1
|
Del'Duca A, de Paiva Oliveira GF, de Andrade Faustino M, Borges LA, Sixel ES, Miranda CAS, Rodrigues EM, Medeiros JD, de Sá Guimarães A, Mendonça LC, Cesar DE. Biocontrol capacity of bacteria isolated from sawdust of the dairy cattle production environment. Res Vet Sci 2024; 166:105103. [PMID: 38061143 DOI: 10.1016/j.rvsc.2023.105103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 01/01/2024]
Abstract
This research paper aimed to find endemic bacteria from the cattle production system to control the growth of mastitis pathogens. Bacteria were isolated from compost barn sawdust of two dairy cattle systems and later tested to verify their ability to control the growth of Staphylococcus aureus isolates obtained from cattle with mastitis. Bacterial isolates from these systems were tested to verify biocontrol capacity using the double-layer method. A total of 189 isolates were obtained from all samples by considering the morphology of the different bacterial colonies, with 30 isolates showing positive results for the growth control of at least one S. aureus strain and 19 isolates showing the ability to control more than one pathogen strain. The ability to control more than one pathogen and present a significant halo of inhibition in our isolates represents positive traits in the search for cattle mastitis biocontrol microorganisms. Thus, the results obtained represent the range of bacteria capable of controlling the pathogens without the use of antibiotics.
Collapse
|
2
|
Prakash V, Madhavan A, Veedu AP, Babu P, Jothish A, Nair SS, Suhail A, Prabhakar M, Sain T, Rajan R, Somanathan P, Abhinand K, Nair BG, Pal S. Harnessing the probiotic properties and immunomodulatory effects of fermented food-derived Limosilactobacillus fermentum strains: implications for environmental enteropathy. Front Nutr 2023; 10:1200926. [PMID: 37342549 PMCID: PMC10277634 DOI: 10.3389/fnut.2023.1200926] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/19/2023] [Indexed: 06/23/2023] Open
Abstract
Introduction Environmental enteropathy (EE), a chronic small intestine disease characterized by gut inflammation, is widely prevalent in low-income countries and is hypothesized to be caused by continuous exposure to fecal contamination. Targeted nutritional interventions using potential probiotic strains from fermented foods can be an effective strategy to inhibit enteric pathogens and prevent chronic gut inflammation. Methods We isolated potential strains from fermented rice water and lemon pickle and investigated their cell surface properties, antagonistic properties, adhesion to HT-29 cells, and inhibition of pathogen adherence to HT-29 cells. Bacteriocin-like inhibitory substances (BLIS) were purified, and in vivo, survival studies in Caenorhabditis elegans infected with Salmonella enterica MW116733 were performed. We further checked the expression pattern of pro and anti-inflammatory cytokines (IL-6, IL8, and IL-10) in HT-29 cells supplemented with strains. Results The strains isolated from rice water (RS) and lemon pickle (T1) were identified as Limosilactobacillus fermentum MN410703 and MN410702, respectively. Strains showed probiotic properties like tolerance to low pH (pH 3.0), bile salts up to 0.5%, simulated gastric juice at low pH, and binding to extracellular matrix molecules. Auto-aggregation of T1 was in the range of 85% and significantly co-aggregated with Klebsiella pneumoniae, S. enterica, and Escherichia coli at 48, 79, and 65%, respectively. Both strains had a higher binding affinity to gelatin and heparin compared to Bacillus clausii. Susceptibility to most aminoglycoside, cephalosporin, and macrolide classes of antibiotics was also observed. RS showed BLIS activity against K. pneumoniae, S. aureus, and S. enterica at 60, 48, and 30%, respectively, and the protective effects of BLIS from RS in the C. elegans infection model demonstrated a 70% survival rate of the worms infected with S. enterica. RS and T1 demonstrated binding efficiency to HT-29 cell lines in the 38-46% range, and both strains inhibited the adhesion of E. coli MDR and S. enterica. Upregulation of IL-6 and IL-10 and the downregulation of IL-8 were observed when HT-29 cells were treated with RS, indicating the immunomodulatory effects of the strain. Discussion The potential strains identified could effectively inhibit enteric pathogens and prevent environmental enteropathy.
Collapse
|
3
|
|
4
|
Characterization and Cytotoxic Evaluation of Bacteriocins Possessing Antibiofilm Activity Produced by Lactobacillus plantarum SJ33. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10210-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Benítez-Chao DF, León-Buitimea A, Lerma-Escalera JA, Morones-Ramírez JR. Bacteriocins: An Overview of Antimicrobial, Toxicity, and Biosafety Assessment by in vivo Models. Front Microbiol 2021; 12:630695. [PMID: 33935991 PMCID: PMC8083986 DOI: 10.3389/fmicb.2021.630695] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
The world is facing a significant increase in infections caused by drug-resistant infectious agents. In response, various strategies have been recently explored to treat them, including the development of bacteriocins. Bacteriocins are a group of antimicrobial peptides produced by bacteria, capable of controlling clinically relevant susceptible and drug-resistant bacteria. Bacteriocins have been studied to be able to modify and improve their physicochemical properties, pharmacological effects, and biosafety. This manuscript focuses on the research being developed on the biosafety of bacteriocins, which is a topic that has not been addressed extensively in previous reviews. This work discusses the studies that have tested the effect of bacteriocins against pathogens and assess their toxicity using in vivo models, including murine and other alternative animal models. Thus, this work concludes the urgency to increase and advance the in vivo models that both assess the efficacy of bacteriocins as antimicrobial agents and evaluate possible toxicity and side effects, which are key factors to determine their success as potential therapeutic agents in the fight against infections caused by multidrug-resistant microorganisms.
Collapse
Affiliation(s)
- Diego Francisco Benítez-Chao
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico
| | - Angel León-Buitimea
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico
| | - Jordy Alexis Lerma-Escalera
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico
| | - José Rubén Morones-Ramírez
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico
| |
Collapse
|
6
|
Poupet C, Chassard C, Nivoliez A, Bornes S. Caenorhabditis elegans, a Host to Investigate the Probiotic Properties of Beneficial Microorganisms. Front Nutr 2020; 7:135. [PMID: 33425969 PMCID: PMC7786404 DOI: 10.3389/fnut.2020.00135] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
Caenorhabditis elegans, a non-parasitic nematode emerges as a relevant and powerful candidate as an in vivo model for microorganisms-microorganisms and microorganisms-host interactions studies. Experiments have demonstrated the probiotic potential of bacteria since they can provide to the worm a longer lifespan, an increased resistance to pathogens and to oxidative or heat stresses. Probiotics are used to prevent or treat microbiota dysbiosis and associated pathologies but the molecular mechanisms underlying their capacities are still unknown. Beyond safety and healthy aspects of probiotics, C. elegans represents a powerful way to design large-scale studies to explore transkingdom interactions and to solve questioning about the molecular aspect of these interactions. Future challenges and opportunities would be to validate C. elegans as an in vivo tool for high-throughput screening of microorganisms for their potential probiotic use on human health and to enlarge the panels of microorganisms studied as well as the human diseases investigated.
Collapse
Affiliation(s)
- Cyril Poupet
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF, Aurillac, France
| | | | | | - Stéphanie Bornes
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF, Aurillac, France
| |
Collapse
|
7
|
Zaatout N, Ayachi A, Kecha M. Staphylococcus aureus persistence properties associated with bovine mastitis and alternative therapeutic modalities. J Appl Microbiol 2020; 129:1102-1119. [PMID: 32416020 DOI: 10.1111/jam.14706] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/15/2020] [Accepted: 05/09/2020] [Indexed: 12/12/2022]
Abstract
Staphylococcus aureus is an important agent of contagious bovine intramammary infections in dairy cattle. Its ability to persist inside the udder is based on the presence of important mechanisms such as its ability to form biofilms, polysaccharide capsules small colony variants, and their ability to invade professional and nonprofessional cells, which will protect S. aureus from the innate and adaptive immune response of the cow, and from antibiotics that are no longer considered to be sufficient against S. aureus bovine mastitis. In this review, we present the recent research outlining S. aureus persistence properties inside the mammary gland, including its regulation mechanisms, and we highlight alternative therapeutic strategies that were tested against S. aureus isolated from bovine mastitis such as the use of probiotic bacteria, bacteriocins and bacteriophages. Overall, the persistence of S. aureus inside the mammary gland remains a pressing veterinary problem. A thorough understanding of staphylococcal persistence mechanisms will elucidate novel ways that can help in the identification of novel treatments.
Collapse
Affiliation(s)
- N Zaatout
- Laboratory of Applied Microbiology, Faculty of Nature and Life Sciences, University of Bejaia, Bejaia, Algeria
| | - A Ayachi
- Institute of Veterinary and Agricultural Sciences, University of Batna, Batna, Algeria
| | - M Kecha
- Laboratory of Applied Microbiology, Faculty of Nature and Life Sciences, University of Bejaia, Bejaia, Algeria
| |
Collapse
|
8
|
Strategies for screening, purification and characterization of bacteriocins. Int J Biol Macromol 2018; 117:781-789. [DOI: 10.1016/j.ijbiomac.2018.05.233] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/31/2018] [Accepted: 05/31/2018] [Indexed: 12/30/2022]
|
9
|
Li Y, Gong Q, Guo W, Kan X, Xu D, Ma H, Fu S, Liu J. Farrerol Relieve Lipopolysaccharide (LPS)-Induced Mastitis by Inhibiting AKT/NF-κB p65, ERK1/2 and P38 Signaling Pathway. Int J Mol Sci 2018; 19:ijms19061770. [PMID: 29904013 PMCID: PMC6032361 DOI: 10.3390/ijms19061770] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/07/2018] [Accepted: 06/09/2018] [Indexed: 11/16/2022] Open
Abstract
Farrerol has been proved to have an anti-inflammatory effect. However, the effects of farrerol on mastitis have not been investigated. This study was aimed to investigate the effect and mechanism of farrerol in lipopolysaccharide (LPS)-induced mouse mastitis and LPS-induced inflammatory response of mouse mammary epithelial cells (mMECs). In vivo, LPS were injected to the tetrad pair of nipples for establishing mouse mastitis, and then tested the effect of farrerol on histopathological changes, inflammatory response and activation degree of protein kinase B (AKT), nuclear factor-kappa B p65 (NF-κB p65), p38, extracellular regulated protein kinase (ERK1/2). In vitro, the mMECs were incubated by farrerol for 1 h following by stimulating with LPS, and then the inflammatory response and the related signaling pathways were detected. The in vivo results found that farrerol could improve pathological injury of mammary gland, attenuate the activity of myeloperoxidase (MPO), inhibit the production of pro-inflammatory mediators and the phosphorylation of AKT, NF-κB p65, p38 and ERK1/2. The in vitro results also found farrerol inhibited inflammatory response and the related signaling pathways. Collectively, this study revealed that farrerol inhibits the further development of LPS-induced mastitis by inhibiting inflammatory response via down regulating phosphorylation of AKT, NF-κB p65, p38, and ERK1/2. These findings suggest that farrerol may be used as an anti-inflammatory drug for mastitis.
Collapse
Affiliation(s)
- Yanwei Li
- College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Qian Gong
- College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Wenjin Guo
- College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Xingchi Kan
- College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Dianwen Xu
- College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - He Ma
- College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Shoupeng Fu
- College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Juxiong Liu
- College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
10
|
Zhang X, Wang Y, Xiao C, Wei Z, Wang J, Yang Z, Fu Y. Resveratrol inhibits LPS-induced mice mastitis through attenuating the MAPK and NF-κB signaling pathway. Microb Pathog 2017; 107:462-467. [PMID: 28389348 DOI: 10.1016/j.micpath.2017.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/01/2017] [Accepted: 04/03/2017] [Indexed: 12/15/2022]
Abstract
Resveratrol is a natural polyphenol extracted from mangy plants. It has been reported that resveratrol show multitudinous positive role in biology such as anti-oxidant, anti-nociception and anti-inflammatory effects. Therefore, the present study devotes to test the effect of resveratrol on LPS-induced mastitis in mice. Resveratrol was administered intraperitoneally 1 h before LPS treatment. And the anti-inflammatory effect of resveratrol was measured by histopathological examination, MPO assay, real-time PCR and western blotting analysis. The results showed that resveratrol significantly reduced the LPS-induced mammary histopathological changes. Meanwhile, it sharply attenuated the activity of MPO. The result also indicated that the resveratrol can decrease the expression of pro-inflammatory cytokines TNF-α and IL-1β. From the results of western blotting, resveratrol suppressed the expression of phosphorylation of p65 and IκB from NF-κB signal pathway and phosphorylation of p38 and ERK from MAPK signal pathway. These findings suggested that resveratrol may inhibit the inflammatory response in the mastitis.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China
| | - Yanan Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China
| | - Chong Xiao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China
| | - Zhengkai Wei
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China
| | - Jingjing Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China
| | - Zhengtao Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China; Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China.
| |
Collapse
|