1
|
Zhao J, Jiang C, Lei M, Xie Y, Zhao J, Chen J, Yang M, Xiang D, Tang J, Lin H. Investigation the antioxidant mechanisms of Capsaicinoids on myofibrillar protein based on multispectral and molecular docking. Food Chem 2025; 472:142992. [PMID: 39848043 DOI: 10.1016/j.foodchem.2025.142992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/07/2025] [Accepted: 01/18/2025] [Indexed: 01/25/2025]
Abstract
This study investigated the interactions between Capsaicinoids (CAPs) and beef myofibrillar proteins (MPs) in a peroxyl radical system and elucidated the antioxidant mechanisms of CAPs by multispectral and molecular docking. Results showed that low concentration CAPs prevented the oxidative changes of protein structure caused by the attack of AAPH radicals on MPs, while high concentration of CAPs changed the structure of the proteins to form more small molecule aggregates, and reduce the binding of actin-myosin, which was conducive to the tenderization of the meats. CAPs bound to the MPs through hydrophobic interaction, hydrogen bonding and electrostatic interaction, altering the secondary and tertiary structure of MPs, increasing the α-helix content of MPs, and improving the antioxidant structural stability of MPs. This study can provide a theoretical basis for the utilization of CAPs in prefabrication meat processing, and provide a theoretical support for protein antioxidant strategies in spicy dishes.
Collapse
Affiliation(s)
- Jianhua Zhao
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China; College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Chunyan Jiang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Meijuan Lei
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Yilin Xie
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Jie Zhao
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Jiaxin Chen
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Mingyuan Yang
- China Agricultural University, Sichuan, Advanced Agricultural & Industrial Institute Chengdu, 611430, China
| | - Dan Xiang
- Chengdu Xiwang Food Co., Ltd., Chengdu 611430, China
| | - Jie Tang
- Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China.
| | - Hongbin Lin
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China.
| |
Collapse
|
2
|
Anjani G, Achmad Maulana R, Putri SR, Fulyani F, Syauqy A, Afifah DN, Ayustaningwarno F, Kusuma RA, Masruroh Z. Ameliorative effect of liprotide-encapsulated vitamin D3 on blood glucose, calcium homeostasis, and vitamin D level in a vitamin D and calcium deficient rat model. Front Nutr 2025; 12:1514179. [PMID: 39935579 PMCID: PMC11810727 DOI: 10.3389/fnut.2025.1514179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 01/07/2025] [Indexed: 02/13/2025] Open
Abstract
Vitamin D3, recognized for its higher bioavailability and direct cell utilization, plays a vital role in the human body. Applying β-lactoglobulin with oleic acid (β-Lg-AO) as an encapsulating agent is anticipated to protect and enhance the transport of vitamin D3 to the gastrointestinal system. This study aimed to evaluate effect of liprotide-encapsulated vitamin D3 in a vitamin D-deficient rat on blood glucose, Vitamin D and calcium status. This is pre-post intervention. 24 mice were divided into 4 groups: (K-) normal rats; (K+) rat model of vitamin D and calcium deficiency; (P1) rat model of vitamin D and calcium deficiency with vitamin D3 intervention; (P2) rat model of vitamin D and calcium deficiency with liprotide-encapsulated vitamin D3 intervention. The administered dose of vitamin D3 was 180 IU (2 mL solution). Liprotide-encapsulated vitamin D3 intervention in vitamin D and calcium deficiency rats can significantly increase vitamin D (25 (OH)D) and calcium levels (p < 0.05). The increase in vitamin D (25 (OH)D) level was 53.69 ng/mL, and the increased calcium level was 4.38 mg/dL. Blood glucose levels of vitamin D-calcium deficiency rats decreased significantly (p < 0.05) by 39.87 mg/dL. Vitamin D3 encapsulated liprotide improves vitamin D and calcium in the blood more effectively than vitamin D3 without encapsulation in deficient rats.
Collapse
Affiliation(s)
- Gemala Anjani
- Department of Nutrition Science, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Reza Achmad Maulana
- Department of Nutrition Science, Faculty of Public Health, Ahmad Dahlan University, Yogyakarta, Indonesia
| | - Sylvia Rahmi Putri
- Department of Nutrition Science, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Faizah Fulyani
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Ahmad Syauqy
- Department of Nutrition Science, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Diana Nur Afifah
- Department of Nutrition Science, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | | | - Refani Alycia Kusuma
- Department of Nutrition Science, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Zulfatul Masruroh
- Department of Nutrition Science, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| |
Collapse
|
3
|
Huang G, Li N, Wu X, Zheng N, Zhao S, Zhang Y, Wang J. Nutrition, production, and processing of virgin omega-3 polyunsaturated fatty acids in dairy: An integrative review. Heliyon 2024; 10:e39810. [PMID: 39748956 PMCID: PMC11693896 DOI: 10.1016/j.heliyon.2024.e39810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 01/04/2025] Open
Abstract
With improving living standards, functional and healthy foods are accounting for an increased share in human food. The development of dairy products that are rich in virgin omega-3 polyunsaturated fatty acids (n-3 PUFAs) has become a topic of interest. Virgin n-3 PUFA milk can provide high-quality protein and calcium, as well as provide n-3 PUFAs to improve human health. This review aims to investigate the effect of virgin n-3 PUFAs in milk on human health and discuss the content of virgin n-3 PUFAs in milk regulated by dairy animal diet and the effect of food processing on the content of virgin n-3 PUFAs in dairy production. The interaction between n-3 PUFAs and proteins in milk is the key to improving the nutritional value of n-3 PUFAs in milk. n-3 PUFA supplementation in the diet of dairy animals is the key method to improve n-3 PUFAs in raw milk, as well as to adjust the types of virgin n-3 PUFAs. Compared with a common source, virgin n-3 PUFAs in milk show higher antioxidant activity, but elevated temperatures and long-term thermal processing should be avoided.
Collapse
Affiliation(s)
- Guoxin Huang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
- College of Life Science, Nankai University, Tianjin, 300071, PR China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, PR China
| | - Ning Li
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, PR China
| | - Xufang Wu
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, PR China
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, PR China
| | - Shengguo Zhao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, PR China
| | - Yangdong Zhang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, PR China
| | - Jiaqi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, PR China
| |
Collapse
|
4
|
Lu Y, Feng S, Zhao Y, Wang Y, Diao M, Liang Y, Zhang T. Comparison of interactions between alpha-lactalbumin and three protopanaxadiol ginsenosides: Impacts on the structure and antitumor properties. Food Chem 2024; 439:138046. [PMID: 38029562 DOI: 10.1016/j.foodchem.2023.138046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 12/01/2023]
Abstract
In this research, interactions between α-lactalbumin (ALA) and three protopanaxadiol ginsenosides [20(S)-Rg3, 20(S)-Rh2, and 20(S)-PPD] were compared to explore the effects of similar ligand on structure and cytotoxicity of ALA. Multi-spectroscopy revealed the binding between ALA and ginsenoside changed the conformation of ALA, which related to different structures and solubility of ligands. Scanning electron microscope illustrated that all ALA-ginsenoside complexes exhibited denser structures via hydrophobic interactions. Additionally, the cytotoxic experiments confirmed that the cytotoxicity of ginsenoside was enhanced after binding with ALA. Molecular docking showed all three ginsenosides were bound to the sulcus depression region of ALA via hydrogen bonding and hydrophobic interaction. Furthermore, molecular dynamics simulation elucidated the precise binding sites and pertinent system properties. Among all three composite systems, 20(S)-Rh2 had optimal binding affinity. These findings enhanced understanding of the synergistic utilization of ALA and ginsenosides as functional ingredients in food, medicine, and cosmetics.
Collapse
Affiliation(s)
- Yitong Lu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Sitong Feng
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yueying Zhao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Yingyi Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Mengxue Diao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
5
|
Tong Z, Zhang L, Liao W, Wang Y, Gao Y. Extraction, identification and application of gliadin from gluten: Impact of pH on physicochemical properties of unloaded- and lutein-loaded gliadin nanoparticles. Int J Biol Macromol 2023; 253:126638. [PMID: 37673163 DOI: 10.1016/j.ijbiomac.2023.126638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023]
Abstract
In the present study, high purity gliadin was extracted from gluten by the marginally modified Osborne method and the effect of different pHs in the aqueous ethanol on the physicochemical properties of unloaded gliadin nanoparticles (UGNs) and lutein-loaded gliadin nanoparticles (LGNs) was investigated. The results revealed that the formation of UGNs and LGNs at diverse pHs was driven by a conjunction of hydrogen bonding, electrostatic interactions and hydrophobic effects, but their dominant roles varied at different pHs. pH also significantly impacted the surface hydrophobicity, secondary structure and aromatic amino acid microenvironment of UGNs and LGNs. LGNs at pH 5.0 and at pH 9.0 exhibited better loading capacity and could reach 9.7884 ± 0.0006 % and 9.7360 ± 0.0017 %, respectively. These two samples also had greater photostability and thermal stability. Half-lives of LGNs at pH 5.0 were 2.185 h and 54.579 h, respectively. Half-lives of LGNs at pH 9.0 were 2.937 h and 49.159 h, respectively. LGNs at pH 5.0 and LGNs at pH 9.0 also had higher bioaccessibility of lutein, with 15.98 ± 0.04 % and 15.27 ± 0.03 %, respectively. These findings yielded precious inspirations for designing innovative lutein delivery system.
Collapse
Affiliation(s)
- Zhen Tong
- Key Laboratory of Healthy Beverages, China National light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Liang Zhang
- Key Laboratory of Healthy Beverages, China National light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Wenyan Liao
- Key Laboratory of Healthy Beverages, China National light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yuan Wang
- Key Laboratory of Healthy Beverages, China National light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yanxiang Gao
- Key Laboratory of Healthy Beverages, China National light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
6
|
Elizarova AY, Sokolov AV, Vasilyev VB. Ceruloplasmin Reduces the Lactoferrin/Oleic Acid Antitumor Complex-Mediated Release of Heme-Containing Proteins from Blood Cells. Int J Mol Sci 2023; 24:16711. [PMID: 38069040 PMCID: PMC10706732 DOI: 10.3390/ijms242316711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/24/2023] [Accepted: 10/29/2023] [Indexed: 12/18/2023] Open
Abstract
Our previous study showed that not only bovine lactoferrin (LF), the protein of milk and neutrophils, but also the human species forms complexes with oleic acid (OA) that inhibit tumor growth. Repeated injections of human LF in complex with OA (LF/8OA) to hepatoma-carrying mice decelerated tumor growth and increased animals' longevity. However, whether the effect of the LF/8OA complex is directed exclusively against malignant cells was not studied. Hence, its effect on normal blood cells was assayed, along with its possible modulation of ceruloplasmin (CP), the preferred partner of LF among plasma proteins. The complex LF/8OA (6 μM) caused hemolysis, unlike LF alone or BSA/8OA (250 μM). The activation of neutrophils with exocytosis of myeloperoxidase (MPO), a potent oxidant, was induced by 1 μM LF/8OA, whereas BSA/8OA had a similar effect at a concentration increased by an order. The egress of heme-containing proteins, i.e., MPO and hemoglobin, from blood cells affected by LF/8OA was followed by a pronounced oxidative/halogenating stress. CP, which is the natural inhibitor of MPO, added at a concentration of 2 mol per 1 mol of LF/8OA abrogated its cytotoxic effect. It seems likely that CP can be used effectively in regulating the LF/8OA complex's antitumor activity.
Collapse
Affiliation(s)
| | - Alexey V. Sokolov
- Institute of Experimental Medicine, 197376 Saint-Petersburg, Russia; (A.Y.E.); (V.B.V.)
| | | |
Collapse
|
7
|
Wang C, Zhao R, Liu J, Wang C. Towards understanding the interaction between ultrasound-pretreated β-lactoglobulin monomer with resveratrol. LUMINESCENCE 2023; 38:116-126. [PMID: 36563058 DOI: 10.1002/bio.4427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/06/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Increasingly, studies are using ultrasound to elevate the functional properties of proteins, so the interaction between phenolic compounds and proteins induced by ultrasound needs to be further understood. β-Lactoglobulin (β-LG) at pH 8.1, which exists mainly as monomers, was ultrasound treated at 20 kHz ultrasonic intensity and 30% amplitude for 0-5 min and subsequently interacted with resveratrol. Fluorescence data showed that ultrasound pretreatment improved binding constant (Ka ) from (1.62 ± 0.45) × 105 to (9.43 ± 0.55) × 105 M-1 and binding number from 1.13 ± 0.09 to 1.28 ± 0.11 in a static quenching mode. Fluorescence resonance energy transfer (FRET) analysis indicated that resveratrol bound to the surface hydrophobic pocket of native and treated proteins with no obvious changes in energy transfer efficiency (E) and Föster's distance (r). Thermodynamic parameters indicated that ultrasonication shifted the main driving force from the hydrophobic force for native and 1-min treated β-LG to van der Waals forces and hydrogen bonding for both 3-min and 5-min treated proteins. Ultrasonication and resveratrol addition generated significant differences in surface hydrophobicity and the surface charge of the protein (P < 0.05), whereas they had little influence on the secondary structure of β-LG. Compared with the native β-LG/resveratrol complex, ultrasound-treated protein complexes showed significantly stronger 2,2-azinobis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) scavenging capacity (P < 0.05), and kept relatively stable after 180-min irradiation. Data provided by this study can lead to a better comprehension of the structure and molecular events occurring during the complexing process between an ultrasound-pretreated protein with polyphenol.
Collapse
Affiliation(s)
- Cuina Wang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, China
| | - Ru Zhao
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, China
| | - Jia Liu
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, China
| | - Ce Wang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
8
|
Xie S, Qu P, Luo S, Wang C. Potential uses of milk proteins as encapsulation walls for bioactive compounds: A review. J Dairy Sci 2022; 105:7959-7971. [PMID: 36028346 DOI: 10.3168/jds.2021-21127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 05/11/2022] [Indexed: 11/19/2022]
Abstract
Milk proteins have received much awareness due to their bioactivity. However, their encapsulation functions have not attracted enough attention. Milk proteins as encapsulation walls can increase the bioavailability of bioactive compounds. As the benefits of bioactive compounds are critically determined by bioavailability, the effect of interactions between milk proteins and active substances is a critical topic. In the present review, we summarize the effects of milk proteins as encapsulation walls on the bioavailability of active substances with a special focus. The methods and mechanisms of interactions between milk proteins and active substances are also discussed. The evidence collected in the present review suggests that when active substances are encapsulated by milk proteins, the bioavailability of active substances can be significantly affected. This review also provides valuable guidelines for the use of milk protein-based microcarriers.
Collapse
Affiliation(s)
- Siyu Xie
- Inner Mongolia YiLi Industrial Group Co. Ltd., Hohhot, China 010110; Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot, China 010110
| | - Peng Qu
- Inner Mongolia YiLi Industrial Group Co. Ltd., Hohhot, China 010110; Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot, China 010110
| | - Shubo Luo
- Inner Mongolia YiLi Industrial Group Co. Ltd., Hohhot, China 010110; Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot, China 010110
| | - Caiyun Wang
- Inner Mongolia YiLi Industrial Group Co. Ltd., Hohhot, China 010110; Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot, China 010110.
| |
Collapse
|
9
|
Perović MN, Antov MG. The influence of enzymatic pretreatment of chickpea on properties of protein nanoparticles prepared by heat treatment. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Maulana RA, Fulyani F, Anjani G. Nanocarriers System for Vitamin D as Nutraceutical in Type 2 Diabetes: A Review. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.9507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Incidence of diabetes are common among population around the world. Diabetes may lead to other complication and increasing morbidity and mortality. Many ways have been done to treat and prevent the development of diabetes. In addition of conventional pharmacotherapy, therapeutic therapy shown good opportunity to maintain and improve diabetic conditions. Vitamin D3 is known as nutraceutical and has good opportunity to develop the medication of type 2 diabetes. In another way, vitamin D3 naturally easy to damage by environmental condition. To overcome this weakness, researcher around the world have developed the method for protecting unstable compound as vitamin D3 with encapsulation. Liprotide is one of the various materials which can be used for encapsulation. Combination of lipid and protein molecules is expected to be a carrier and protector of vitamin D3 in gastrointestinal system. Here we review the research advances of liprotide as nanocarriers and vitamin D3 as nutraceuticals to discuss in applied on type 2 diabetes.
Collapse
|
11
|
Chen W, Chao C, Yu J, Copeland L, Wang S, Wang S. Effect of protein-fatty acid interactions on the formation of starch-lipid-protein complexes. Food Chem 2021; 364:130390. [PMID: 34161911 DOI: 10.1016/j.foodchem.2021.130390] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 05/31/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
The effect of interactions between beta-lactoglobulin (βLG) and lauric acid (LA) on the formation of ternary maize starch-LA-protein complexes was investigated. Analysis of the secondary structure of βLG by FTIR and changes in fluorescence λmax and intensity indicated that βLG and LA interacted during heating and cooling in a Rapid Visco Analyser (RVA). Results from RVA, DSC and Raman spectroscopy analyses showed that increasing the concentration of βLG from 25 to 200 mg increased the amount of ternary starch-LA-βLG complexes formed. There was little difference in the amounts of the ternary complexes formed when the amount of βLG was 25-150 mg, but a greater amount of starch-LA-βLG complexes was formed when 200 mg of βLG was pre-mixed with LA. From this study, we concluded that prior interaction between βLG and LA had no significant effect on the formation of ternary starch-LA-βLG complexes.
Collapse
Affiliation(s)
- Weikai Chen
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; School of Food Science and Engineering, Tianjin University of Science & Technology, 300457, China
| | - Chen Chao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; School of Food Science and Engineering, Tianjin University of Science & Technology, 300457, China
| | - Jinglin Yu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Les Copeland
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Shujun Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; School of Food Science and Engineering, Tianjin University of Science & Technology, 300457, China; College of Biological and Chemical Engineering, Guangxi University of Science and Technology, 545006, China.
| |
Collapse
|
12
|
Yao Q, Li H, Fan L, Huang S, Wang J, Zheng N. The combination of lactoferrin and linolenic acid inhibits colorectal tumor growth through activating AMPK/JNK-related apoptosis pathway. PeerJ 2021; 9:e11072. [PMID: 34131514 PMCID: PMC8174148 DOI: 10.7717/peerj.11072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/16/2021] [Indexed: 12/30/2022] Open
Abstract
Colorectal cancer is a common cause of death with few available therapeutic strategies, and the preventative complexes in adjunctive therapy are urgently needed. Increasing evidences have shown that natural ingredients, including lactoferrin, oleic acid, docosahexaenoic acid (DHA) and linolenic acid, possess anti-inflammatory and anti-tumor activities. However, investigations and comparisons of their combinations in colorectal tumor model have not been reported, and the mechanism is still unrevealed. In the study, we examined the viability, migration, invasion and apoptosis of HT29 cells to choose the proper doses of these components and to select the effective combination in vitro. BALB/c nude mice bearing colorectal tumor were used to explore the role of selected combination in inhibiting tumor development in vivo. Additionally, metabonomic detection was performed to screen out the specific changed metabolitesand related pathway. The results demonstrated that lactoferrin at 6.25 μM, oleic acid at 0.18 mM, DHA at 0.18 mM, and linolenic acid at 0.15 mM significantly inhibited the viabilities of HT29 cells (p < 0.05). The combination of lactoferrin (6.25 μM) + linolenic acid (0.15 mM) exhibited the strongest activity in inhibiting the migration and invasion of HT29 cells in vivo and suppressing tumor development in vitro (p < 0.05). Furthermore, the lactoferrin + linolenic acid combination activated p-AMPK and p-JNK, thereby inducing apoptosis of HT29 cells (p < 0.05). The present study was the first to show that lactoferrin + linolenic acid combination inhibited HT29 tumor formation by activating AMPK/JNK related pathway.
Collapse
Affiliation(s)
- Qianqian Yao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huiying Li
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Linlin Fan
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shengnan Huang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiaqi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
13
|
Wang C, Chen L, Lu Y, Liu J, Zhao R, Sun Y, Sun B, Cuina W. pH-Dependent complexation between β-lactoglobulin and lycopene: Multi-spectroscopy, molecular docking and dynamic simulation study. Food Chem 2021; 362:130230. [PMID: 34098435 DOI: 10.1016/j.foodchem.2021.130230] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/16/2021] [Accepted: 05/26/2021] [Indexed: 12/24/2022]
Abstract
This study aims to investigate the effect of pH levels (pH 7.0 and pH 8.1) on binding ability of β-lactoglobulin (β-LG) with lycopene (LYC) and elucidate interaction mechanisms using multi-spectroscopy and molecular docking study. β-LG at pH 8.1 showed a stronger binding affinity to lycopene than that at pH 7.0 according to binding constant, binding number, energy transfer efficiency, and surface hydrophobicity. Lycopene bound to protein mainly by van der Waals force in the form of static quenching mode and preferred to interact with β-LG at the top of barrel for both pH levels. Molecular dynamic simulation revealed that β-LG/LYC complex at pH 8.1 was more stable than at pH 7.0. β-LG/LYC complexes formed at pH 8.1 showed significantly higher ABTS radical scavenging activity than samples at pH 7.0 (p < 0.05). Data obtained may contribute valuable information for preparing a whey protein-based delivery system for lycopene.
Collapse
Affiliation(s)
- Ce Wang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Lu Chen
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yingcong Lu
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jia Liu
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ru Zhao
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yonghai Sun
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Boyang Sun
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Wang Cuina
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
14
|
Interaction of Lactoferrin with Unsaturated Fatty Acids: In Vitro and In Vivo Study of Human Lactoferrin/Oleic Acid Complex Cytotoxicity. MATERIALS 2021; 14:ma14071602. [PMID: 33805987 PMCID: PMC8037541 DOI: 10.3390/ma14071602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/16/2021] [Accepted: 03/21/2021] [Indexed: 12/24/2022]
Abstract
As shown recently, oleic acid (OA) in complex with lactoferrin (LF) causes the death of cancer cells, but no mechanism(s) of that toxicity have been disclosed. In this study, constitutive parameters of the antitumor effect of LF/OA complex were explored. Complex LF/OA was prepared by titrating recombinant human LF with OA. Spectral analysis was used to assess possible structural changes of LF within its complex with OA. Structural features of apo-LF did not change within the complex LF:OA = 1:8, which was toxic for hepatoma 22a cells. Cytotoxicity of the complex LF:OA = 1:8 was tested in cultured hepatoma 22a cells and in fresh erythrocytes. Its anticancer activity was tested in mice carrying hepatoma 22a. In mice injected daily with LF-8OA, the same tumor grew significantly slower. In 20% of animals, the tumors completely resolved. LF alone was less efficient, i.e., the tumor growth index was 0.14 for LF-8OA and 0.63 for LF as compared with 1.0 in the control animals. The results of testing from 48 days after the tumor inoculation showed that the survival rate among LF-8OA-treated animals was 70%, contrary to 0% rate in the control group and among the LF-treated mice. Our data allow us to regard the complex of LF and OA as a promising tool for cancer treatment.
Collapse
|
15
|
Naso JN, Bellesi FA, Pizones Ruiz-Henestrosa VM, Pilosof AMR. A new methodology to assess the solubility of fatty acids: Impact of food emulsifiers. Food Res Int 2021; 139:109829. [PMID: 33509455 DOI: 10.1016/j.foodres.2020.109829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 11/17/2022]
Abstract
In food formulations, lipids are normally incorporated as emulsions stabilized by different types of emulsifiers. The emulsifiers can affect fatty acid (FA) solubilization as they can interact with FA. The main purpose of the present work is the development of a methodology to evaluate the FA solubilization in an aqueous medium in the absence and presence of exogenous emulsifiers. To this end, a combination of turbidimetry, oiling off and dynamic light scattering (DLS) was used. The FA solubility, as well as its supramolecular assemblies, were determined by analyzing the changes in the turbidity profile and the corresponding size of particles obtained by DLS. Oleic acid (OA) was used as a model FA and a simulated intestinal fluid (SIF) as the aqueous phase. Emulsifiers of low (Tween 80) and high (protein and polysaccharide) molecular weight were tested. Tween 80 was the only emulsifier that improved OA solubilization, whereas the macromolecules only affected the supramolecular structure that OA adopted, being the structure of these assemblies governed by the emulsifier nature.
Collapse
Affiliation(s)
- Julieta N Naso
- ITAPROQ - Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria (1428), Buenos Aires, Argentina; Fellowship Agencia Nacional de Promoción Científica y Tecnológica, Argentina
| | - Fernando A Bellesi
- ITAPROQ - Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria (1428), Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Víctor M Pizones Ruiz-Henestrosa
- ITAPROQ - Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria (1428), Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Ana M R Pilosof
- ITAPROQ - Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria (1428), Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
16
|
Waghmare MN, Qureshi TS, Krishna CM, Pansare K, Gadewal N, Hole A, Dongre PM. β-Lactoglobulin-gold nanoparticles interface and its interaction with some anticancer drugs - an approach for targeted drug delivery. J Biomol Struct Dyn 2021; 40:6193-6210. [PMID: 33509048 DOI: 10.1080/07391102.2021.1879270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The protein-nanoparticle interface plays a crucial role in drug binding and stability, in turn enhancing efficacy in targeted drug delivery. In the present study, whey protein β-lactoglobulin (BLG) is conjugated with gold nanoparticles (AuNP) and its interaction with curcumin (CUR) and gemcitabine (GEM) has been explored. Further, AuNP-BLG conjugate interactions with anticancer drugs were characterized using dynamic light scattering (DLS), zeta potential, UV-visible, Raman spectroscopy, fluorescence, circular dichroism along with molecular dynamics simulation. The cytotoxicity studies were performed using breast cancer cell lines (MCF-7). ∼8 µM of BLG resides on AuNP (∼29 nm) surface revealed by DLS. Raman scattering of AuNP-BLG conjugate showed orientation of the central calyx of BLG towards solvent. BLG fluorescence confirmed the interaction between AuNP-BLG conjugate with drugs and indicated strong binding and affinity (for CUR KD = 3.71 x 108 M -1, n = 1.83, and for GEM KD = 3.78 x 103 M -1, n = 0.94), enhanced in the presence of AuNP. CD and Raman analysis exhibited selective hydrophilic and hydrophobic conformations induced by drug binding. Computational studies on BLG-drug complexes revealed that the residues Pro38, Leu39 and Met107 are largely associated with CUR binding, while GEM interaction is via hydrophilic contacts which significantly matches with spectroscopic investigation. IC50 values were calculated for all components of this loading system on MCF-7. The possible mechanisms of interaction between AuNP-BLG with anticancer drugs has been explored at the molecular level. We believe that these conjugates could be considered in the targeted drug delivery studies for cancer research.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Manik N Waghmare
- Department of Biophysics, University of Mumbai, Mumbai, Maharashtra, India
| | - Tazeen S Qureshi
- Department of Biophysics, University of Mumbai, Mumbai, Maharashtra, India
| | - C Murali Krishna
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Navi Mumbai, Maharashtra, India
| | - Kshama Pansare
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Navi Mumbai, Maharashtra, India
| | - Nikhil Gadewal
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Navi Mumbai, Maharashtra, India
| | - Arti Hole
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Navi Mumbai, Maharashtra, India
| | - Prabhakar M Dongre
- Department of Biophysics, University of Mumbai, Mumbai, Maharashtra, India
| |
Collapse
|
17
|
Liu J, Chen WM, Shao YH, Liu YP, Tu ZC. Improved antitumor activity and IgE/IgG-binding ability of α-Lactalbumin/β-lactoglobulin induced by ultrasonication prior to binding with oleic acid. J Food Biochem 2020; 44:e13502. [PMID: 33025647 DOI: 10.1111/jfbc.13502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/11/2020] [Accepted: 09/01/2020] [Indexed: 12/29/2022]
Abstract
Bovine α-lactalbumin (α-La)/β-lactoglobulin (β-Lg) was pretreated through ultrasonic treatment and subsequently binding with oleic acid (OA) by heat treatment. And, the antitumor activity, IgE/IgG-binding ability, and structural modifications were investigated. After α-La/β-Lg were treated by ultrasonic prior to binding with OA, the treated α-La/β-Lg showed high antitumor activity and IgE/IgG-binding ability, and significantly affected the structural modifications, which reflected by the reduction in α-helix content, the increase of molecular weight, intrinsic fluorescence intensity, and surface hydrophobicity. Molecular docking studies indicated that OA bound to α-La/β-Lg by hydrogen bonds and hydrophobic interaction. Therefore, ultrasonic prior to binding with OA could improve antitumor activity and IgE/IgG-binding ability of α-La/β-Lg as a result of structural modifications. And, ultrasonic prior to binding with fatty acid processing of milk products alone may increase the antitumor activity, this change may enhance the risk of an allergenic reaction in milk allergy patients to some extent. PRACTICAL APPLICATIONS: Fatty acids, natural ligands associated with the bovine milk proteins, and milk protein-fatty acid complex has a variety of functional applications in the food industry. This study revealed that antitumor activity, IgE/IgG-binding ability, and structural modifications of α-La/β-Lg induced by ultrasonic prior to binding with oleic acid. It will be beneficial to understand the mechanism of the functional changes of protein. Ultrasonic prior to binding with oleic acid will be more likely to develop a practical technology to improve the functional characteristics of milk protein and design the optimal nutritional performance of milk food.
Collapse
Affiliation(s)
- Jun Liu
- National Research and Development center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, China.,Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Nanchang, China
| | - Wen-Mei Chen
- National Research and Development center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, China.,Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Nanchang, China
| | - Yan-Hong Shao
- National Research and Development center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, China.,Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Nanchang, China
| | - Ying-Ping Liu
- National Research and Development center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, China
| | - Zong-Cai Tu
- National Research and Development center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, China.,Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Nanchang, China.,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
18
|
Li H, Yao Q, Min L, Huang S, Wu H, Yang H, Fan L, Wang J, Zheng N. The Combination of Two Bioactive Constituents, Lactoferrin and Linolenic Acid, Inhibits Mouse Xenograft Esophageal Tumor Growth by Downregulating Lithocholyltaurine and Inhibiting the JAK2/STAT3-Related Pathway. ACS OMEGA 2020; 5:20755-20764. [PMID: 32875209 PMCID: PMC7450510 DOI: 10.1021/acsomega.0c01132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
The addition of lactoferrin and three unsaturated fatty acids, oleic acid, docosahexaenoic acid (DHA), and linolenic acid, to dairy products was approved in recent years. Research into the biological activities of lactoferrin and these three unsaturated fatty acids has revealed anti-inflammatory, antiviral, antioxidant, antitumor, antiparasitic, and antibiotic effects. However, investigations and comparisons of lactoferrin + oleic acid/DHA/linolenic acid combinations in an esophageal cancer cell model and in xenograft tumor models have not been extensively reported, and the related mechanism of these combinations remains elusive. In the present study, the effects of lactoferrin and the three fatty acids on KYSE450 cell viability, migration, and invasion were investigated to choose the proper doses and effective combination in vitro. A tumor-bearing nude mouse model was established to investigate the role of selected combinations in inhibiting esophageal tumor formation in vivo. Metabonomics detection and data analysis were performed to screen special metabolites and related pathways, which were validated by western blotting. The results demonstrated that lactoferrin, the three unsaturated fatty acids, and their combinations inhibited the viability, migration, and invasion of KYSE450 cells and induced apoptosis and the lactoferrin + linolenic acid combination exhibited the strongest activity in suppressing KYSE450 tumor formation in vivo. The lactoferrin + linolenic acid combination inhibited phosphorylation in the JAK2/STAT3-related pathway by downregulating the special metabolite lithocholyltaurine, thereby suppressing formation of KYSE450 tumors.
Collapse
Affiliation(s)
- Huiying Li
- Laboratory
of Quality and Safety Risk Assessment for Dairy Products of Ministry
of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
- Key
Laboratory of Quality & Safety Control for Milk and Dairy Products
of Ministry of Agriculture and Rural Affairs, Institute of Animal
Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100193, P. R. China
- State
Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Qianqian Yao
- Laboratory
of Quality and Safety Risk Assessment for Dairy Products of Ministry
of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
- Key
Laboratory of Quality & Safety Control for Milk and Dairy Products
of Ministry of Agriculture and Rural Affairs, Institute of Animal
Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100193, P. R. China
- State
Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Li Min
- State
Key Laboratory of Livestock and Poultry Breeding, Institute of Animal
Science, Guangdong Academy of Agricultural
Sciences, Guangzhou 510640, P. R. China
| | - Shengnan Huang
- Laboratory
of Quality and Safety Risk Assessment for Dairy Products of Ministry
of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
- Key
Laboratory of Quality & Safety Control for Milk and Dairy Products
of Ministry of Agriculture and Rural Affairs, Institute of Animal
Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100193, P. R. China
- State
Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Haoming Wu
- Laboratory
of Quality and Safety Risk Assessment for Dairy Products of Ministry
of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
- Key
Laboratory of Quality & Safety Control for Milk and Dairy Products
of Ministry of Agriculture and Rural Affairs, Institute of Animal
Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100193, P. R. China
- State
Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Huaigu Yang
- Laboratory
of Quality and Safety Risk Assessment for Dairy Products of Ministry
of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
- Key
Laboratory of Quality & Safety Control for Milk and Dairy Products
of Ministry of Agriculture and Rural Affairs, Institute of Animal
Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100193, P. R. China
- State
Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Linlin Fan
- Laboratory
of Quality and Safety Risk Assessment for Dairy Products of Ministry
of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
- Key
Laboratory of Quality & Safety Control for Milk and Dairy Products
of Ministry of Agriculture and Rural Affairs, Institute of Animal
Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100193, P. R. China
- State
Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Jiaqi Wang
- Laboratory
of Quality and Safety Risk Assessment for Dairy Products of Ministry
of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
- Key
Laboratory of Quality & Safety Control for Milk and Dairy Products
of Ministry of Agriculture and Rural Affairs, Institute of Animal
Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100193, P. R. China
- State
Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Nan Zheng
- Laboratory
of Quality and Safety Risk Assessment for Dairy Products of Ministry
of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
- Key
Laboratory of Quality & Safety Control for Milk and Dairy Products
of Ministry of Agriculture and Rural Affairs, Institute of Animal
Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100193, P. R. China
- State
Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| |
Collapse
|
19
|
Semenova M, Zelikina D, Antipova A, Martirosova E, Palmina N, Chebotarev S, Samuseva Y, Bogdanova N, Kasparov V. Impact of the character of the associative interactions between chitosan and whey protein isolate on the structure, thermodynamic parameters, and functionality of their complexes with essential lipids. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105803] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Towards understanding the interaction of β-lactoglobulin with capsaicin: Multi-spectroscopic, thermodynamic, molecular docking and molecular dynamics simulation approaches. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105767] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Pedersen JN, Frislev HKS, Pedersen JS, Otzen D. Structures and mechanisms of formation of liprotides. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140505. [PMID: 32721568 DOI: 10.1016/j.bbapap.2020.140505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022]
Abstract
Many proteins form complexes called liprotides with oleic acid and other cis-fatty acids under conditions where the protein is partially unfolded. The complexes vary in structure depending on the ratio of protein and lipid, but the most common structural organization is the core-shell structure, in which a layer of dynamic, partially unfolded and extended proteins surrounds a micelle-like fatty acid core. This structure, first reported for α-lactalbumin together with OA, resembles complexes formed between proteins and anionic surfactants like SDS. Liprotides first rose to fame through their anti-carcinogenic properties which still remains promising for topical applications though not yet implemented in the clinic. In addition, liprotides show potential in drug delivery thanks to the ability of the micelle core to solubilize and stabilize hydrophobic compounds, though applications are challenged by their sensitivity to acidic pH and dynamic exchange of lipids which makes them easy prey for serum "hoovers" such as albumin. However, liprotides are also of fundamental interest as a generic "protein complex structure", demonstrating the many and varied structural consequences of protein-lipid interactions. Here we provide an overview of the different types of liprotide complexes, ranging from quasi-native complexes via core-shell structures to multi-layer structures, and discuss the many conditions under which they form. Given the many variable types of complexes that can form, rigorous biophysical analysis (stoichiometry, shape and structure of the complexes) remains crucial for a complete understanding of the mechanisms of action of this fascinating group of protein-lipid complexes both in vitro and in vivo.
Collapse
Affiliation(s)
- Jannik Nedergaard Pedersen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Henriette Kristina Søster Frislev
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark; Novo Nordisk, Hallas Alle 1, DK-4400 Kalundborg, Denmark
| | - Jan Skov Pedersen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark; Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Daniel Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark; Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark.
| |
Collapse
|
22
|
El-Fakharany EM, Redwan EM. Protein-lipid complexes: molecular structure, current scenarios and mechanisms of cytotoxicity. RSC Adv 2019; 9:36890-36906. [PMID: 35539089 PMCID: PMC9075609 DOI: 10.1039/c9ra07127j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/21/2019] [Indexed: 02/04/2023] Open
Abstract
Some natural proteins can be complexed with oleic acid (OA) to form an active protein-lipid formulation that can induce tumor-selective apoptosis. The first explored protein was human milk α-lactalbumin (α-LA), called HAMLET when composed with OA in antitumor form. Several groups have prepared active protein-lipid complexes using a variety of approaches, all of which depend on target protein destabilization or direct OA-protein incubation to alter pH to acid or alkaline condition. In addition to performing vital roles in inflammatory processes and immune responses, fatty acids can disturb different metabolic pathways and cellular signals. Therefore, the tumoricidal action of these complexes is related to OA rather than the protein that keeps OA in solution and acts as a vehicle for transferring OA molecules to tumor cells. However, other studies have suggested that the antitumor efficacy of these complexes was exerted by both protein and OA together. The potential is not limited to the anti-tumor activity of protein-lipid complexes but extends to other functions such as bactericidal activity. The protein shell enhances the solubility and stability of the bound fatty acid. These protein-lipid complexes are promising candidates for fighting various cancer types and managing bacterial and viral infections.
Collapse
Affiliation(s)
- Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications (SRTA-City) New Borg EL-Arab 21934 Alexandria Egypt
| | - Elrashdy M Redwan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications (SRTA-City) New Borg EL-Arab 21934 Alexandria Egypt
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University P. O. Box 80203 Jeddah Saudi Arabia
| |
Collapse
|
23
|
Zhong J, Fu S, Yu H, Zhou L, Liu W, Liu C, Prakash S. Antigenicity of β-lactoglobulin reduced by combining with oleic acid during dynamic high-pressure microfluidization: Multi-spectroscopy and molecule dynamics simulation analysis. J Dairy Sci 2019; 102:145-154. [DOI: 10.3168/jds.2018-14898] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 09/03/2018] [Indexed: 12/14/2022]
|
24
|
Zhao Y, Sun N, Gao J, Wu D, Liu A. Antitumor activity of selenium modification of the bovine milk component β-Lg (Se-β-Lg) on H22 cells. Food Funct 2019; 10:3626-3636. [DOI: 10.1039/c8fo02520g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In this study, the apoptosis induction and antitumor activity of a novel complex, seleno-β-lactoglobulin (Se-β-Lg), on H22 cells were explored.
Collapse
Affiliation(s)
- Yana Zhao
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- College of Food Engineering and Biotechnology
- Tianjin University of Science and Technology
- Tianjin 300457
| | - Naxin Sun
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- College of Food Engineering and Biotechnology
- Tianjin University of Science and Technology
- Tianjin 300457
| | - Jiayue Gao
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- College of Food Engineering and Biotechnology
- Tianjin University of Science and Technology
- Tianjin 300457
| | - Di Wu
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- College of Food Engineering and Biotechnology
- Tianjin University of Science and Technology
- Tianjin 300457
| | - Anjun Liu
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- College of Food Engineering and Biotechnology
- Tianjin University of Science and Technology
- Tianjin 300457
| |
Collapse
|
25
|
Rath EM, Cheng YY, Pinese M, Sarun KH, Hudson AL, Weir C, Wang YD, Håkansson AP, Howell VM, Liu GJ, Reid G, Knott RB, Duff AP, Church WB. BAMLET kills chemotherapy-resistant mesothelioma cells, holding oleic acid in an activated cytotoxic state. PLoS One 2018; 13:e0203003. [PMID: 30157247 PMCID: PMC6114908 DOI: 10.1371/journal.pone.0203003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/13/2018] [Indexed: 12/29/2022] Open
Abstract
Malignant pleural mesothelioma is an aggressive cancer with poor prognosis. Here we have investigated in vitro efficacy of BAMLET and BLAGLET complexes (anti-cancer complexes consisting of oleic acid and bovine α-lactalbumin or β-lactoglobulin respectively) in killing mesothelioma cells, determined BAMLET and BLAGLET structures, and investigated possible biological mechanisms. We performed cell viability assays on 16 mesothelioma cell lines. BAMLET and BLAGLET having increasing oleic acid content inhibited human and rat mesothelioma cell line proliferation at decreasing doses. Most of the non-cancer primary human fibroblasts were more resistant to BAMLET than were human mesothelioma cells. BAMLET showed similar cytotoxicity to cisplatin-resistant, pemetrexed-resistant, vinorelbine-resistant, and parental rat mesothelioma cells, indicating the BAMLET anti-cancer mechanism may be different to drugs currently used to treat mesothelioma. Cisplatin, pemetrexed, gemcitabine, vinorelbine, and BAMLET, did not demonstrate a therapeutic window for mesothelioma compared with immortalised non-cancer mesothelial cells. We demonstrated by quantitative PCR that ATP synthase is downregulated in mesothelioma cells in response to regular dosing with BAMLET. We sought structural insight for BAMLET and BLAGLET activity by performing small angle X-ray scattering, circular dichroism, and scanning electron microscopy. Our results indicate the structural mechanism by which BAMLET and BLAGLET achieve increased cytotoxicity by holding increasing amounts of oleic acid in an active cytotoxic state encapsulated in increasingly unfolded protein. Our structural studies revealed similarity in the molecular structure of the protein components of these two complexes and in their encapsulation of the fatty acid, and differences in the microscopic structure and structural stability. BAMLET forms rounded aggregates and BLAGLET forms long fibre-like aggregates whose aggregation is more stable than that of BAMLET due to intermolecular disulphide bonds. The results reported here indicate that BAMLET and BLAGLET may be effective second-line treatment options for mesothelioma.
Collapse
Affiliation(s)
- Emma M. Rath
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | - Yuen Yee Cheng
- Asbestos Diseases Research Institute (ADRI), Concord, NSW, Australia
- University of Sydney, Sydney, NSW, Australia
| | - Mark Pinese
- Kinghorn Cancer Centre and Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Kadir H. Sarun
- Asbestos Diseases Research Institute (ADRI), Concord, NSW, Australia
| | - Amanda L. Hudson
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, University of Sydney, Sydney, NSW, Australia
| | - Christopher Weir
- Northern Blood Research Centre, Kolling Institute, University of Sydney, Sydney, NSW, Australia
| | - Yiwei D. Wang
- Burns Research, ANZAC Research Institute, Concord Hospital, University of Sydney, Concord, NSW, Australia
| | | | - Viive M. Howell
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, University of Sydney, Sydney, NSW, Australia
| | - Guo Jun Liu
- Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Rd, Lucas Heights, NSW, Australia
- Brain and Mind Centre and Faculty of Health Sciences, University of Sydney, Sydney, NSW, Australia
| | - Glen Reid
- Asbestos Diseases Research Institute (ADRI), Concord, NSW, Australia
- University of Sydney, Sydney, NSW, Australia
| | - Robert B. Knott
- Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Rd, Lucas Heights, NSW, Australia
| | - Anthony P. Duff
- Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Rd, Lucas Heights, NSW, Australia
| | - W. Bret Church
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
26
|
Semenova M. Advances in molecular design of biopolymer-based delivery micro/nanovehicles for essential fatty acids. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.09.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Wang Q, Huang J, Zhang H, Lei X, Du Z, Xiao C, Chen S, Ren F. Selenium Deficiency-Induced Apoptosis of Chick Embryonic Vascular Smooth Muscle Cells and Correlations with 25 Selenoproteins. Biol Trace Elem Res 2017; 176:407-415. [PMID: 27620890 DOI: 10.1007/s12011-016-0823-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 08/15/2016] [Indexed: 02/06/2023]
Abstract
Selenium deficiency is the major cause of exudative diathesis in chicks. Subcutaneous hemorrhage is one of the typical symptoms of the disease. However, the reason for the occurrence of blood exudation remains unknown. In the present study, the vascular smooth muscle cells (VSMCs) were isolated from 17-day-old broiler chick embryos. Cell viability, cell apoptosis, and intracellular reactive oxygen species level under different concentrations of selenium (0-0.9 μM) were investigated. The mRNA expression levels of 25 selenoproteins and apoptosis-related genes (p53, CytC, Caspase-3, Caspase-8, Bcl-2, and Bax) were also measured. Selenium deficiency significantly decreased cell viability and increased cell apoptosis (p < 0.05). Supplementation with selenium could alleviate these changes. In general, at all levels of selenium addition, Gpx1, Gpx3, Gpx4, SepW1, and Sep15 mRNAs were all highly expressed in VSMCs, whereas Gpx2, Dio1, SepN1, SelO, and SelPb were at lower levels. There was a high correlation between Gpx2, Gpx3, Gpx4, Dio1, Txnrd1, Txnrd2, and Txnrd3 gene expression. Additionally, Gpx3, Gpx4, Dio1, Txnrd1, Txnrd2, Txnrd3, SelS, and SelPb showed a strong negative correlation with pro-apoptotic gene Caspase-3 as well as a strong positive correlation with anti-apoptotic gene Bcl-2, especially SelI (r = 0.913 and r = 0.929, p < 0.01). These results suggest that selenium deficiency could induce VSMC apoptosis, and several selenoproteins may be involved in the development of apoptosis. Our findings provide information on the molecular mechanism of vascular injury by selenium deficiency.
Collapse
Affiliation(s)
- Qingyu Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, District Haidian, Beijing, 100083, China
- Beijing Laboratory for Food Quality and Safety, and Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Jiaqiang Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, District Haidian, Beijing, 100083, China
- Beijing Laboratory for Food Quality and Safety, and Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Hao Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, District Haidian, Beijing, 100083, China
- Beijing Laboratory for Food Quality and Safety, and Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xingen Lei
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, District Haidian, Beijing, 100083, China
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA
| | - Zhongyao Du
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, District Haidian, Beijing, 100083, China
- Beijing Laboratory for Food Quality and Safety, and Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Chen Xiao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, District Haidian, Beijing, 100083, China
- Beijing Laboratory for Food Quality and Safety, and Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Silu Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, District Haidian, Beijing, 100083, China
- Beijing Laboratory for Food Quality and Safety, and Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, District Haidian, Beijing, 100083, China.
- Beijing Laboratory for Food Quality and Safety, and Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
28
|
Augmenting the cytotoxicity of oleic acid-protein complexes: Potential of target-specific antibodies. Biochimie 2017; 137:139-146. [PMID: 28341551 DOI: 10.1016/j.biochi.2017.03.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/18/2017] [Indexed: 01/16/2023]
Abstract
HAMLET (Human Alpha-Lactalbumin Made LEthal to Tumor cells), a complex of oleic acid (OA) with partially unfolded human α-lactalbumin, shows remarkable toxicity towards a spectrum of tumor cells as well as few differentiated cells including mammalian erythrocytes. Human erythrocytes, for this reason, have been used as convenient model cells to study toxic properties of the OA complexes. The toxicity of HAMLET-like complexes, prepared using immunoglobulin gamma (IgG) isolated from the sera of rabbits immunized with human erythrocytes as well as those unimmunized, towards the red cells was investigated. The OA complex of the IgG prepared by the heat-treatment procedure comprised of protein monomers and oligomers with bound OA. The IgG in the complexes retained most secondary but only partial tertiary structure and complex formation with OA did not abolish the ability of anti-erythrocyte IgG to bind to the erythrocytes. Anti-erythrocyte IgG-OA complexes were remarkably more hemolytic than those prepared using non-specific IgG, while complexes prepared using affinity purified anti-erythrocyte IgG were most effective in hemolyzing the cells. The work suggests that antibodies that exhibit affinity towards target cells may be useful in the preparation of selective and highly toxic OA complexes for the cells.
Collapse
|
29
|
Fang B, Zhang M, Wu H, Fan X, Ren F. Internalization properties of the anti-tumor α-lactalbumin-oleic acid complex. Int J Biol Macromol 2017; 96:44-51. [DOI: 10.1016/j.ijbiomac.2016.12.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 11/30/2016] [Accepted: 12/12/2016] [Indexed: 10/20/2022]
|
30
|
Fang B, Zhang M, Fan X, Ren F. The targeted proteins in tumor cells treated with the α-lactalbumin–oleic acid complex examined by descriptive and quantitative liquid chromatography–tandem mass spectrometry. J Dairy Sci 2016; 99:5991-6004. [DOI: 10.3168/jds.2016-10971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/14/2016] [Indexed: 01/26/2023]
|
31
|
Santiago LG, Castro GR. Novel technologies for the encapsulation of bioactive food compounds. Curr Opin Food Sci 2016. [DOI: 10.1016/j.cofs.2016.01.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|