MDA), testosterone, cortisol, ACTH, growth hormone and creatine kinase. Statistical evaluation of performance, hormonal and biochemical changes was accomplished using a repeated measures analysis of variance. RESULTS Glutamine concentrations for T5 were significantly higher at RHY and IP than T2 - T4. When examining performance changes (difference between T2 - T5 and T1), significantly greater times to exhaustion occurred during T4 (130.2 +/- 340.2 sec) and T5 (157.4 +/- 263.1 sec) compared to T2 (455.6 +/- 245.0 sec). Plasma sodium concentrations were greater (p < 0.05) at RHY and IP for T2 than all other trials. Aldosterone concentrations at RHY and IP were significantly lower than that at BL and DHY. AVP was significantly elevated at DHY, RHY and IP compared to BL measures. No significant differences were observed between trials in CRP, IL-6, MDA, or in any of the other hormonal or biochemical measures. CONCLUSION Results demonstrate that AG supplementation provided a significant ergogenic benefit by increasing time to exhaustion during a mild hydration stress. This ergogenic effect was likely mediated by an enhanced fluid and electrolyte uptake.
Collapse
Affiliation(s)
- Jay R Hoffman
- The College of New Jersey, Department of Health and Exercise Science, Ewing NJ 08628, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ribeiro DA, Buttros JB, Oshima CTF, Bergamaschi CT, Campos RR. Ascorbic acid prevents acute myocardial infarction induced by isoproterenol in rats: role of inducible nitric oxide synthase production. J Mol Histol 2009; 40:99-105. [DOI: 10.1007/s10735-009-9218-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 04/27/2009] [Indexed: 11/28/2022]
|
24
|
Farvin KS, Kumar SHS, Anandan R, Mathew S, Sankar T, Nair PV. Supplementation of squalene attenuates experimentally induced myocardial infarction in rats. Food Chem 2007. [DOI: 10.1016/j.foodchem.2007.05.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
25
|
Ganesan B, Rajesh R, Anandan R, Dhandapani N. Biochemical Studies on the Protective Effect of Betaine on Mitochondrial Function in Experimentally Induced Myocardial Infarction in Rats. ACTA ACUST UNITED AC 2007. [DOI: 10.1248/jhs.53.671] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Balaraman Ganesan
- Vinayaka Mission's University
- Biochemistry and Nutrition Division, Central Institute of Fisheries Technology
| | | | - Rangasamy Anandan
- Biochemistry and Nutrition Division, Central Institute of Fisheries Technology
| | - Nanjappan Dhandapani
- Vinayaka Mission's University
- Department of Pharmaceutical Chemistry, R.V.S College of Pharmaceutical Sciences
| |
Collapse
|