1
|
Wang X, Cui B, Lin H, Pan R, Zeng J, Fang X, Liu Y, Chen ZY, Chen Y, Zhu H. Research Progress in Saltiness Perception and Salty Substitutes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2745-2759. [PMID: 39843245 DOI: 10.1021/acs.jafc.4c10278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Salty taste in foods is a key sensory attribute for appetite enhancement, however, consumption of a high salt diet is associated with a high risk of hypertension, stroke, and heart diseases. To address this issue, the World Health Organization (WHO) has recommended reducing the global per capita salt consumption by 30% by 2025, with adults optimally consuming less than 5 g/day of salt. Therefore, the search for new salty substitutes to reduce salt intake in foods has become a research hotspot. Despite the ongoing endeavors of global research, multiple studies have focused on the application of a single category of salty alternatives or food processing quality (such as preservative effects and process characteristics), and there is still little comprehensive evaluation of these alternatives in terms of nutritional value, health impact, and consumer acceptance in the literature. This review will first outline the urgency of global salt reduction, followed by thorough discussion of salty substitutes and associated mechanisms from the perspective of human salty taste perception. Second, the present review will explore the potential application of salty substitutes and highlight the interaction between taste and odor in foods. Additionally, the potential impacts of salty substitutes on human health will be discussed. The present review will provide a scientific basis for the development of low salt products by food industry.
Collapse
Affiliation(s)
- Xiaojun Wang
- School of Food Science and Engineering, Foshan University, Foshan 528011, China
| | - Biyan Cui
- School of Food Science and Engineering, Foshan University, Foshan 528011, China
| | - Huiqi Lin
- School of Food Science and Engineering, Foshan University, Foshan 528011, China
| | - Rongzeng Pan
- School of Food Science and Engineering, Foshan University, Foshan 528011, China
| | - Jia Zeng
- School of Food Science and Engineering, Foshan University, Foshan 528011, China
| | - Xiaolei Fang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Zhen-Yu Chen
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT 999077, Hong Kong, China
| | - Yanping Chen
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Hanyue Zhu
- School of Food Science and Engineering, Foshan University, Foshan 528011, China
| |
Collapse
|
2
|
Zhu J, Sun Y, Zhang S, Li H, Liu Z, Liu X, Yi J. Unraveling the Genetic Adaptations in Cell Surface Composition and Transporters of Lactiplantibacillus plantarum for Enhanced Acid Tolerance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5368-5378. [PMID: 38394628 DOI: 10.1021/acs.jafc.3c09292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
This study employed adaptive laboratory evolution to improve the acid tolerance of Lactiplantibacillus plantarum, a vital strain in food fermentation and a potential probiotic. Phenotype and genomic analyses identified the overexpression of stress response proteins, ATP synthases, and transporters as pivotal in conferring acid tolerance to the evolved strains. These adaptations led to a shorter lag phase, improved survival rates, and higher intracellular pH values compared to the wild-type strain under acid stress conditions. Additionally, the evolved strains showed an increased expression of genes in the fatty acid synthesis pathway, resulting in a higher production of unsaturated fatty acids. The changes in cell membrane composition possibly prevented H+ influx, while mutant genes related to cell surface structure contributed to observed elongated cells and thicker cell surface. These alterations in cell wall and membrane composition, along with improved transporter efficiency, were key factors contributing to the enhanced acid tolerance in the evolved strains.
Collapse
Affiliation(s)
- Jiang Zhu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory for Food Advanced Manufacturing, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| | - Yuwei Sun
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Shiyao Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory for Food Advanced Manufacturing, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| | - Hong Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory for Food Advanced Manufacturing, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| | - Zhijia Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory for Food Advanced Manufacturing, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory for Food Advanced Manufacturing, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| |
Collapse
|
3
|
Wali N, Wajid N, Shabbir A, Ali F, Shamim S, Abbas N, Naqvi SZH. Safety Considerations for Lyophilized Human Amniotic Membrane Impregnated with Colistin and Silver Nanoparticles. Appl Biochem Biotechnol 2024; 196:1419-1434. [PMID: 37418129 DOI: 10.1007/s12010-023-04618-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2023] [Indexed: 07/08/2023]
Abstract
Lyophilized human amniotic membrane (HAM) and silver nanoparticles (AgNPs) have multispectral applications as a biological dressing. The present study focuses on the safety aspects of HAM coated with colistin and AgNPs (HACoN) dressing in relation to its structural and hematological changes. Four dressing groups were designed for the study, HAM, HAM coated with colistin (HACo), HAM coated with AgNPs (HAN), and HAM coated with colistin (HACo) and HACoN. Scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR) were utilized for constitutional analysis. Biological safety was checked by applying HAM of all groups on open excisional burn wounds on Sprague-Dawley rats for 21 days. The skin, kidneys, liver, and spleen were removed, and histological analysis was performed for detailed structural analysis. Oxidative stress was assessed using homogenate from newly generated skin. No structural or biochemical change was observed in any of the study groups as observed by SEM and FTIR. After 21 days of grafting, wounds were healed properly with normal skin, and no anomaly was observed in related to kidneys, spleen, and liver. Some of antioxidant enzymes were increased, while malondialdehyde which is a reactive oxygen species was reduced in the skin tissue homogenate of HACoN group. Impregnation of colistin and AgNPs in combination on HAM has no effects on hematological and structural constitution of HAM. It leaves no obvious change in vital organs of rats and improves oxidative stress and inflammation. Hence, it can be claimed that HACoN is a biologically safe antibacterial dressing.
Collapse
Affiliation(s)
- Nadia Wali
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Defense Road Campus, Lahore, Pakistan.
- Department of Pathology, Akhtar Saeed Medical & Dental College, Lahore, Pakistan.
| | - Nadia Wajid
- Center of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan.
| | - Aroosh Shabbir
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Defense Road Campus, Lahore, Pakistan
| | - Fatima Ali
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Defense Road Campus, Lahore, Pakistan
| | - Saba Shamim
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Defense Road Campus, Lahore, Pakistan
| | - Nasir Abbas
- Department of Statistics, Government Graduate College, Jhang, Pakistan
| | - Syed Zeeshan Haider Naqvi
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Defense Road Campus, Lahore, Pakistan
| |
Collapse
|
4
|
Ramadevi S, Shelin R, Shanmugaraja M. Comprehensive Analysis of the Physiological Characterization of Escherichia coli Nissle 1917. Curr Microbiol 2023; 80:150. [PMID: 36976334 DOI: 10.1007/s00284-023-03253-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 03/05/2023] [Indexed: 03/29/2023]
Abstract
Escherichia coli Nissle 1917 (EcN) is one of the probiotics that has drawn more attention from researchers in recent days as it extends many host beneficial effects. EcN is being used as a treatment regimen especially for gastrointestinal disorders for more than 100 years. Apart from its clinical applications in its original form, EcN is being genetically engineered to meet the therapeutic requirements which ultimately led to the gradual transformation of EcN from being a mere food supplement to a complex therapeutic agent. However, comprehensive analysis of physiological characterization of EcN is inadequate. In this study, we have systematically studied various physiological parameters and found that EcN grows very well at the normal as well as at stressful conditions such as temperature (30, 37 and 42 °C), nutritional (minimal and LB), pH (ranging from 3 to 7) and osmotic stress (0.4 M NaCl, 0.4 M KCl, 0.4 M Sucrose and salt conditions). However, EcN shows nearly onefold reduction in viability at extreme acidic conditions (pH 3 and 4). It produces biofilm and curlin very efficiently compared to the laboratory strain MG1655. Through genetic analysis we have also shown that EcN exhibits high level of transformation efficiency and greater ability to retain heterogenous plasmid. Very interestingly, we have found that EcN is highly resistant to P1 phage infection. Since, EcN is being exploited largely for its clinical and therapeutic applications, the results that we have reported here would add more value and further expand its scope in clinical and biotechnological research.
Collapse
Affiliation(s)
- S Ramadevi
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Chennai, Tamil Nadu, India
| | - Ruby Shelin
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Chennai, Tamil Nadu, India
| | - Meenakshi Shanmugaraja
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Chennai, Tamil Nadu, India.
- Department of Biotechnology, Mepco Schlenk Engineering College, Sivakasi, 626005, Tamil Nadu, India.
| |
Collapse
|
5
|
Gomes MDSA, Kato LS, Carvalho APAD, Almeida AECCD, Conte-Junior CA. Sodium replacement on fish meat products – A systematic review of microbiological, physicochemical and sensory effects. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
6
|
Bacteria hinder large-scale transport and enhance small-scale mixing in time-periodic flows. Proc Natl Acad Sci U S A 2021; 118:2108548118. [PMID: 34580224 DOI: 10.1073/pnas.2108548118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 11/18/2022] Open
Abstract
Understanding mixing and transport of passive scalars in active fluids is important to many natural (e.g., algal blooms) and industrial (e.g., biofuel, vaccine production) processes. Here, we study the mixing of a passive scalar (dye) in dilute suspensions of swimming Escherichia coli in experiments using a two-dimensional (2D) time-periodic flow and in a simple simulation. Results show that the presence of bacteria hinders large-scale transport and reduces overall mixing rate. Stretching fields, calculated from experimentally measured velocity fields, show that bacterial activity attenuates fluid stretching and lowers flow chaoticity. Simulations suggest that this attenuation may be attributed to a transient accumulation of bacteria along regions of high stretching. Spatial power spectra and correlation functions of dye-concentration fields show that the transport of scalar variance across scales is also hindered by bacterial activity, resulting in an increase in average size and lifetime of structures. On the other hand, at small scales, activity seems to enhance local mixing. One piece of evidence is that the probability distribution of the spatial concentration gradients is nearly symmetric with a vanishing skewness. Overall, our results show that the coupling between activity and flow can lead to nontrivial effects on mixing and transport.
Collapse
|
7
|
Community level physiological profiling of reduced or replaced salt fresh sausage inoculated with Escherichia coli ATCC 25922. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
8
|
Ma J, Wang W, Sun C, Gu L, Liu Z, Yu W, Chen L, Jiang Z, Hou J. Effects of environmental stresses on the physiological characteristics, adhesion ability and pathogen adhesion inhibition of Lactobacillus plantarum KLDS 1.0328. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Lin K, Marr LC. Humidity-Dependent Decay of Viruses, but Not Bacteria, in Aerosols and Droplets Follows Disinfection Kinetics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1024-1032. [PMID: 31886650 DOI: 10.1021/acs.est.9b04959] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The transmission of some infectious diseases requires that pathogens can survive (i.e., remain infectious) in the environment, outside the host. Relative humidity (RH) is known to affect the survival of some microorganisms in the environment; however, the mechanism underlying the relationship has not been explained, particularly for viruses. We investigated the effects of RH on the viability of bacteria and viruses in both suspended aerosols and stationary droplets using traditional culture-based approaches. Results showed that viability of bacteria generally decreased with decreasing RH. Viruses survived well at RHs lower than 33% and at 100%, whereas their viability was reduced at intermediate RHs. We then explored the evaporation rate of droplets consisting of culture media and the resulting changes in solute concentrations over time; as water evaporates from the droplets, solutes such as sodium chloride in the media become more concentrated. Based on the results, we suggest that inactivation of bacteria is influenced by osmotic pressure resulting from elevated concentrations of salts as droplets evaporate. We propose that the inactivation of viruses is governed by the cumulative dose of solutes or the product of concentration and time, as in disinfection kinetics. These findings emphasize that evaporation kinetics play a role in modulating the survival of microorganisms in droplets.
Collapse
Affiliation(s)
- Kaisen Lin
- Department of Civil and Environmental Engineering , Virginia Tech , 418 Durham Hall , Blacksburg , Virginia 24061 , United States
| | - Linsey C Marr
- Department of Civil and Environmental Engineering , Virginia Tech , 418 Durham Hall , Blacksburg , Virginia 24061 , United States
| |
Collapse
|
10
|
Silva HL, Balthazar CF, Esmerino EA, Neto RP, Rocha RS, Moraes J, Cavalcanti RN, Franco RM, Tavares MIB, Santos JS, Granato D, Costa RG, Freitas MQ, Silva MC, Raices RS, Senaka Ranadheera C, Nazzaro F, Mortazavian AM, Cruz AG. Partial substitution of NaCl by KCl and addition of flavor enhancers on probiotic Prato cheese: A study covering manufacturing, ripening and storage time. Food Chem 2018; 248:192-200. [DOI: 10.1016/j.foodchem.2017.12.064] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/15/2017] [Accepted: 12/17/2017] [Indexed: 01/17/2023]
|
11
|
Gandhi A, Shah NP. Effect of salt stress on morphology and membrane composition of Lactobacillus acidophilus, Lactobacillus casei, and Bifidobacterium bifidum, and their adhesion to human intestinal epithelial-like Caco-2 cells. J Dairy Sci 2016; 99:2594-2605. [DOI: 10.3168/jds.2015-10718] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 12/30/2015] [Indexed: 11/19/2022]
|
12
|
Growth potential of Listeria monocytogenes in probiotic cottage cheese formulations with reduced sodium content. Food Res Int 2016. [DOI: 10.1016/j.foodres.2015.12.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
13
|
Gandhi A, Shah NP. Salt Reduction in a Model High-Salt Akawi Cheese: Effects on Bacterial Activity, pH, Moisture, Potential Bioactive Peptides, Amino Acids, and Growth of Human Colon Cells. J Food Sci 2016; 81:H991-H1000. [DOI: 10.1111/1750-3841.13260] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/13/2015] [Accepted: 01/31/2016] [Indexed: 11/26/2022]
Affiliation(s)
- Akanksha Gandhi
- Food and Nutritional Science, School of Biological Sciences; The Univ. of Hong Kong; Pokfulam Road Hong Kong
| | - Nagendra P. Shah
- Food and Nutritional Science, School of Biological Sciences; The Univ. of Hong Kong; Pokfulam Road Hong Kong
| |
Collapse
|