1
|
Trombetti S, Cimbalo A, Grosso M, Vila-Donat P, Mañes J, Manyes L. Proteomic Analysis of the Murine Liver Response to Oral Exposure to Aflatoxin B1 and Ochratoxin A: The Protective Role to Bioactive Compounds. Toxins (Basel) 2025; 17:29. [PMID: 39852982 PMCID: PMC11768807 DOI: 10.3390/toxins17010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/30/2024] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
Aflatoxin B1 (AFB1) and Ochratoxin A (OTA) are considered the most important mycotoxins in terms of food safety. The aim of this study was to evaluate the hepatotoxicity of AFB1 and OTA exposure in Wistar rats and to assess the beneficial effect of fermented whey (FW) and pumpkin (P) as functional ingredients through a proteomic approach. For the experimental procedures, rats were fed AFB1 and OTA individually or in combination, with the addition of FW or a FW-P mixture during 28 days. For proteomics analysis, peptides were separated using a LC-MS/MS-QTOF system and differentially expressed proteins (DEPs) were statistically filtered (p < 0.05) distinguishing males from females. Gene ontology visualization allowed the identification of proteins involved in important biological processes such as the response to xenobiotic stimuli and liver development. Likewise, KEGG pathway analysis reported the metabolic routes as the most affected, followed by carbon metabolism and biosynthesis of amino acids. Overall, the results highlighted a strong downregulation of DEPs in the presence of AFB1 and OTA individually but not with the mixture of both, suggesting a synergistic effect. However, FW and P have helped in the mitigation of processes triggered by mycotoxins.
Collapse
Affiliation(s)
- Silvia Trombetti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy; (S.T.); (M.G.)
| | - Alessandra Cimbalo
- Biotech Agrifood, Faculty of Pharmacy and Food Sciences, Universitat de València, Avda. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain; (A.C.); (J.M.); (L.M.)
| | - Michela Grosso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy; (S.T.); (M.G.)
| | - Pilar Vila-Donat
- Biotech Agrifood, Faculty of Pharmacy and Food Sciences, Universitat de València, Avda. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain; (A.C.); (J.M.); (L.M.)
| | - Jordi Mañes
- Biotech Agrifood, Faculty of Pharmacy and Food Sciences, Universitat de València, Avda. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain; (A.C.); (J.M.); (L.M.)
| | - Lara Manyes
- Biotech Agrifood, Faculty of Pharmacy and Food Sciences, Universitat de València, Avda. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain; (A.C.); (J.M.); (L.M.)
| |
Collapse
|
2
|
Massaut KB, Vitola HRS, Gonçalves VS, Leite FPL, Jardim RD, Moreira ÂN, da Silva WP, Fiorentini ÂM. Administration of Lacticaseibacillus casei CSL3 in Swiss Mice with Immunosuppression Induced by Cyclophosphamide: Effects on Immunological, Biochemical, Oxidative Stress, and Histological Parameters. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10362-9. [PMID: 39313704 DOI: 10.1007/s12602-024-10362-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2024] [Indexed: 09/25/2024]
Abstract
The study aimed to evaluate the effects of supplementation with Lacticaseibacillus casei CSL3 in Swiss mice immunosuppressed with cyclophosphamide on immunological, biochemical, oxidative stress, and histological parameters. The animals were distributed into four groups (control, CSL3, cyclophosphamide, and CSL3 + cyclophosphamide), where two groups were treated with L. casei CSL3 (10 log CFU mL-1) for 30 days, and two groups received chemotherapy (days 27 and 30-total dose of 250 mg kg-1). Counts of lactic acid bacteria (LAB) and bile-resistant LAB in stool samples; blood count (erythrogram, leukogram, and platelets); serum total cholesterol levels; catalase enzyme activity; and thiobarbituric acid reactive substances (TBARS) levels in liver, kidney, and brain; IL-4 expression; IL-23, TNF-α, NF-κβ in the spleen; and histological changes in the liver, kidneys, and intestine were evaluated. The CSL3 + cyclophosphamide group showed a significant increase in bile-resistant LAB counts in feces (p = 0.0001), leukocyte counts, and expression of IL-23, TNF-α, and NF-κβ (p < 0.05) significantly reduced total cholesterol levels (p = 0.001) and protected liver damage of supplemented animals. For oxidative stress damage, the bacterium did not influence the results. It is concluded that the bacterium is safe at a concentration of 10 log CFU mL-1 and has probiotic potential due to its positive influence on the immune response and lipid metabolism.
Collapse
Affiliation(s)
- Khadija Bezerra Massaut
- Laboratory of Food Microbiology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Helena Reissing Soares Vitola
- Laboratory of Food Microbiology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS, Brazil
| | | | | | - Rodrigo Desessards Jardim
- Histology Laboratory, Institute of Biological Sciences, Federal University of Rio Grande, Rio Grande, RS, Brazil
| | - Ângela Nunes Moreira
- Laboratory of Applied Immunology, Biotechnology Unit, Technology Development Center, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Wladimir Padilha da Silva
- Laboratory of Food Microbiology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Ângela Maria Fiorentini
- Laboratory of Food Microbiology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
3
|
Chen X, Zhao Y, Xue K, Leng M, Yin W. Microbiological and clinical effects of probiotic-related Zeger therapy on gingival health: a randomized controlled clinical trial. BMC Oral Health 2024; 24:1086. [PMID: 39277730 PMCID: PMC11401283 DOI: 10.1186/s12903-024-04846-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 09/02/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND This single-blind randomized controlled trial was aimed to evaluate the microbiological and clinical effects of Zeger therapy on gingival health. METHODS Twenty-four adults with gingivitis were recruited and monitored micro-biologically and clinically at baseline (Day 0), 4 weeks (Day 29) after therapy. All volunteers received one-stage full-mouth supragingival scaling as basic oral health care for baseline, and then randomly divided into experimental (koumiss, n = 12) or control (none, n = 12) group. The koumiss was used once a day for 4 weeks. RESULTS The microbial diversity of the experimental group increased significantly after drinking koumiss (p < 0.05), mainly owing to increasing of Gram-positive bacteria (p = 0.038) and oral health-related microbes (Rothia, Corynebacterium, Actinomyces, Saccharibacteria_TM7, etc.), decreasing of Gram-negative bacteria (p = 0.009) and periodontal disease-related microbes (Porphyromonas, Fusobacterium, Veillonella, etc.), while the microbial diversity of the control group had no significant change (p > 0.05). However, there was no significant difference between the two groups in the clinical parameters (p > 0.05). CONCLUSIONS Zeger therapy promotes the diversity of supragingival microbiome in adults with gingivitis and increases the abundance of some beneficial flora while decreasing some harmful without clinical parameters marked changing, which holds promise for improving of gingivitis and may be a valuable oral health care approach in the future. TRIAL REGISTRATION The clinical trial was approved by the Medical Ethics Committee of West China Hospital of Stomatology, Sichuan University, batch No. WCHSIRB-D-2021-428. Before patient registration began, the prospective clinical trial was registered in www. CLINICALTRIALS gov public repository in China under the registration number ChiCTR2200060555 on 04/06/2022.
Collapse
Affiliation(s)
- Xin Chen
- State Key laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, No.14, 3Rd Section Of Ren Min Nan Rd., Chengdu, 610041, Sichuan, China
| | - Yi Zhao
- State Key laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, No.14, 3Rd Section Of Ren Min Nan Rd., Chengdu, 610041, Sichuan, China
| | - Kun Xue
- State Key laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, No.14, 3Rd Section Of Ren Min Nan Rd., Chengdu, 610041, Sichuan, China
| | - Mengyao Leng
- State Key laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, No.14, 3Rd Section Of Ren Min Nan Rd., Chengdu, 610041, Sichuan, China
| | - Wei Yin
- State Key laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, No.14, 3Rd Section Of Ren Min Nan Rd., Chengdu, 610041, Sichuan, China.
| |
Collapse
|
4
|
Zeng X, Wang Y, Yang S, Liu Y, Li X, Liu D. The functionalities and applications of whey/whey protein in fermented foods: a review. Food Sci Biotechnol 2024; 33:769-790. [PMID: 38371680 PMCID: PMC10866834 DOI: 10.1007/s10068-023-01460-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 02/20/2024] Open
Abstract
Whey, a major by-product of cheese production, is primarily composed of whey protein (WP). To mitigate environmental pollution, it is crucial to identify effective approaches for fully utilizing the functional components of whey or WP to produce high-value-added products. This review aims to illustrate the active substances with immunomodulatory, metabolic syndrome-regulating, antioxidant, antibacterial, and anti-inflammatory activities produced by whey or WP through fermentation processes, and summarizes the application and the effects of whey or WP on nutritional properties and health promotion in fermented foods. All these findings indicate that whey or WP can serve as a preservative, a source of high-protein dietary, and a source of physiologically active substance in the production of fermented foods. Therefore, expanding the use of whey or WP in fermented foods is of great importance for converting whey into value-added products, as well as reducing whey waste and potential contamination.
Collapse
Affiliation(s)
- Xiaorong Zeng
- Institute of Nutrition and Food Hygiene, School of Public Health, Lanzhou University, Lanzhou, 730000 China
| | - Yujie Wang
- Institute of Nutrition and Food Hygiene, School of Public Health, Lanzhou University, Lanzhou, 730000 China
| | - Shuda Yang
- Institute of Nutrition and Food Hygiene, School of Public Health, Lanzhou University, Lanzhou, 730000 China
| | - Yijun Liu
- Institute of Nutrition and Food Hygiene, School of Public Health, Lanzhou University, Lanzhou, 730000 China
| | - Xing Li
- Zhangye Water Saving Agricultural Experimental Station, Gansu Academy of Agricultural Sciences, Zhangye, 734000 China
| | - Diru Liu
- Institute of Nutrition and Food Hygiene, School of Public Health, Lanzhou University, Lanzhou, 730000 China
| |
Collapse
|
5
|
Non-Dairy Fermented Beverages Produced with Functional Lactic Acid Bacteria. Microorganisms 2022; 10:microorganisms10122314. [PMID: 36557567 PMCID: PMC9781336 DOI: 10.3390/microorganisms10122314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
At present, there is an increasing interest in beverages of non-dairy origin, as alternatives to those based on milk, but having similar health-promoting properties. Fermentation with specific bacteria or consortia may enhance the functionality of these products. In our study, selected lactic acid bacteria, that have been previously shown to possess functional properties (antimicrobial activity, probiotic potential), were used for the fermentation of wheat bran combined with root vegetables. Strains were investigated for their safety, while the obtained beverages were characterized in terms of microbial content, physical, chemical, nutritional, and functional properties. None of the strains harbors virulence genes, but all of them possess genes for survival at low pH, starch metabolism, and vitamin biosynthesis. Three strains (Lactiplantibacillus plantarum BR9, L. plantarum P35, and Lactobacillus acidophilus IBB801) and two substrates (5% wheat bran with 10% red beetroot/carrots) were selected based on a preliminary assessment of the beverage's sensory acceptability. These strains showed good growth and stability over time in the stored beverages. No enterobacteria were detected at the end of fermentations, while the final pH was, in most cases, below 3.5. Free phenolics, flavonoids, and DPPH scavenging effect increased during fermentation in all drinks, reaching 24h values that were much higher than in the unfermented substrates. Most of the obtained drinks were able to prevent the growth of certain pathogens, including Listeria monocytogenes ATCC 19111, Salmonella enterica ATCC 14028, Staphylococcus aureus ATCC 25923, and Escherichia coli ATCC 25922. The obtained beverages would combine the nutritiveness of the raw ingredients with the beneficial effect of fermentation (increasing shelf life, health-promoting effect, pleasant flavor, etc.). They would also fill a gap in the non-dairy probiotics sector, which is constantly increasing due to the increasing number of vegan people or people that cannot consume dairy products.
Collapse
|
6
|
Wang Q, Shi J, Zhao M, Ruan G, Dai Z, Xue Y, Shi D, Xu C, Yu O, Wang F, Xue Z. Microbial treatment of alcoholic liver disease: A systematic review and meta-analysis. Front Nutr 2022; 9:1054265. [PMID: 36479298 PMCID: PMC9719948 DOI: 10.3389/fnut.2022.1054265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/03/2022] [Indexed: 11/12/2023] Open
Abstract
Background and aims Alcoholic liver disease (ALD) is characterized by impaired liver function due to chronic alcohol consumption, even fatal in severe cases. We performed a meta-analysis to determine whether microbial agents have therapeutic potential for ALD and elucidate the underlying mechanisms. Methods and results Forty-one studies were eligible for this meta-analysis after searching the PubMed, Cochrane, and Embase databases. The combined analysis showed that microbial therapy significantly decreased hepatic enzymatic parameters, including alanine transaminase [standardized mean difference (SMD): -2.70, 95% confidence interval (CI): -3.33 to -2.07], aspartate aminotransferase (SMD: -3.37, 95% CI: -4.25 to -2.49), γ-glutamyl transpeptidase (SMD: -2.07, 95% CI: -3.01 to -1.12), and alkaline phosphatase (SMD: -2.12, 95% CI: -3.32 to -0.92). Microbial agents endotoxin to enter the portal circulation and increasing reduced total cholesterol (SMD = -2.75, 95%CI -4.03 to -1.46) and triglycerides (SMD = -2.64, 95% CI: -3.22 to -2.06). Microbial agents increased amounts of the beneficial flora Lactobacillus (SMD: 4.40, 95% CI: 0.97-7.84) and Bifidobacteria (SMD: 3.84, 95% CI: 0.22-7.45), Bacteroidetes (SMD: 2.51, 95% CI: 0.29-4.72) and decreased harmful Proteobacteria (SMD: -4.18, 95% CI: -6.60 to -1.77), protecting the integrity of the intestinal epithelium and relieving endotoxin (SMD: -2.70, 95% CI: -3.52 to -2.17) into the portal vein, thereby reducing the production of inflammatory factors such as tumor necrosis factor-α (SMD: -3.35, 95% CI: -4.31 to -2.38), interleukin-6 (SMD: -4.28, 95% CI: -6.13 to -2.43), and interleukin-1β (SMD: -4.28, 95% CI: -6.37 to -2.19). Oxidative stress was also relieved, as evidenced by decreased malondialdehyde levels (SMD: -4.70, 95% CI: -6.21 to -3.20). Superoxide dismutase (SMD: 2.65, 95% CI: 2.16-3.15) and glutathione levels (SMD: 3.80, 95% CI: 0.95-6.66) were elevated. Conclusion Microbial agents can reverse dysbiosis in ALD, thus significantly interfering with lipid metabolism, relieving inflammatory response and inhibiting oxidative stress to improve liver function.
Collapse
Affiliation(s)
- Qinjian Wang
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiangmin Shi
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Min Zhao
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Gaoyi Ruan
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zebin Dai
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yilang Xue
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dibang Shi
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Changlong Xu
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ouyue Yu
- Department of Pathophysiology, School of Basic Medicine Science, Wenzhou Medical University, Wenzhou, China
| | - Fangyan Wang
- Department of Pathophysiology, School of Basic Medicine Science, Wenzhou Medical University, Wenzhou, China
| | - Zhanxiong Xue
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
7
|
Wang Y, Sun H, Chen Y, Guan W, Zhang J, Yu H, Wang Y, Wang W. The ameliorative effects of probiotic‐fermented soymilk on acute alcoholic liver injury. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yu Wang
- College of Food Science and Engineering Jilin Agricultural University Changchun China
- Jilin Province Innovation Center for Food Biological Manufacture Jilin Agricultural University Changchun China
| | - Haiyue Sun
- College of Food Science and Engineering Jilin Agricultural University Changchun China
- Jilin Province Innovation Center for Food Biological Manufacture Jilin Agricultural University Changchun China
| | - Yiying Chen
- College of Food Science and Engineering Jilin Agricultural University Changchun China
- Jilin Province Innovation Center for Food Biological Manufacture Jilin Agricultural University Changchun China
| | - Wuyang Guan
- College of Food Science and Engineering Jilin Agricultural University Changchun China
- Jilin Province Innovation Center for Food Biological Manufacture Jilin Agricultural University Changchun China
| | - Jun Zhang
- Changchun Shengjinnuo Biopharmaceutical Co. Ltd Changchun China
| | - Hansong Yu
- College of Food Science and Engineering Jilin Agricultural University Changchun China
- Jilin Province Innovation Center for Food Biological Manufacture Jilin Agricultural University Changchun China
- National Processing Laboratory for Soybean Industry and Technology Changchun China
| | - Yuhua Wang
- College of Food Science and Engineering Jilin Agricultural University Changchun China
- Jilin Province Innovation Center for Food Biological Manufacture Jilin Agricultural University Changchun China
- National Processing Laboratory for Soybean Industry and Technology Changchun China
| | - Weili Wang
- Changchun Customs Technical Center Changchun China
| |
Collapse
|
8
|
Pázmándi M, Kovács Z, Maráz A. Potential of Lactobacillus strains for the production of fermented functional beverages enriched in galacto-oligosaccharides. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111097] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Cheese Whey Fermentation by Its Native Microbiota: Proteolysis and Bioactive Peptides Release with ACE-Inhibitory Activity. FERMENTATION-BASEL 2020. [DOI: 10.3390/fermentation6010019] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cheese whey contains about 20% of the total milk protein and has high nutritional and technological value, as well as attractive biological properties. Whey protein represents an important source of bioactive peptides with beneficial effects on health (e.g., antioxidant, antidiabetic, antihypertensive, etc.). Microbiota in cheese whey can hydrolyze proteins and generate bioactive peptides through a fermentation process. The objective of this study was to evaluate the effect of temperature on the fermentation of cheese whey by its native microbiota, and the action of microbial proteolytic activity on whey proteins to release peptides with inhibitory activity of the angiotensin-converting enzyme (ACE). Whey proteins hydrolysis occurred at all incubation temperatures evaluated (32–50 °C), with the major proteolytic effect within the range of 35–42 °C. Minor whey proteins (i.e., Lf, bovine serum albumin (BSA), and IgG) were more susceptible to degradation, while β-lactoglobulin and α-lactalbumin showed major resistance to microbial proteolytic action. Alfa-amino groups increased from 36 to 360–456 µg Gly/mL after 120 h of fermentation. A higher lactic acid production (11.32–13.55 g/L) and lower pH (3.3–3.5) were also observed in the same temperature range (32–42 °C). In addition, ACE-inhibitory activity increased from 22% (unfermented whey) to 60–70% after 120 h of fermentation. These results suggest that the fermentation of cheese whey by its native microbiota represents an attractive process to give value to whey for the production of whey-based beverages or functional foods with potential antihypertensive properties.
Collapse
|
10
|
Radic I, Mijovic M, Tatalovic N, Mitic M, Lukic V, Joksimovic B, Petrovic Z, Ristic S, Velickovic S, Nestorovic V, Corac A, Miric M, Adzic M, Blagojevic DP, Popovic L, Hudomal SJ. Protective effects of whey on rat liver damage induced by chronic alcohol intake. Hum Exp Toxicol 2019; 38:632-645. [PMID: 30784321 DOI: 10.1177/0960327119829518] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In 2012, alcohol liver disease resulted in 3.3 million-5.9% of global deaths. This study introduced whey protection capacity against chronic alcohol-induced liver injury. Rats were orally administered to 12% ethanol solution in water (ad libitum, average 8.14 g of ethanol/kg body weight (b.w.)/day) alone or combined with whey ( per os, 2 g/kg b.w./day). After 6-week treatment, chronic ethanol consumption induced significant histopathological liver changes: congestion, central vein dilation, hepatic portal vein branch dilation, Kupffer cells hyperplasia, fatty liver changes, and hepatocytes focal necrosis. Ethanol significantly increased liver catalase activity and glutathione reductase protein expression without significant effects on antioxidative enzymes: glutathione peroxidase (GPx), copper-zinc-containing superoxide dismutase (CuZnSOD) and manganese-containing superoxide dismutase (MnSOD). Co-treatment with whey significantly attenuated pathohistological changes induced by ethanol ingestion and increased GSH-Px and nuclear factor kappa B (NF-κB) protein expression. Our results showed positive effects of whey on liver chronically exposed to ethanol, which seem to be associated with NF-κB-GPx signaling.
Collapse
Affiliation(s)
- I Radic
- 1 Institute of Pathological Physiology, Faculty of Medical Science, University of Priština, City of Kosovska Mitrovica, Serbia
| | - M Mijovic
- 2 Institute of Pathology, Faculty of Medical Science, University of Priština, City of Kosovska Mitrovica, Serbia
| | - N Tatalovic
- 3 Department of Physiology, Institute for Biological Research "Siniša Stanković," University of Belgrade, Belgrade, Serbia
| | - M Mitic
- 4 Laboratory of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - V Lukic
- 5 Institute of Forensic Medicine, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - B Joksimovic
- 6 Department of Preclinical sciences, Faculty of Medicine in Foča, University of East Sarajevo, Republic of Srpska, Bosnia and Herzegovina
| | - Z Petrovic
- 4 Laboratory of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - S Ristic
- 6 Department of Preclinical sciences, Faculty of Medicine in Foča, University of East Sarajevo, Republic of Srpska, Bosnia and Herzegovina
| | - S Velickovic
- 1 Institute of Pathological Physiology, Faculty of Medical Science, University of Priština, City of Kosovska Mitrovica, Serbia
| | - V Nestorovic
- 7 Institute of Physiology, Faculty of Medical Science, University of Priština, City of Kosovska Mitrovica, Serbia
| | - A Corac
- 8 Institute of Hygiene, University of Priština, City of Kosovska Mitrovica, Serbia
| | - M Miric
- 1 Institute of Pathological Physiology, Faculty of Medical Science, University of Priština, City of Kosovska Mitrovica, Serbia
| | - M Adzic
- 4 Laboratory of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - D P Blagojevic
- 3 Department of Physiology, Institute for Biological Research "Siniša Stanković," University of Belgrade, Belgrade, Serbia
| | - L Popovic
- 1 Institute of Pathological Physiology, Faculty of Medical Science, University of Priština, City of Kosovska Mitrovica, Serbia
| | - S J Hudomal
- 9 Institute of Pharmacology and toxicology, University of Priština, City of Kosovska Mitrovica, Serbia
| |
Collapse
|
11
|
Kim DH, Jeong D, Oh YT, Kim HS, Kim YG, Song KY, Kang IB, Kim YJ, Park JH, Chang HS, Lim HW, Chon JW, Kim H, Jeong DK, Seo KH. Manufacture of Functional Koumiss supplemented with Cichorium
intybus L. (chicory) Extract - Preliminary Study. ACTA ACUST UNITED AC 2017. [DOI: 10.22424/jmsb.2017.35.1.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
12
|
Arakawa K, Yoshida S, Aikawa H, Hano C, Bolormaa T, Burenjargal S, Miyamoto T. Production of a bacteriocin-like inhibitory substance byLeuconostoc mesenteroidessubsp.dextranicum213M0 isolated from Mongolian fermented mare milk, airag. Anim Sci J 2015; 87:449-56. [DOI: 10.1111/asj.12445] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 02/20/2015] [Accepted: 03/16/2015] [Indexed: 11/26/2022]
Affiliation(s)
- Kensuke Arakawa
- Graduate School of Environmental and Life Science; Okayama University; Okayama Japan
| | - Saki Yoshida
- Graduate School of Environmental and Life Science; Okayama University; Okayama Japan
| | - Hiroki Aikawa
- Graduate School of Environmental and Life Science; Okayama University; Okayama Japan
| | - Chihiro Hano
- Graduate School of Environmental and Life Science; Okayama University; Okayama Japan
| | - Tsognemekh Bolormaa
- Graduate School of Environmental and Life Science; Okayama University; Okayama Japan
| | - Sedkhuu Burenjargal
- School of Veterinary Science and Biotechnology; Mongolian State University of Agriculture; Ulaanbaatar Mongolia
| | - Taku Miyamoto
- Graduate School of Environmental and Life Science; Okayama University; Okayama Japan
- Faculty of Food Culture; Kurashiki Sakuyo University; Kurashiki Okayama Japan
| |
Collapse
|
13
|
Pescuma M, de Valdez GF, Mozzi F. Whey-derived valuable products obtained by microbial fermentation. Appl Microbiol Biotechnol 2015; 99:6183-96. [DOI: 10.1007/s00253-015-6766-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/07/2015] [Accepted: 06/10/2015] [Indexed: 12/13/2022]
|