1
|
Korean Red Ginseng enhances pneumococcal Δ pep27 vaccine efficacy by inhibiting reactive oxygen species production. J Ginseng Res 2017; 43:218-225. [PMID: 30962736 PMCID: PMC6437420 DOI: 10.1016/j.jgr.2017.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/14/2017] [Accepted: 11/22/2017] [Indexed: 12/17/2022] Open
Abstract
Background Streptococcus pneumoniae, more than 90 serotypes of which exist, is recognized as an etiologic agent of pneumonia, meningitis, and sepsis associated with significant morbidity and mortality worldwide. Immunization with a pneumococcal pep27 mutant (Δpep27) has been shown to confer comprehensive, long-term protection against even nontypeable strains. However, Δpep27 is effective as a vaccine only after at least three rounds of immunization. Therefore, treatments capable of enhancing the efficiency of Δpep27 immunization should be identified without delay. Panax ginseng Mayer has already been shown to have pharmacological and antioxidant effects. Here, the ability of Korean Red Ginseng (KRG) to enhance the efficacy of Δpep27 immunization was investigated. Methods Mice were treated with KRG and immunized with Δpep27 before infection with the pathogenic S. pneumoniae strain D39. Total reactive oxygen species production was measured using lung homogenates, and inducible nitric oxide (NO) synthase and antiapoptotic protein expression was determined by immunoblotting. The phagocytic activity of peritoneal macrophages was also tested after KRG treatment. Results Compared with the other treatments, KRG significantly increased survival rate after lethal challenge and resulted in faster bacterial clearance via increased phagocytosis. Moreover, KRG enhanced Δpep27 vaccine efficacy by inhibiting reactive oxygen species production, reducing extracellular signal–regulated kinase apoptosis signaling and inflammation. Conclusion Taken together, our results suggest that KRG reduces the time required for immunization with the Δpep27 vaccine by enhancing its efficacy.
Collapse
|
2
|
Lee SJ, Birhanu BT, Awji EG, Kim MH, Park JY, Suh JW, Park SC. BaeR protein acts as an activator of nuclear factor-kappa B and Janus kinase 2 to induce inflammation in murine cell lines. Can J Microbiol 2016; 62:753-61. [PMID: 27374640 DOI: 10.1139/cjm-2016-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BaeR, a response regulator protein, takes part in multidrug efflux, bacterial virulence activity, and other biological functions. Recently, BaeR was shown to induce inflammatory responses by activating the mitogen-activated protein kinases (MAPKs). In this study, we investigated additional pathways used by BaeR to induce an inflammatory response. BaeR protein was purified from Salmonella enterica Paratyphi A and subcloned into a pPosKJ expression vector. RAW 264.7 cells were treated with BaeR, and RNA was extracted by TRIzol reagent for RT-PCR. Cytokine gene expression was analyzed by using the comparative cycle threshold method, while western blotting and ELISA were used to assess protein expression. We confirmed that BaeR activates nuclear factor-kappa B (NF-κB), thereby inducing an inflammatory response and increases the production of interleukins (IL-)1β and IL-6. During this process, the Janus kinase 2 (JAK2)-STAT1 signaling pathway was activated, resulting in an increase in the release of interferons I and II. Additionally, COX-2 was activated and its expression increased with time. In conclusion, BaeR induced an inflammatory response through activation of NF-κB in addition to the MAPKs. Furthermore, activation of the JAK2-STAT1 pathway and COX-2 facilitated the cytokine binding activity, suggesting an additional role for BaeR in the modulation of the immune system of the host and the virulence activity of the pathogen.
Collapse
Affiliation(s)
- Seung-Jin Lee
- a Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Biruk Tesfaye Birhanu
- a Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Elias Gebru Awji
- b COPD Program, Lovelace Respiratory Research Institute, Albuquerque, NM 87108, USA
| | - Myung Hee Kim
- c Infection and Immunity Research Center, Korea Research Institute of Bioscience and Biotechnology, KRIBB, Daejeon 305-806, Republic of Korea
| | - Ji-Yong Park
- d Cleanbio Research Institute, Daejeon 301-212, Korea
| | - Joo-Won Suh
- e Center for Nutraceutical and Pharmaceutical Materials, Division of Bioscience and Bioinformatics, Science campus, Myongji University, 449-728 Yongin, Gyeonggi, Republic of Korea
| | - Seung-Chun Park
- a Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 702-701, Republic of Korea
| |
Collapse
|
3
|
Navolotskaya EV. [Octarphin--Nonopioid Peptide of the Opioid Origin]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2016; 41:524-30. [PMID: 26762089 DOI: 10.1134/s106816201505009x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The data on the properties and mechanism of action of the peptide octarphin (TPLVTLFK, the fragment 12-19 of β-endorphin)--a selective agonist of nonopioid (insensitive to the action of the opioid antagonist naloxone) β-endorphin receptor found on n immune cells (peritoneal macrophages, T and B lymphocytes of spleen and blood), endocrine (adrenal cortex, hypothalamus), cardiovascular (cardiomyocytes) systems are analyzed and systematized. Binding to the receptor octarphin increases increases the mitogen-induced pro- liferation of human and mouse T and B lymphocytes in vitro, activates murine peritoneal macrophages in vitro and in vivo, stimulates growth of human T-lymphoblast cell lines Jurkat and MT-4, inhibits adenylate cyclase activity of rat adrenal cortex membranes and suppresses the secretion of glucocorticoids from the adrenal gland into the blood. It was shown that in a concentration range of 1-1000 nM the peptide increases the activity of inducible NO-synthase (iNOS), and the content of NO and cGMP in lipopolysaccharide-activated murine peritoneal macrophages. Taking into account that NO acts as a primary activator of soluble guanylate cyclase (sGC), it can be assumed that the activating effect of octarphin on macrophages is realized in the following way: increase in th iNOS expression --> increase in the NO production --> increase in the sGC activity --> increase in intracellular levels of cGMP.
Collapse
|
4
|
Sadovnikov VB, Navolotskaya EV. Synthetic peptide octarphin (TPLVTLFK), a selective agonist of nonopioidβ-endorphin receptor, stimulates nitric oxide synthesis in macrophages. J Pept Sci 2014; 20:212-5. [DOI: 10.1002/psc.2603] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/12/2013] [Accepted: 11/18/2013] [Indexed: 01/08/2023]
Affiliation(s)
- Vladimir B. Sadovnikov
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences; Science Avenue, 6 Pushchino Moscow Region 142290 Russia
| | - Elena V. Navolotskaya
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences; Science Avenue, 6 Pushchino Moscow Region 142290 Russia
| |
Collapse
|
5
|
Fujii S, Akaike T. redox Signaling by 8-nitro-cyclic guanosine monophosphate: nitric oxide- and reactive oxygen species-derived electrophilic messenger. Antioxid Redox Signal 2013; 19:1236-46. [PMID: 23157314 DOI: 10.1089/ars.2012.5067] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
SIGNIFICANCE Emerging evidence has revealed that nitric oxide (NO)- and reactive oxygen species (ROS)-derived electrophiles formed in cells mediate signal transduction for responses to oxidative stress. RECENT ADVANCES The cyclic nucleotide with a nitrated guanine moiety-8-nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP)-first identified in 2007 as a second messenger for NO and ROS-has certain unique properties that its parental cGMP lacks. For example, it can react with particular protein Cys thiols because of its electrophilicity and can cause unique post-translational modifications of redox-sensor proteins such as Keap1 and H-Ras. CRITICAL ISSUES Site-specific S-guanylation of Keap1 at Cys434 induced NO- and ROS-mediated adaptive responses to oxidative stress. H-Ras Cys184 S-guanylation was recently found to be involved in activation of mitogen-activated protein kinase cascades as manifested by cellular senescence and heart failure in mouse cardiac hypertrophy models. The latest finding related to the concept of electrophile-based redox signaling is a potent regulatory function of endogenously produced hydrogen sulfide for redox signaling via 8-nitro-cGMP. FUTURE DIRECTIONS Electrophile modification of 8-nitro-cGMP, as a second messenger for NO and ROS, by hydrogen sulfide (i.e., electrophile sulfhydration) can most likely effect physiological regulation of cellular redox signaling. Continued investigation of the precise function of cellular hydrogen sulfide that may control electrophile-dependent redox cellular signaling, most typically via 8-nitro-cGMP formation, may provide novel insights into the molecular mechanisms of oxidative stress responses, oxidative stress-related pathology and disease control, and development of therapeutics for various diseases.
Collapse
Affiliation(s)
- Shigemoto Fujii
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University , Kumamoto, Japan
| | | |
Collapse
|
6
|
Lee SJ, Gebru Awji E, Kim MH, Park SC. BaeR protein from Salmonella enterica serovar Paratyphi A induces inflammatory response in murine and human cell lines. Microbes Infect 2013; 15:951-7. [PMID: 24055826 DOI: 10.1016/j.micinf.2013.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 08/20/2013] [Accepted: 09/09/2013] [Indexed: 10/26/2022]
Abstract
BaeR is the response regulator of the two-component system, BaeSR, found in Escherichia coli (E. coli) and Salmonella. Several biological functions of BaeR, related to multidrug efflux and bacterial virulence, have been described. Herein, we report a putative function of BaeR during inflammatory response of the host by using BaeR protein of Salmonella enterica Paratyphi A (S. Paratyphi A) origin overexpressed in E. coli, and RAW 264.7 and THP-1 cells as in vitro models. BaeR (3 μg/ml) upregulated iNOS mRNA expression in both cell lines, and induced significant production of NO. Greater than ten-fold (TNF-α), 24-fold (IL-1β) and 156-fold (IL-6) increases in mRNA expression levels were observed in THP-1 cells treated with BaeR, compared to untreated controls. Furthermore, an eight-fold (IL-1β), 12-fold (IL-6) and 41-fold (TNF-α) higher protein concentrations were observed in RAW 264.7 cells stimulated with BaeR, compared to control cells. Immunoblot analysis showed BaeR-induced phosphorylation of the MAPKs (ERK 1/2, JNK and p38 MAPK) in RAW 264.7 cells. Pharmacological inhibition of the three MAPKs using specific inhibitors resulted in significant reduction of BaeR-induced NO production and iNOS mRNA expression by inhibitors of JNK and p38 MAPK. Also, all inhibitors of the MAPKs significantly attenuated BaeR-induced IL-1β, IL-6 and TNF-α at both transcript and protein levels with different degrees of inhibition. Taken together, our data suggest that BaeR is a putative inducer of inflammatory response and the MAPKs are involved in the process.
Collapse
Affiliation(s)
- Seung Jin Lee
- Laboratory of Veterinary Pharmacokinetics & Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 702-701, Republic of Korea
| | | | | | | |
Collapse
|
7
|
Anraku M, Chuang VTG, Maruyama T, Otagiri M. Redox properties of serum albumin. Biochim Biophys Acta Gen Subj 2013; 1830:5465-72. [PMID: 23644037 DOI: 10.1016/j.bbagen.2013.04.036] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/24/2013] [Accepted: 04/29/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND Oxidative damage results in protein modification, and is observed in numerous diseases. Human serum albumin (HSA), the most abundant circulating protein in the plasma, exerts important antioxidant activities against oxidative damage. SCOPE OF REVIEW The present review focuses on the characterization of chemical changes in HSA that are induced by oxidative damage, their relevance to human pathology and the most recent advances in clinical applications. MAJOR CONCLUSIONS The antioxidant properties of HSA are largely dependent on Cys34 and its contribution to the maintenance of intravascular homeostasis, including protecting the vascular endothelium under disease conditions related to oxidative stress. Recent studies also evaluated the susceptibility of other important amino acid residues to free radicals. The findings suggest that a redox change in HSA is related to the oxidation of several amino acid residues by different oxidants. Further, Cys34 adducts, such as S-nitrosylated and S-guanylated forms also play an important role in clinical applications. On the other hand, the ratio of the oxidized form to the normal form of albumin (HMA/HNA), which is a function of the redox states of Cys34, could serve as a useful marker for evaluating systemic redox states, which would be useful for the evaluation of disease progression and therapeutic efficacy. GENERAL SIGNIFICANCE This review provides new insights into our current understanding of the mechanism of HSA oxidation, based on in vitro and in vivo studies. This article is part of a Special Issue entitled Serum Albumin.
Collapse
Affiliation(s)
- Makoto Anraku
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan
| | | | | | | |
Collapse
|
8
|
Subtilase cytotoxin enhances Escherichia coli survival in macrophages by suppression of nitric oxide production through the inhibition of NF-κB activation. Infect Immun 2012; 80:3939-51. [PMID: 22949549 DOI: 10.1128/iai.00581-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Subtilase cytotoxin (SubAB), which is produced by certain strains of Shiga-toxigenic Escherichia coli (STEC), cleaves an endoplasmic reticulum (ER) chaperone, BiP/Grp78, leading to induction of ER stress and caspase-dependent apoptosis. SubAB alters the innate immune response. SubAB pretreatment of macrophages inhibited lipopolysaccharide (LPS)-induced production of both monocyte chemoattractant protein 1 (MCP-1) and tumor necrosis factor α (TNF-α). We investigated here the mechanism by which SubAB inhibits nitric oxide (NO) production by mouse macrophages. SubAB suppressed LPS-induced NO production through inhibition of inducible NO synthase (iNOS) mRNA and protein expression. Further, SubAB inhibited LPS-induced IκB-α phosphorylation and nuclear localization of the nuclear factor-κB (NF-κB) p65/p50 heterodimer. Reporter gene and chromatin immunoprecipitation (ChIP) assays revealed that SubAB reduced LPS-induced NF-κB p65/p50 heterodimer binding to an NF-κB binding site on the iNOS promoter. In contrast to the native toxin, a catalytically inactivated SubAB mutant slightly enhanced LPS-induced iNOS expression and binding of NF-κB subunits to the iNOS promoter. The SubAB effect on LPS-induced iNOS expression was significantly reduced in macrophages from NF-κB1 (p50)-deficient mice, which lacked a DNA-binding subunit of the p65/p50 heterodimer, suggesting that p50 was involved in SubAB-mediated inhibition of iNOS expression. Treatment of macrophages with an NOS inhibitor or expression of SubAB by E. coli increased E. coli survival in macrophages, suggesting that NO generated by macrophages resulted in efficient killing of the bacteria and SubAB contributed to E. coli survival in macrophages. Thus, we hypothesize that SubAB might represent a novel bacterial strategy to circumvent host defense during STEC infection.
Collapse
|
9
|
Inhibited Production of iNOS by Murine J774 Macrophages Occurs via a phoP-Regulated Differential Expression of NFκB and AP-1. Interdiscip Perspect Infect Dis 2012; 2012:483170. [PMID: 22848212 PMCID: PMC3405670 DOI: 10.1155/2012/483170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 05/10/2012] [Accepted: 05/21/2012] [Indexed: 12/24/2022] Open
Abstract
Background. There are no reported data to explain how Salmonella suppress nitrite ion production in macrophages or whether this phenomenon is unique to typhoidal or non-typhoidal serovars. The aims of this study were, therefore, to investigate these phenomena. Methods. We measured survival of S. typhimurium 14028 and its phoP mutant in murine J774 macrophages, cultured with or without interferon gamma. We compared expression of inducible nitric oxide synthase (iNOS) mRNA and protein, and nitrite ion production and also examined binding of nuclear factor κB (NFκB) and activator protein 1 (AP-1) to macrophage DNA. Results. S. typhimurium 14028 inhibited binding of NFκB and AP-1 to DNA in murine J774. A macrophages via an intact phoP regulon. This correlated with increased survival and reduced iNOS expression. Suppression of NFκB activity was ameliorated in macrophages cultured with IFN-γ and this correlated with increased expression of iNOS mRNA and nitrite ion production, although IFN-γ had no effect on AP-1/DNA interaction. We show, that with one exception, suppression of iNOS is unique to typhoidal serovars. Conclusion. S. typhimurium inhibit NFκB and AP-1 interaction with macrophage DNA via the PhoP regulon, this reduces nitrite ion production and is principally associated with typhoidal serovars.
Collapse
|
10
|
Ishima Y, Hoshino H, Shinagawa T, Watanabe K, Akaike T, Sawa T, Kragh-Hansen U, Kai T, Watanabe H, Maruyama T, Otagiri M. S-guanylation of human serum albumin is a unique posttranslational modification and results in a novel class of antibacterial agents. J Pharm Sci 2012; 101:3222-9. [PMID: 22488009 DOI: 10.1002/jps.23143] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 03/08/2012] [Accepted: 03/16/2012] [Indexed: 11/07/2022]
Abstract
8-Nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP) is a nitric oxide metabolite and an important second messenger. 8-Nitro-cGMP reacts with sulfhydryl groups forming a novel posttranslational modification, namely, S-guanylation. In this work, we found, by using a quantitative competition enzyme-linked immunosorbent assay procedure, that S-guanylated human serum albumin (S-cGMP-HSA) is a component of normal plasma, and that hemodialysis patients decrease its concentration, on an average, from 68 to 34 nM. End-stage renal disease is often accompanied by septicemia, and we found that S-cGMP-HSA possesses an in vitro antibacterial effect with half maximal inhibitory concentration of approximately 2 μM against Escherichia coli American Type Culture Collection. Our findings indicate that S-cGMP-HSA can be regarded as an endogenous antibacterial agent in healthy conditions and as a useful new class of antibacterial agents with a circulation time sufficient for in vivo biological activity. The clinical development of S-cGMP-HSA as a safe and strong antibacterial agent arisen from endogenous posttranslational modification would be expected.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Anti-Bacterial Agents/blood
- Anti-Bacterial Agents/metabolism
- Binding, Competitive
- Case-Control Studies
- Chemistry, Pharmaceutical
- Circular Dichroism
- Cyclic GMP/analogs & derivatives
- Cyclic GMP/blood
- Cyclic GMP/metabolism
- Cysteine
- Dose-Response Relationship, Drug
- Drug Design
- Enzyme-Linked Immunosorbent Assay
- Escherichia coli/drug effects
- Escherichia coli/growth & development
- Female
- Humans
- Japan
- Kidney Failure, Chronic/blood
- Kidney Failure, Chronic/therapy
- Ligands
- Male
- Microbial Sensitivity Tests
- Middle Aged
- Protein Binding
- Protein Processing, Post-Translational
- Renal Dialysis
- Serum Albumin/metabolism
- Serum Albumin, Human
- Spectrometry, Fluorescence
- Technology, Pharmaceutical/methods
Collapse
Affiliation(s)
- Yu Ishima
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Rose JE, Dehkordi O, Fatemi M, Raghupathi R, Millis RM, Jayam-Trouth A. Neuroanatomical evidence for a putative autocrine/paracrine signaling system involving nicotinic acetylcholine receptors, purinergic receptors, and nitric oxide synthase in the airways. J Neurosci Res 2011; 90:849-59. [DOI: 10.1002/jnr.22817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Akaike T, Fujii S, Sawa T, Ihara H. Cell signaling mediated by nitrated cyclic guanine nucleotide. Nitric Oxide 2010; 23:166-74. [PMID: 20601047 DOI: 10.1016/j.niox.2010.06.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 06/10/2010] [Accepted: 06/11/2010] [Indexed: 10/19/2022]
Abstract
We recently clarified the physiological formation of 8-nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP) and its critical roles in nitric oxide (NO) signal transductions. This discovery of 8-nitro-cGMP is the first demonstration of a nitrated cyclic nucleotide functioning as a new second messenger in mammals since the identification of cGMP more than 40 years ago. By means of chemical analyses, e.g., liquid chromatography-tandem mass spectrometry, we unequivocally identified 8-nitro-cGMP formation, which depended on NO production, in several types of cultured cells, including macrophages and glial cells. Most important, we previously showed that 8-nitro-cGMP as an electrophile reacted with particular sulfhydryls of proteins to generate a unique post-translational modification that we called protein S-guanylation. In fact, certain specific intracellular proteins, such as the redox-sensor protein Keap1, readily underwent S-guanylation induced by 8-nitro-cGMP. 8-Nitro-cGMP activated the Nrf2 signaling pathway by triggering dissociation of Keap1, via S-guanylation of its highly nucleophilic cysteine sulfhydryls. We also determined that S-guanylation of Keap1 was involved in cytoprotective actions of NO and 8-nitro-cGMP by inducing oxidative stress response genes such as heme oxygenase-1. Such unique chemical properties of 8-nitro-cGMP shed light on new areas of NO and cGMP signal transduction. Protein S-guanylation induced by 8-nitro-cGMP may thus have important implications in NO-related physiology and pathology, pharmaceutical chemistry, and development of therapeutics for many diseases.
Collapse
Affiliation(s)
- Takaaki Akaike
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| | | | | | | |
Collapse
|