1
|
Liu L, Yan W, Yan M, Liu S, Zhang Q, Clark E, Wang J. Effects of candidate genes on milk fat synthesis in ruminants: A meta-analysis. J Dairy Sci 2025:S0022-0302(25)00165-1. [PMID: 40139354 DOI: 10.3168/jds.2024-25660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 02/16/2025] [Indexed: 03/29/2025]
Abstract
Milk fat content is a polygenic commercially important quantitative trait in ruminants. In recent decades, an increasing number of genes involved in milk fat synthesis have been identified through genome-wide association studies and validated using functional assays such as gene knockdown or overexpression. However, functional validation assays have been limited to small number of related genes, yielding insufficient data to fully understand the many different genes and biological processes in milk fat synthesis. To provide a comprehensive evaluation of the genes involved in milk fat synthesis, we performed a meta-analysis of 1, 395 effect sizes from 81 publications, which included 137 genes, spanning 4 ruminant species. In the studies analyzed knockdown/overexpression of candidate genes significantly reduced/increased Target Gene (Protein) and Related Gene (Protein) expression, and these effects were consistent across species. However, the effects of knockdown/overexpression of candidate genes across the different pathways of milk fat synthesis varied between species. Pathways related to milk fat synthesis, SREBP-, PPAR-, JAK-AKT- and the Insulin-pathway exhibited the largest effects on the synthesis of triglyceride, lipid droplet, cholesterol and unsaturated fatty acids, respectively. Key genes in these pathways, SREBPs (SREBP1, SREBF1), PPARs (PPARA, PPARD, PPARG), JAK2, STAT5α and INSIGs (INSIG1 and INSIG2) also have a greater effect on regulating the formation of triglyceride, cholesterol, lipid droplets and unsaturated fatty acids. Overall, our findings indicated that milk fat synthesis is regulated by multiple pathways and many different genes. Further studies are needed to confirm these findings and to understand the mechanisms underlying species- and pathway-specific responses during milk fat synthesis.
Collapse
Affiliation(s)
- Lily Liu
- College of Biological and Food Engineering, Southwest Forestry University, Kunming 650224, China; The Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Wenquan Yan
- College of Biological and Food Engineering, Southwest Forestry University, Kunming 650224, China
| | - Min Yan
- College of Biological and Food Engineering, Southwest Forestry University, Kunming 650224, China
| | - Songlin Liu
- College of Biological and Food Engineering, Southwest Forestry University, Kunming 650224, China
| | - Qin Zhang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018, China.
| | - Emily Clark
- The Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, UK.
| | - Jinhai Wang
- The Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, UK.
| |
Collapse
|
2
|
Ravelo AD, Dufour EI, Klejeski M, Ziegler B, Golombeski A, Salfer IJ. Impacts of feeding milk replacer supplemented with increasing concentrations of choline on feed intake, growth, and scouring incidence for 7 weeks preweaning and 1 week postweaning. JDS COMMUNICATIONS 2024; 5:553-557. [PMID: 39650049 PMCID: PMC11624396 DOI: 10.3168/jdsc.2024-0557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/27/2024] [Indexed: 12/11/2024]
Abstract
The objective of this study was to evaluate the effect of increasing choline supplementation on the intake of milk replacer (MR) and calf starter (CS), growth performance, and fecal scores of calves over 8 wk. One hundred calves from commercial herds were transported to the University of Minnesota Southern Research and Outreach Center (SROC) calf facility randomized to one of 4 treatments differing in choline supplementation within MR including: 0 (C0; n = 24), 700 (C700; n = 26), 1,400 (C1400; n = 25), and 2,100 mg/kg choline (C2100; n = 25). Milk replacer contained a basal concentration of 1,650 mg/kg MR resulting in total choline concentrations in the MR of 1,650 mg/kg for C0, 2,350 mg/kg for C700, 3,050 mg/kg for C1400, and 3,750 mg/kg for C2100. Calves were weaned at 49 d, and the trial ended at 56 d. Body weight was measured at d 0, 14, 28, 42, 49, and 56. Fecal scores were measured weekly. Feed intake was measured daily and calculated every 2 wk. All feeding, BW measurements, and fecal scoring were conducted by the research staff at the University of Minnesota SROC. Growth, feed intake, and gain to feed ratio were analyzed using a linear mixed effects model with choline concentration as a fixed effect and source herd and room as random effects. Initial BW was included as a covariate for average daily gain. Fecal scores were analyzed as a chi-squared test of significance. Feeding 700 mg/kg supplemental choline increased MR intake throughout the preweaning period and increased ADG in both the preweaning and postweaning periods compared with the other treatments. No differences were observed for fecal scores across treatments. Results suggest that calf performance can be improved with MR containing 2,350 mg/kg choline, contrasting with current NASEM (2021) requirements of 1,000 mg/kg.
Collapse
Affiliation(s)
- Anay D. Ravelo
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, 55108
| | | | - Makaila Klejeski
- Southern Research and Outreach Center, University of Minnesota, Waseca, MN 56093
| | | | | | - Isaac J. Salfer
- Department of Animal Science, University of Minnesota, Saint Paul, MN 55108
| |
Collapse
|
3
|
Silva FG, Silva SR, Pereira AMF, Cerqueira JL, Conceição C. A Comprehensive Review of Bovine Colostrum Components and Selected Aspects Regarding Their Impact on Neonatal Calf Physiology. Animals (Basel) 2024; 14:1130. [PMID: 38612369 PMCID: PMC11010951 DOI: 10.3390/ani14071130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Colostrum contains macro- and micronutrients necessary to meet the nutritional and energy requirements of the neonatal calf, bioactive components that intervene in several physiological aspects, and cells and microorganisms that modulate the calf's immune system and gut microbiome. Colostrum is sometimes mistaken as transition milk, which, although more nutritive than whole milk, has a distinct biochemical composition. Furthermore, most research about colostrum quality and colostrum management focuses on the transfer of maternal IgG to the newborn calf. The remaining components of colostrum and transition milk have not received the same attention, despite their importance to the newborn animal. In this narrative review, a large body of literature on the components of bovine colostrum was reviewed. The variability of these components was summarized, emphasizing specific components that warrant deeper exploration. In addition, the effects of each component present in colostrum and transition milk on several key physiological aspects of the newborn calf are discussed.
Collapse
Affiliation(s)
- Flávio G. Silva
- Veterinary and Animal Research Centre (CECAV), Associate Laboratory of Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal (J.L.C.)
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Department of Zootechnics, School of Science and Technology, University of Évora, Pólo da Mitra Apartado 94, 7006-554 Évora, Portugal; (A.M.F.P.); (C.C.)
- Center for Research and Development in Agrifood Systems and Sustainability, Polytechnic Institute of Viana do Castelo, Agrarian School of Ponte de Lima, Rua D. Mendo Afonso, 147 Refóios do Lima, 4990-706 Ponte de Lima, Portugal
| | - Severiano R. Silva
- Veterinary and Animal Research Centre (CECAV), Associate Laboratory of Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal (J.L.C.)
| | - Alfredo M. F. Pereira
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Department of Zootechnics, School of Science and Technology, University of Évora, Pólo da Mitra Apartado 94, 7006-554 Évora, Portugal; (A.M.F.P.); (C.C.)
| | - Joaquim Lima Cerqueira
- Veterinary and Animal Research Centre (CECAV), Associate Laboratory of Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal (J.L.C.)
- Center for Research and Development in Agrifood Systems and Sustainability, Polytechnic Institute of Viana do Castelo, Agrarian School of Ponte de Lima, Rua D. Mendo Afonso, 147 Refóios do Lima, 4990-706 Ponte de Lima, Portugal
| | - Cristina Conceição
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Department of Zootechnics, School of Science and Technology, University of Évora, Pólo da Mitra Apartado 94, 7006-554 Évora, Portugal; (A.M.F.P.); (C.C.)
| |
Collapse
|
4
|
Khan MZ, Huang B, Kou X, Chen Y, Liang H, Ullah Q, Khan IM, Khan A, Chai W, Wang C. Enhancing bovine immune, antioxidant and anti-inflammatory responses with vitamins, rumen-protected amino acids, and trace minerals to prevent periparturient mastitis. Front Immunol 2024; 14:1290044. [PMID: 38259482 PMCID: PMC10800369 DOI: 10.3389/fimmu.2023.1290044] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Mastitis, the inflammatory condition of mammary glands, has been closely associated with immune suppression and imbalances between antioxidants and free radicals in cattle. During the periparturient period, dairy cows experience negative energy balance (NEB) due to metabolic stress, leading to elevated oxidative stress and compromised immunity. The resulting abnormal regulation of reactive oxygen species (ROS) and reactive nitrogen species (RNS), along with increased non-esterified fatty acids (NEFA) and β-hydroxybutyric acid (BHBA) are the key factors associated with suppressed immunity thereby increases susceptibility of dairy cattle to infections, including mastitis. Metabolic diseases such as ketosis and hypocalcemia indirectly contribute to mastitis vulnerability, exacerbated by compromised immune function and exposure to physical injuries. Oxidative stress, arising from disrupted balance between ROS generation and antioxidant availability during pregnancy and calving, further contributes to mastitis susceptibility. Metabolic stress, marked by excessive lipid mobilization, exacerbates immune depression and oxidative stress. These factors collectively compromise animal health, productive efficiency, and udder health during periparturient phases. Numerous studies have investigated nutrition-based strategies to counter these challenges. Specifically, amino acids, trace minerals, and vitamins have emerged as crucial contributors to udder health. This review comprehensively examines their roles in promoting udder health during the periparturient phase. Trace minerals like copper, selenium, and calcium, as well as vitamins; have demonstrated significant impacts on immune regulation and antioxidant defense. Vitamin B12 and vitamin E have shown promise in improving metabolic function and reducing oxidative stress followed by enhanced immunity. Additionally, amino acids play a pivotal role in maintaining cellular oxidative balance through their involvement in vital biosynthesis pathways. In conclusion, addressing periparturient mastitis requires a holistic understanding of the interplay between metabolic stress, immune regulation, and oxidative balance. The supplementation of essential amino acids, trace minerals, and vitamins emerges as a promising avenue to enhance udder health and overall productivity during this critical phase. This comprehensive review underscores the potential of nutritional interventions in mitigating periparturient bovine mastitis and lays the foundation for future research in this domain.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Bingjian Huang
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Xiyan Kou
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Yinghui Chen
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Huili Liang
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Qudrat Ullah
- Faculty of Veterinary and Animal Sciences, University of Agriculture, Dera Ismail Khan, Pakistan
| | | | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Wenqiong Chai
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| |
Collapse
|
5
|
Aboragah AA, Alharthi AS, Wichasit N, Loor JJ. Body condition prepartum and its association with term placentome nutrient transporters, one‑carbon metabolism pathway activity, and intermediate metabolites in Holstein cows. Res Vet Sci 2023; 162:104956. [PMID: 37516040 DOI: 10.1016/j.rvsc.2023.104956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/27/2023] [Accepted: 07/10/2023] [Indexed: 07/31/2023]
Abstract
We investigated linkages among BCS prior to calving and placentome concentrations of metabolites, proteins in one‑carbon metabolism (OCM) and protein synthesis, and nutrient transport. Multiparous Holstein cows retrospectively divided by prepartal BCS at -4 weeks relative to parturition into high BCS (HBCS = 3.58 ± 0.23; n = 9) or normal BCS (NBCS = 3.02 ± 0.17; n = 13) were used. BCS was assessed using a 5-point scale (1 = thin, 5 = fat). Four placentomes per cow were collected at delivery and frozen in liquid N. Western blotting was used for protein abundance. Cystathionine-β-synthase (CBS) and betaine-homocysteine-S-methyltransferase (BHMT) activity were measured via 14C assays. Amino acids (AA) and metabolites in OCM were measured by liquid chromatography mass spectrometry (LC-MS). Compared with NBCS cows, the cellular stress sensor p-eIF2α was more than 2-fold greater (P = 0.04) in HBCS. Abundance of the AA-catabolism enzyme branched-chain α-ketoacid dehydrogenase complex was lower (P = 0.05) in HBCS cows. Although BHMT activity did not differ, greater concentration of betaine (P = 0.01) and lower (P = 0.05) concentration of dimethylglycine in HBCS cows suggested reduced flux through the methionine cycle. Despite a lack of difference in CBS activity, lower concentrations of cystathionine (P = 0.03) and hypotaurine (P = 0.04) along with lower cysteine and the tendency for lower total GSH (P = 0.10) in HBCS cows suggested a decrease in transsulfuration. Overall, associations between OCM in placentomes and BCS at calving exist. Identifying mechanisms responsible for these effects merits further research.
Collapse
Affiliation(s)
- Ahmad A Aboragah
- Department of Animal Sciences, University of Illinois, Urbana 61801, USA; Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulrahman S Alharthi
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nithat Wichasit
- Department of Animal Sciences, University of Illinois, Urbana 61801, USA; Department of Agricultural Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Juan J Loor
- Department of Animal Sciences, University of Illinois, Urbana 61801, USA; Division of Nutritional Sciences, University of Illinois, Urbana 61801, USA.
| |
Collapse
|
6
|
Khan MZ, Liu S, Ma Y, Ma M, Ullah Q, Khan IM, Wang J, Xiao J, Chen T, Khan A, Cao Z. Overview of the effect of rumen-protected limiting amino acids (methionine and lysine) and choline on the immunity, antioxidative, and inflammatory status of periparturient ruminants. Front Immunol 2023; 13:1042895. [PMID: 36713436 PMCID: PMC9878850 DOI: 10.3389/fimmu.2022.1042895] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/08/2022] [Indexed: 01/13/2023] Open
Abstract
Overproduction of reactive oxygen species (ROS) is a well-known phenomenon experienced by ruminants, especially during the transition from late gestation to successful lactation. This overproduction of ROS may lead to oxidative stress (OS), which compromises the immune and anti-inflammatory systems of animals, thus predisposing them to health issues. Besides, during the periparturient period, metabolic stress is developed due to a negative energy balance, which is followed by excessive fat mobilization and poor production performance. Excessive lipolysis causes immune suppression, abnormal regulation of inflammation, and enhanced oxidative stress. Indeed, OS plays a key role in regulating the metabolic activity of various organs and the productivity of farm animals. For example, rapid fetal growth and the production of large amounts of colostrum and milk, as well as an increase in both maternal and fetal metabolism, result in increased ROS production and an increased need for micronutrients, including antioxidants, during the last trimester of pregnancy and at the start of lactation. Oxidative stress is generally neutralized by the natural antioxidant system in the body. However, in some special phases, such as the periparturient period, the animal's natural antioxidant system is unable to cope with the situation. The effect of rumen-protected limiting amino acids and choline on the regulation of immunity, antioxidative, and anti-inflammatory status and milk production performance, has been widely studied in ruminants. Thus, in the current review, we gathered and interpreted the data on this topic, especially during the perinatal and lactational stages.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China,Faculty of Veterinary and Animal Sciences, the University of Agriculture, Dera Ismail Khan, Pakistan
| | - Shuai Liu
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yulin Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Mei Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qudrat Ullah
- Faculty of Veterinary and Animal Sciences, the University of Agriculture, Dera Ismail Khan, Pakistan
| | - Ibrar Muhammad Khan
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Jingjun Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianxin Xiao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tianyu Chen
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China,*Correspondence: Zhijun Cao,
| |
Collapse
|
7
|
Li M, Gao Y, Wang Z, Wu B, Zhang J, Xu Y, Han X, Phouthapane V, Miao J. Taurine inhibits Streptococcus uberis-induced NADPH oxidase-dependent neutrophil extracellular traps via TAK1/MAPK signaling pathways. Front Immunol 2022; 13:927215. [PMID: 36148229 PMCID: PMC9488113 DOI: 10.3389/fimmu.2022.927215] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Neutrophil extracellular traps (NETs) are produced by neutrophil activation and usually have both anti-infective and pro-damage effects. Streptococcus uberis (S. uberis), one of the common causative organisms of mastitis, can lead to the production of NETs. Taurine, a free amino acid abundant in the organism, has been shown to have immunomodulatory effects. In this study, we investigated the molecular mechanisms of S. uberis-induced NETs formation and the regulatory role of taurine. The results showed that NETs had a disruptive effect on mammary epithelial cells and barriers, but do not significantly inhibit the proliferation of S. uberis. S. uberis induced NADPH oxidase-dependent NETs. TLR2-mediated activation of the MAPK signaling pathway was involved in this process. Taurine could inhibit the activation of MAPK signaling pathway and NADPH oxidase by modulating the activity of TAK1, thereby inhibiting the production of ROS and NETs. The effects of taurine on NADPH oxidase and NETs in S. uberis infection were also demonstrated in vivo. These results suggest that taurine can protect mammary epithelial cells and barriers from damage by reducing S. uberis-induced NETs. These data provide new insights and strategies for the prevention and control of mastitis.
Collapse
Affiliation(s)
- Ming Li
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yabing Gao
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhenglei Wang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Binfeng Wu
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jinqiu Zhang
- National Research Center for Veterinary Vaccine Engineering and Technology of China, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yuanyuan Xu
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Vanhnaseng Phouthapane
- Department of Livestock and Fisheries, Ministry of Agriculture and Forestry, Vientiane, Laos
| | - Jinfeng Miao
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Jinfeng Miao,
| |
Collapse
|
8
|
Rosa-Velazquez M, Pinos-Rodriguez JM, Parker AJ, Relling AE. Maternal supply of a source of omega-3 fatty acids and methionine during late gestation on the offspring's growth, metabolism, carcass characteristic, and liver's mRNA expression in sheep. J Anim Sci 2022; 100:skac032. [PMID: 35137115 PMCID: PMC9037365 DOI: 10.1093/jas/skac032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/17/2022] [Indexed: 02/07/2023] Open
Abstract
The objective of the present experiment was to evaluate the effect of maternal supplementation with fatty acids (FAs) and methionine (Met) during late gestation on offspring growth, energy metabolism, plasma resolvin (RvD1) concentration, carcass characteristics, and hepatic mRNA expression. Ewes (5 pens/treatment; 3 ewes/pen) blocked by body weight (BW) were assigned to one of four treatments from day 100 of gestation until lambing. The treatments were: basal diet (NS) without FAs or Met supplementation; FA supplementation (FS; 1.01 % of Ca salts, containing n-3 FA); Met supplementation (MS; 0.1 % of rumen-protected methionine); and FS and MS (FS-MS). At birth (day 0), ewes and lambs were placed in a common pen. On day 60, lambs were weaned, sorted by sex, blocked by BW, and placed on a common finishing diet for 54 d (FP). A lamb per pen was used for a glucose tolerance test (GTT) after the FP. Carcass characteristics were recorded on day 56. Lamb data were analyzed as a randomized complete block design with a 2 × 2 × 2 factorial arrangement, with repeated measurements when needed (SAS 9.4). At weaning, lambs born to MS- or FS-fed ewes were heavier than lambs born from FS-MS ewes (FS × MS × Time; P = 0.02). A marginal significant FS × MS interaction (P = 0.09) was also observed on RvD1; lambs born to ewes in the NS and FS-MS treatments showed a lower RvD1 plasma concentration when compared with lambs born to FS- or MS-fed ewes. Lambs born to dams fed FA showed an increase (P = 0.05) in liver COX-2 mRNA relative expression. Lambs born to ewes supplemented with Met showed an increase (P = 0.03) in liver FABP4 mRNA expression. An FS × MS × Time interaction (P = 0.07) was observed in plasma glucose during the GTT; lambs born from FS-fed ewes showed lower plasma glucose concentration than lambs born to Met-supplemented ewes at 2 min after bolus administration. During the GTT, a marginal significant effect (P = 0.06) was observed for the lamb average insulin concentration due to maternal Met supplementation during late gestation, where these lambs had the lowest plasma concentration. Contrary to our hypothesis, the interaction of FA and Met supplementation during late gestation did not show a greater positive effect on offspring postnatal growth and metabolism. However, the individual supplementation of each nutrient has an effect on offspring development with a concomitant change in markers involved in the inflammatory response and energy metabolism.
Collapse
Affiliation(s)
- Milca Rosa-Velazquez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Veracruz 91710, Mexico
- Department of Animal Science, Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, Wooster, OH 44691, USA
| | | | - Anthony J Parker
- Department of Animal Science, Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, Wooster, OH 44691, USA
| | - Alejandro E Relling
- Department of Animal Science, Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, Wooster, OH 44691, USA
| |
Collapse
|
9
|
Xiong H, Chen Z, Lin B, Chen W, Li Q, Li Y, Fang M, Wang Y, Zhang H, Lu Y, Bi A, Wu S, Jia Y, Wang X. Comprehensive analysis of FKBP4/NR3C1/TMEM173 signaling pathway in triple-negative breast cancer cell and dendritic cell among tumor microenvironment. Mol Ther Oncolytics 2022; 24:371-384. [PMID: 35118194 PMCID: PMC8792076 DOI: 10.1016/j.omto.2021.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/31/2021] [Indexed: 11/17/2022] Open
Abstract
TMEM173 is a pattern recognition receptor detecting cytoplasmic nucleic acids and transmits cGAS related signals that activate host innate immune responses. It has also been found to be involved in tumor immunity and tumorigenesis. In this study, we first identified that the FKBP4/NR3C1 axis was a novel negative regulator of TMEM173 in human breast cancer (BC) cells. The effect of FKBP4 appeared to be at the transcriptional level of TMEM173, because it could suppress the promoter activity of TMEM173, thereby affecting TMEM173 at mRNA and protein levels. Past studies, our bioinformatics analysis, and in vitro experiments further implied that FKBP4 regulated TMEM173 via regulating nuclear translocation of NR3C1. We then demonstrated that the FKBP4/NR3C1/TMEM173 signaling pathway could regulate autophagy and proliferation of BC cells as well as dendritic cell (DC) abundance through exosome release. Our study found an unprecedented strategy used by BC to escape from TMEM173 mediated tumor suppression. Identification of the FKBP4/NR3C1 axis as a novel TMEM173 regulator would provide insights for novel anti-tumor strategy against BC among tumor microenvironment.
Collapse
Affiliation(s)
- Hanchu Xiong
- Department of Radiation Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310000, China
| | - Zihan Chen
- Surgical Intensive Care Unit, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Baihua Lin
- Department of Radiation Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310000, China
| | - Weijun Chen
- Department of Radiation Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310000, China
| | - Qiang Li
- Department of Radiation Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310000, China
| | - Yucheng Li
- Department of Radiation Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310000, China
| | - Min Fang
- Department of Radiation Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310000, China
| | - Ying Wang
- Department of Radiation Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310000, China
| | - Haibo Zhang
- Department of Radiation Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310000, China
| | - Yanwei Lu
- Department of Radiation Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310000, China
| | - Aihong Bi
- Department of Radiation Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310000, China
| | - Shuqiang Wu
- Department of Radiation Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310000, China
| | - Yongshi Jia
- Department of Radiation Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310000, China
| | - Xiao Wang
- Department of Medical Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310000, China
| |
Collapse
|
10
|
Zhou J, Ning K, Yang Y, Zou L, Xue J, Kong X, Li W. 1H-NMR -based metabolic analysis on biocompatibility of dental biomaterials. Process Biochem 2022. [DOI: 10.1016/j.procbio.2020.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Xiong H, Chen Z, Lin B, Xie B, Liu X, Chen C, Li Z, Jia Y, Wu Z, Yang M, Jia Y, Wang L, Zhou J, Meng X. Naringenin Regulates FKBP4/NR3C1/NRF2 Axis in Autophagy and Proliferation of Breast Cancer and Differentiation and Maturation of Dendritic Cell. Front Immunol 2022; 12:745111. [PMID: 35087512 PMCID: PMC8786807 DOI: 10.3389/fimmu.2021.745111] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/21/2021] [Indexed: 12/23/2022] Open
Abstract
NRF2 is an important regulatory transcription factor involved in tumor immunity and tumorigenesis. In this study, we firstly identified that FKBP4/NR3C1 axis was a novel negative regulator of NRF2 in human breast cancer (BC) cells. The effect of FKBP4 appeared to be at protein level of NRF2 since it could not suppress the expression of NRF2 at mRNA level. Bioinformatics analysis and in vitro experiments further demonstrated that FKBP4 regulated NRF2 via regulating nuclear translocation of NR3C1. We then reported that naringenin, a flavonoid, widely distributed in citrus and tomato, could suppress autophagy and proliferation of BC cells through FKBP4/NR3C1/NRF2 signaling pathway in vitro and in vivo. Naringenin was also found to promote dendritic cell (DC) differentiation and maturation through FKBP4/NR3C1/NRF2 axis. Therefore, our study found that naringenin could induce inhibition of autophagy and cell proliferation in BC cells and enhance DC differentiation and maturation, at least in part, though regulation of FKBP4/NR3C1/NRF2 signaling pathway. Identification of FKBP4/NR3C1/NRF2 axis would provide insights for novel anti-tumor strategy against BC among tumor microenvironment.
Collapse
Affiliation(s)
- Hanchu Xiong
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Zihan Chen
- Surgical Intensive Care Unit, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Baihua Lin
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Bojian Xie
- Department of Breast and Thyroid Surgery, Taizhou Hospital of Zhejiang Province, Taizhou, China
| | - Xiaozhen Liu
- Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Cong Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Zhaoqing Li
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Yunlu Jia
- Department of Medical Oncology, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Zhuazhua Wu
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Min Yang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Yongshi Jia
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Linbo Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Jichun Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Xuli Meng
- Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
12
|
Lopes MG, Alharthi AS, Lopreiato V, Abdel-Hamied E, Liang Y, Coleman DN, Dai H, Corrêa MN, Socha MT, Ballou MA, Trevisi E, Loor JJ. Maternal supplementation with cobalt sources, folic acid, and rumen-protected methionine and its effects on molecular and functional correlates of the immune system in neonatal Holstein calves. J Dairy Sci 2021; 104:9340-9354. [PMID: 33985772 DOI: 10.3168/jds.2020-19674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/30/2021] [Indexed: 12/16/2022]
Abstract
Calves born to multiparous Holstein cows fed during the last 30 d of pregnancy 2 different cobalt sources [cobalt glucoheptonate (CoPro) or cobalt pectin (CoPectin)], folic acid (FOA), and rumen-protected methionine (RPM) were used to study neonatal immune responses after ex vivo lipopolysaccharide (LPS) challenge. Groups were (n = 12 calves/group) CoPro, FOA+CoPro, FOA+CoPectin, and FOA+CoPectin+RPM. Calves were weighed at birth and blood collected at birth (before colostrum), 21 d of age, and 42 d of age (at weaning). Growth performance was recorded once a week during the first 6 wk of age. Energy metabolism, inflammation, and antioxidant status were assessed at birth through various plasma biomarkers. Whole blood was challenged with 3 µg/mL of LPS or used for phagocytosis and oxidative burst assays. Target genes evaluated by real-time quantitative PCR in whole blood samples were associated with immune response, antioxidant function, and 1-carbon metabolism. The response in mRNA abundance in LPS challenged versus nonchallenged samples was assessed via Δ = LPS challenged - LPS nonchallenged samples. Phagocytosis capacity and oxidative burst activity were measured in neutrophils and monocytes, with data reported as ratio (percentage) of CD14 to CH138A-positive cells. Data including all time points were subjected to ANOVA using PROC MIXED in SAS 9.4 (SAS Institute Inc.), with Treatment, Sex, Age, and Treatment × Age as fixed effects. A 1-way ANOVA was used to determine differences at birth, with Treatment and Sex as fixed effects. Calf birth body weight and other growth parameters did not differ between groups. At birth, plasma haptoglobin concentration was lower in FOA+CoPro compared with CoPro calves. We detected no effect for other plasma biomarkers or immune function due to maternal treatments at birth. Compared with CoPro, in response to LPS challenge, whole blood from FOA+CoPectin and FOA+CoPectin+RPM calves had greater mRNA abundance of intercellular adhesion molecule 1 (ICAM1). No effect for other genes was detectable. Regardless of maternal treatments, sex-specific responses were observed due to greater plasma concentrations of haptoglobin, paraoxonase, total reactive oxygen metabolites, nitrite, and β-carotene in female versus male calves at birth. In contrast, whole blood from male calves had greater mRNA abundance of IRAK1, CADM1, and ITGAM in response to LPS challenge at birth. The longitudinal analysis of d 0, 21, and 42 data revealed greater bactericidal permeability-increasing protein (BPI) mRNA abundance in whole blood from FOA+CoPectin versus FOA+CoPro calves, coupled with greater abundance in FOA+CoPro compared with CoPro calves. Regardless of maternal treatments, most genes related to cytokines and cytokine receptors (IL1B, IL10, TNF, IRAK1, CXCR1), toll-like receptor pathway (TLR4, NFKB1), adhesion and migration (ICAM1, ITGAM), antimicrobial function (MPO), and antioxidant function (GPX1) were downregulated over time. Phagocytosis capacity and oxidative burst activity in both neutrophils and monocytes did not differ due to maternal treatment. Regardless of maternal treatments, we observed an increase in the percentage of neutrophils capable of phagocytosis and oxidative burst activity over time. Overall, these preliminary assessments suggested that maternal supplementation with FOA and Co combined with RPM had effects on a few plasma biomarkers of inflammation at birth and molecular responses associated with inflammatory mechanisms during the neonatal period.
Collapse
Affiliation(s)
- M G Lopes
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801; NUPEEC (Núcleo de Pesquisa, Ensino e Extensão em Pecuária), Departamento de Clínicas Veterinária, Programa de Pós-Graduação em Biotecnologia, Universidade Federal de Pelotas, 96010-610, Pelotas, RS, Brazil
| | - A S Alharthi
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - V Lopreiato
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - E Abdel-Hamied
- Department of Animal Medicine, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Y Liang
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - D N Coleman
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - H Dai
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - M N Corrêa
- NUPEEC (Núcleo de Pesquisa, Ensino e Extensão em Pecuária), Departamento de Clínicas Veterinária, Programa de Pós-Graduação em Biotecnologia, Universidade Federal de Pelotas, 96010-610, Pelotas, RS, Brazil
| | - M T Socha
- Zinpro Corporation, Eden Prairie, MN 55344
| | - M A Ballou
- Department of Veterinary Sciences, Texas Tech University, Lubbock 79409
| | - E Trevisi
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - J J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
13
|
Palombo V, Alharthi A, Batistel F, Parys C, Guyader J, Trevisi E, D'Andrea M, Loor JJ. Unique adaptations in neonatal hepatic transcriptome, nutrient signaling, and one-carbon metabolism in response to feeding ethyl cellulose rumen-protected methionine during late-gestation in Holstein cows. BMC Genomics 2021; 22:280. [PMID: 33865335 PMCID: PMC8053294 DOI: 10.1186/s12864-021-07538-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/11/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Methionine (Met) supply during late-pregnancy enhances fetal development in utero and leads to greater rates of growth during the neonatal period. Due to its central role in coordinating nutrient and one-carbon metabolism along with immune responses of the newborn, the liver could be a key target of the programming effects induced by dietary methyl donors such as Met. To address this hypothesis, liver biopsies from 4-day old calves (n = 6/group) born to Holstein cows fed a control or the control plus ethyl-cellulose rumen-protected Met for the last 28 days prepartum were used for DNA methylation, transcriptome, metabolome, proteome, and one-carbon metabolism enzyme activities. RESULTS Although greater withers and hip height at birth in Met calves indicated better development in utero, there were no differences in plasma systemic physiological indicators. RNA-seq along with bioinformatics and transcription factor regulator analyses revealed broad alterations in 'Glucose metabolism', 'Lipid metabolism, 'Glutathione', and 'Immune System' metabolism due to enhanced maternal Met supply. Greater insulin sensitivity assessed via proteomics, and efficiency of transsulfuration pathway activity suggested beneficial effects on nutrient metabolism and metabolic-related stress. Maternal Met supply contributed to greater phosphatidylcholine synthesis in calf liver, with a role in very low density lipoprotein secretion as a mechanism to balance metabolic fates of fatty acids arising from the diet or adipose-depot lipolysis. Despite a lack of effect on hepatic amino acid (AA) transport, a reduction in metabolism of essential AA within the liver indicated an AA 'sparing effect' induced by maternal Met. CONCLUSIONS Despite greater global DNA methylation, maternal Met supply resulted in distinct alterations of hepatic transcriptome, proteome, and metabolome profiles after birth. Data underscored an effect on maintenance of calf hepatic Met homeostasis, glutathione, phosphatidylcholine and taurine synthesis along with greater efficiency of nutrient metabolism and immune responses. Transcription regulators such as FOXO1, PPARG, E2F1, and CREB1 appeared central in the coordination of effects induced by maternal Met. Overall, maternal Met supply induced better immunometabolic status of the newborn liver, conferring the calf a physiologic advantage during a period of metabolic stress and suboptimal immunocompetence.
Collapse
Affiliation(s)
- Valentino Palombo
- Dipartimento Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise, via De Sanctis snc, 86100, Campobasso, Italy
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, 61801, USA
| | - Abdulrahman Alharthi
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, 61801, USA
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Fernanda Batistel
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, 84322, USA
| | - Claudia Parys
- Evonik Operations GmbH, Hanau-Wolfgang, 63457, Essen, Germany
| | - Jessie Guyader
- Evonik Operations GmbH, Hanau-Wolfgang, 63457, Essen, Germany
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy
| | - Mariasilvia D'Andrea
- Dipartimento Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise, via De Sanctis snc, 86100, Campobasso, Italy
| | - Juan J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, 61801, USA.
| |
Collapse
|
14
|
Coleman DN, Alharthi AS, Liang Y, Lopes MG, Lopreiato V, Vailati-Riboni M, Loor JJ. Multifaceted role of one-carbon metabolism on immunometabolic control and growth during pregnancy, lactation and the neonatal period in dairy cattle. J Anim Sci Biotechnol 2021; 12:27. [PMID: 33536062 PMCID: PMC7860211 DOI: 10.1186/s40104-021-00547-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Dairy cattle undergo dramatic metabolic, endocrine, physiologic and immune changes during the peripartal period largely due to combined increases in energy requirements for fetal growth and development, milk production, and decreased dry matter intake. The negative nutrient balance that develops results in body fat mobilization, subsequently leading to triacylglycerol (TAG) accumulation in the liver along with reductions in liver function, immune dysfunction and a state of inflammation and oxidative stress. Mobilization of muscle and gluconeogenesis are also enhanced, while intake of vitamins and minerals is decreased, contributing to metabolic and immune dysfunction and oxidative stress. Enhancing post-ruminal supply of methyl donors is one approach that may improve immunometabolism and production synergistically in peripartal cows. At the cellular level, methyl donors (e.g. methionine, choline, betaine and folic acid) interact through one-carbon metabolism to modulate metabolism, immune responses and epigenetic events. By modulating those pathways, methyl donors may help increase the export of very low-density lipoproteins to reduce liver TAG and contribute to antioxidant synthesis to alleviate oxidative stress. Thus, altering one-carbon metabolism through methyl donor supplementation is a viable option to modulate immunometabolism during the peripartal period. This review explores available data on the regulation of one-carbon metabolism pathways in dairy cows in the context of enzyme regulation, cellular sensors and signaling mechanisms that might respond to increased dietary supply of specific methyl donors. Effects of methyl donors beyond the one-carbon metabolism pathways, including production performance, immune cell function, mechanistic target or rapamycin signaling, and fatty acid oxidation will also be highlighted. Furthermore, the effects of body condition and feeding system (total mixed ration vs. pasture) on one-carbon metabolism pathways are explored. Potential effects of methyl donor supply during the pepartum period on dairy calf growth and development also are discussed. Lastly, practical nutritional recommendations related to methyl donor metabolism during the peripartal period are presented. Nutritional management during the peripartal period is a fertile area of research, hence, underscoring the importance for developing a systems understanding of the potential immunometabolic role that dietary methyl donors play during this period to promote health and performance.
Collapse
Affiliation(s)
- Danielle N. Coleman
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801 USA
| | - Abdulrahman S. Alharthi
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801 USA
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Yusheng Liang
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801 USA
| | - Matheus Gomes Lopes
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801 USA
| | - Vincenzo Lopreiato
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Mario Vailati-Riboni
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801 USA
| | - Juan J. Loor
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801 USA
| |
Collapse
|
15
|
Ding J, Shi M, Wang L, Qi D, Tao Z, Hayat MA, Liu T, Zhang JT, Wang H. Gene Expression of Metalloproteinases and Endogenous Inhibitors in the Lamellae of Dairy Heifers With Oligofructose-Induced Laminitis. Front Vet Sci 2020; 7:597827. [PMID: 33426020 PMCID: PMC7786368 DOI: 10.3389/fvets.2020.597827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 12/02/2020] [Indexed: 12/03/2022] Open
Abstract
Bovine laminitis leads to huge economic losses and animal welfare problems in the dairy industry worldwide. Numerous studies suggested that several metalloproteinases (MPs) may play vital roles in the failure of epidermal attachment. To the best of our knowledge, the present study is the first to investigate and characterize the gene-level changes in distinct MPs and endogenous inhibitors using oligofructose (OF)-induced bovine laminitis model. The objective of this study was to determine aberrant MPs and related inhibitors of bovine laminitis in gene level, and to provide reasonable directions for the further protein-level research. Twelve normal Chinese Holstein dairy heifers were randomly divided into treatment group (n = 6) and control group (n = 6). The heifers in the treatment group were administered with OF solutions at a dose of 17 g/kg of body weight via a stomach tube. The heifers were then humanely euthanized when they met the criteria of bovine laminitis. The heifers in the control group were administered with deionized water at a dose of 2 L/100 kg of body weight. They humanely euthanized at 72 h. The gene expressions of MPs and endogenous inhibitors, namely, matrix metalloproteinases (MMPs), A disintegrin and metalloproteinases (ADAMs), and A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTs), and tissue inhibitors of metalloproteinases (TIMPs) in the lamellae from two groups were determined via real-time quantitative PCR. The gene expressions of MMP-2, MMP-9, ADAMTS-4, and ADAMTS-5 significantly increased (P < 0.05), whereas that of TIMP-2 significantly decreased (P < 0.05) in the treatment group relative to the control group. No significant difference was found in the gene expressions of ADAM-10, ADAM-17, TIMP-1, and TIMP-3. These results indicated that the gene-level imbalanced condition of MPs and their TIMPs may be the basic cause for the failure of epidermal attachment. At the same time, more detailed protein-level studies would be needed to further clarify the roles of MPs and TIMPs in the pathogenesis of bovine laminitis, especially to MMP-2, MMP-9, ADAMTS-4, ADAMTS-5, TIMP-2 as well as related substrates (e.g., aggrecan and versican).
Collapse
Affiliation(s)
- Jiafeng Ding
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
| | - Mingxian Shi
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
| | - Long Wang
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
| | - Dongdong Qi
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
| | - Ze Tao
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
| | - Muhammad A Hayat
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
| | - Tao Liu
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
| | - Jian-Tao Zhang
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
| | - Hongbin Wang
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
| |
Collapse
|
16
|
Lopes MG, Alharthi AS, Lopreiato V, Abdel-Hamied E, Liang Y, Coleman DN, Dai H, Corrêa MN, Fernandez C, Loor JJ. Maternal body condition influences neonatal calf whole-blood innate immune molecular responses to ex vivo lipopolysaccharide challenge. J Dairy Sci 2020; 104:2266-2279. [PMID: 33246612 DOI: 10.3168/jds.2020-18948] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/29/2020] [Indexed: 12/21/2022]
Abstract
Managing body condition in dairy cows during the close-up period could alter the availability of nutrients to the fetus during the final growth stages in utero. We investigated how maternal body condition score (BCS) in late pregnancy affected calf whole-blood mRNA abundance and IL-1β concentrations after ex vivo lipopolysaccharide (LPS) challenge. Thirty-eight multiparous Holstein cows and their calves from a larger cohort were retrospectively grouped by prepartal BCS as normal BCS (≤3.25; n = 22; NormBCS) and high BCS (≥3.75; n = 16; HighBCS). Calf blood samples collected at birth (before receiving colostrum, d 0) and at ages 21 and 42 d (at weaning) were used for ex vivo whole-blood challenge with 3 µg/mL of LPS before mRNA isolation. Target genes evaluated by real-time quantitative PCR were associated with immune response, antioxidant function, and 1-carbon metabolism. Plasma IL-1β concentrations were also measured. Responses in plasma IL-1β and mRNA abundance were compared between LPS-challenged and nonchallenged samples. Statistical analyses were performed at all time points using a MIXED model in SAS 9.4. Neither birth body weight (NormBCS = 43.8 ± 1.01 kg; HighBCS = 43.9 ± 1.2 kg) nor colostrum IgG concentration (NormBCS = 70 ± 5.4 mg/mL; HighBCS = 62 ± 6.5 mg/mL) differed between groups. At birth, whole blood from calves born to HighBCS cows had greater mRNA abundance of IL1B, NFKB1, and GSR and lower GPX1 and CBS abundance after LPS challenge. The longitudinal analysis of d 0, 21, and 42 data revealed a BCS × age effect for SOD2 and NOS2 due to lower mRNA abundance at 42 d in the HighBCS calves. Regardless of maternal BCS, mRNA abundance decreased over time for genes encoding cytokines (IL1B, IL6, IL10, TNF), cytokine receptors (IRAK1, CXCR1), toll-like receptor pathway (TLR4, NFKB1), adhesion and migration (CADM1, ICAM1, ITGAM), and antimicrobial function (MPO). Concentration of IL-1β after LPS challenge was also markedly lower at 21 d regardless of maternal BCS. Overall, results suggested that maternal BCS in late prepartum influences the calf immune system response to an inflammation challenge after birth. Although few genes among those studied were altered due to maternal BCS, the fact that genes related to oxidative stress and 1-carbon metabolism responded to LPS challenge in HighBCS calves underscores the potential role of methyl donors (e.g., methionine, choline, and folic acid) in the early-life innate immune response.
Collapse
Affiliation(s)
- M G Lopes
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801; NUPEEC (Núcleo de Pesquisa, Ensino e Extensão em Pecuária), Departamento de Clínicas Veterinária, Programa de Pós-Graduação em Biotecnologia, Universidade Federal de Pelotas, 96010-610, Pelotas, RS, Brazil
| | - A S Alharthi
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801; Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - V Lopreiato
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - E Abdel-Hamied
- Department of Animal Medicine, Faculty of Veterinary Medicine, Beni-Suef University, Beni- Suef 62511, Egypt
| | - Y Liang
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - D N Coleman
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - H Dai
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - M N Corrêa
- NUPEEC (Núcleo de Pesquisa, Ensino e Extensão em Pecuária), Departamento de Clínicas Veterinária, Programa de Pós-Graduação em Biotecnologia, Universidade Federal de Pelotas, 96010-610, Pelotas, RS, Brazil
| | - C Fernandez
- Animal Science Department, Universitàt Politècnica de Valencia, 46022 Valencia, Spain
| | - J J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
17
|
Lopreiato V, Vailati-Riboni M, Parys C, Fernandez C, Minuti A, Loor JJ. Methyl donor supply to heat stress-challenged polymorphonuclear leukocytes from lactating Holstein cows enhances 1-carbon metabolism, immune response, and cytoprotective gene network abundance. J Dairy Sci 2020; 103:10477-10493. [PMID: 32952025 DOI: 10.3168/jds.2020-18638] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/10/2020] [Indexed: 12/22/2022]
Abstract
Mechanisms controlling immune function of dairy cows are dysregulated during heat stress (HS). Methyl donor supply-methionine (Met) and choline (Chol)-positively modulates innate immune function, particularly antioxidant systems of polymorphonuclear leukocytes (PMN). The objective of this study was to investigate the effect of Met and Chol supply in vitro on mRNA abundance of genes related to 1-carbon metabolism, inflammation, and immune function in short-term cultures of PMN isolated from mid-lactating Holstein cows in response to heat challenge. Blood PMN were isolated from 5 Holstein cows (153 ± 5 d postpartum, 34.63 ± 2.73 kg/d of milk production; mean ± SD). The PMN were incubated for 2 h at thermal-neutral (37°C; TN) or heat stress (42°C; HS) temperatures with 3 levels of Chol (0, 400, or 800 μg/mL) or 3 ratios of Lys:Met (Met; 3.6:1, 2.9:1, or 2.4:1). Supernatant concentrations of IL-1β, IL-6, and tumor necrosis factor-α were measured via bovine-specific ELISA. Fold-changes in mRNA abundance were calculated separately for Chol and Met treatments to obtain the fold-change response at 42°C (HS) relative to 37°C (TN). Data were subjected to ANOVA using PROC MIXED in SAS (SAS Institute Inc., Cary, NC). Orthogonal contrasts were used to determine the linear or quadratic effect of Met and Chol for mRNA fold-change and supernatant cytokine concentrations. Compared with PMN receiving 0 μg of Chol/mL, heat-stressed PMN supplemented with Chol at 400 or 800 μg/mL had greater fold-change in abundance of CBS, CSAD, GSS, GSR, and GPX1. Among genes associated with inflammation and immune function, fold-change in abundance of TLR2, TLR4, IRAK1, IL1B, and IL10 increased with 400 and 800 μg of Chol/mL compared with PMN receiving 0 μg of Chol/mL. Fold-change in abundance of SAHH decreased linearly at increasing levels of Met supply. A linear effect was detected for MPO, NFKB1, and SOD1 due to greater fold-change in abundance when Met was increased to reach Lys:Met ratios of 2.9:1 and 2.4:1. Although increasing Chol supply upregulated BAX, BCL2, and HSP70, increased Met supply only upregulated BAX. Under HS conditions, enhancing PMN supply of Chol to 400 μg/mL effectively increased fold-change in abundance of genes involved in antioxidant production (conferring cellular processes protection from free radicals and reactive oxygen species), inflammatory signaling, and innate immunity. Although similar outcomes were obtained with Met supply at Lys:Met ratios of 2.9:1 and 2.4:1, the response was less pronounced. Both Chol and Met supply enhanced the cytoprotective characteristics of PMN through upregulation of heat shock proteins. Overall, the modulatory effects detected in the present experiment highlight an opportunity to use Met and particularly Chol supplementation during thermal stress.
Collapse
Affiliation(s)
- V Lopreiato
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - M Vailati-Riboni
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - C Parys
- Evonik Nutrition & Care GmbH, Hanau-Wolfgang 63457, Germany
| | - C Fernandez
- Animal Science Department, Universitàt Politècnica de Valencia, 46022 Valencia, Spain
| | - A Minuti
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - J J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
18
|
Coleman DN, Lopreiato V, Alharthi A, Loor JJ. Amino acids and the regulation of oxidative stress and immune function in dairy cattle. J Anim Sci 2020; 98:S175-S193. [PMID: 32810243 PMCID: PMC7433927 DOI: 10.1093/jas/skaa138] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/24/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
| | - Vincenzo Lopreiato
- Department of Health Science, Interdepartmental Services Centre of Veterinary for Human and Animal Health, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Abdulrahman Alharthi
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Juan J Loor
- Department of Animal Sciences, University of Illinois, Urbana, IL.,Division of Nutritional Sciences, University of Illinois, Urbana, IL
| |
Collapse
|
19
|
Ding J, Li S, Jiang L, Li Y, Zhang X, Song Q, Hayat MA, Zhang JT, Wang H. Laminar Inflammation Responses in the Oligofructose Overload Induced Model of Bovine Laminitis. Front Vet Sci 2020; 7:351. [PMID: 32766286 PMCID: PMC7381234 DOI: 10.3389/fvets.2020.00351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/20/2020] [Indexed: 01/02/2023] Open
Abstract
Bovine laminitis causes substantial economic losses and animal welfare problems in dairy farms worldwide. Previously published studies have reported that the inflammatory response plays a central role in the pathogenesis of the disease. To our knowledge, inflammation associated with bovine laminitis induced by high levels of exposure to oligofructose (OF) has not been reported and characterized. In fact, the disease manifestations in this model closely approximate those of clinical laminitis. The objective of this study was to characterize the inflammatory response in OF-induced bovine laminitis. A total of 12 Chinese Holstein dairy heifers were utilized in this study. The heifers were randomly divided into two groups, treatment (n = 6) and control (n = 6). The treatment group heifers were administered OF solutions via a stomach tube (dose: 17 g/kg of body weight). Upon development of a lameness score of 2 with consecutive positive reactions in the same claw, they would be humanely euthanized. Control heifers were administered deionized water (dose: 2 L/100 kg of body weight) and humanely euthanized at 72 h. Real-time quantitative PCR (qPCR) assays were performed to determine the messenger RNA (mRNA) concentrations of inflammatory mediators in the lamellae. Concentrations of interleukin (IL)-1β, IL-6, IL-8, C-X-C motif chemokine ligand-1 (CXCL-1), macrophage cationic peptide-2 (MCP-2), E-selectin, intercellular adhesion molecule-1 (ICAM-1), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase-1 (iNOS-1), and plasminogen activator inhibitor-1 (PAI-1) were significantly increased (P < 0.05) in the treatment group. No significant difference was found for tumor necrosis factor alpha (TNF-α), IL-10, CXCL-6, and MCP-1. These results demonstrated and characterized the laminar inflammatory response leading to the pathogenesis of bovine laminitis at the early stages.
Collapse
Affiliation(s)
- Jiafeng Ding
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
| | - Shuaichen Li
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
| | - Lihong Jiang
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
| | - Yuepeng Li
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
| | - Xianhao Zhang
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
| | - Qiaozhi Song
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
| | - Muhammad A Hayat
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
| | - Jian-Tao Zhang
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
| | - Hongbin Wang
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
| |
Collapse
|
20
|
Velliquette RA, Fast DJ, Maly ER, Alashi AM, Aluko RE. Enzymatically derived sunflower protein hydrolysate and peptides inhibit NFκB and promote monocyte differentiation to a dendritic cell phenotype. Food Chem 2020; 319:126563. [DOI: 10.1016/j.foodchem.2020.126563] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/12/2020] [Accepted: 03/03/2020] [Indexed: 12/28/2022]
|
21
|
The impact of rumen-protected amino acids on the expression of key- genes involved in the innate immunity of dairy sheep. PLoS One 2020; 15:e0233192. [PMID: 32407360 PMCID: PMC7224535 DOI: 10.1371/journal.pone.0233192] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/29/2020] [Indexed: 12/28/2022] Open
Abstract
Rumen protected amino acids inclusion in ewes’ diets has been proposed to enhance their innate immunity. The objective of this work was to determine the impact of dietary supplementation with rumen-protected methionine or lysine, as well as with a combination of these amino acids in two different ratios, on the expression of selected key-genes (NLRs, MyD88, TRIF, MAPK-1, IRF-3, JunD, TRAF-3, IRF-5, IL-1α, IL-10, IKK-α, STAT-3 and HO-1). Thus, sixty Chios dairy ewes (Ovis aries) were assigned to one of the following five dietary treatments (12 animals/ treatment): A: basal diet consist of concentrates, wheat straw and alfalfa hay (control group); B: basal diet +6.0 g/head rumen-protected methionine; C: basal diet + 5.0 g/head rumen-protected lysine; D: basal diet +6.0 g/head rumen-protected methionine + 5.0 g/head rumen-protected lysine and E: basal diet +12.0 g/head rumen-protected methionine + 5.0 g/head rumen-protected lysine. The results revealed a significant downregulation of relative transcript level of the IL-1α gene in the neutrophils of C and in monocytes of D ewes compared with the control. Significantly lower mRNA transcript accumulation was also observed for the MyD88 gene in the neutrophils of ewes fed with lysine only (C). The mRNA relative expression levels of JunD gene were highly induced in the monocytes, while those of IL-10 and HO-1 genes were declined in the neutrophils of ewes fed with the C and D diets compared with the control. Lower transcript levels of STAT-3 gene were observed in the neutrophils of ewes fed with either C or with E diets in comparison with the control. In conclusion, our results suggest that the dietary supplementation of ewes with rumen-protected amino acids, down regulate the expression of some genes involved in the pro-inflammatory signalling.
Collapse
|
22
|
Li S, Ding J, Jiang L, Hayat MA, Song Q, Li Y, Zhang X, Zhang J. Dynamic ROS Production and Gene Expression of Heifers Blood Neutrophil in a Oligofructose Overload Model. Front Vet Sci 2020; 7:211. [PMID: 32373641 PMCID: PMC7186304 DOI: 10.3389/fvets.2020.00211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/30/2020] [Indexed: 12/21/2022] Open
Abstract
Alimentary oligofructose (OF) overload can induce several diseases in cattle, such as ruminal acidosis, laminitis, and synovitis. The role of blood polymorphonuclear neutrophil (PMN) remains unclear during OF overload. The aim of this study was to investigate the dynamic changes in reactive oxygen species (ROS) production and the expression profile of genes in blood PMN in a model of OF overload. Twelve clinically healthy and non-pregnant Chinese Holstein heifers, aged between 18 and 26 mo, weighing 335–403 kg, BCS (5-point scale) ranges 2.7–3.3 were used for the experiments. OF heifers (n = 6) received 17 g/kg of BW oligofructose dissolved in 2 L/100 kg of BW tap water and the CON heifers (n = 6) received 2 L/100 kg of BW tap water. Blood PMN was isolated for each heifer 0, 6, 12, 18, 24, 36, 48, 60, and 72 h after administration. PMN was analyzed either by endogenous and phorbol myristate acetate (PMA)-induced ROS production or by quantitative real-time PCR. After 12 h, PMA-induced ROS production decreased, which was sustained until 48 h. The expressions of inflammation markers (IL1α, IL1β, IL6, IL10, TNFα, STAT3, TLR4, MMP9, and HP) and eicosanoids (ALOX5, ALOX5AP, and PLA2G4A) were upregulated. The expression of adhesion and migration (CXCR2, CXCL8, CD62L, ITGA4, ITGAM, and ITGB2) in OF heifers was increased compared with CON heifers. The expression of oxidative stress (SOD2 and S100A8) was upregulated, while SOD1 and MPO were downregulated. In metabolism and receptor genes, the expressions of GRα and INSR decreased after 12 h, while Fas increased until 6 h and then decreased at 18 h. The expression of LDHA and PANX1 did not show any differences after OF overload. These findings indicate that OF overload induced systemic activation of PMN, which provides a step toward a better understanding of the role of innate immune responses in response to oral OF administration.
Collapse
Affiliation(s)
- Shuaichen Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
| | - Jiafeng Ding
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
| | - Lihong Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
| | - Muhammad Abid Hayat
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
| | - Qiaozhi Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
| | - Yuepeng Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
| | - Xianhao Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
| | - Jiantao Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
| |
Collapse
|
23
|
Rumen-protected methionine supplementation during the peripartal period alters the expression of galectin genes associated with inflammation in peripheral neutrophils and secretion in plasma of Holstein cows. J DAIRY RES 2019; 86:394-398. [PMID: 31727186 DOI: 10.1017/s0022029919000736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The work described in this research communication aimed to investigate whether rumen-protected methionine (Met) supplementation during the periparturient period would affect the expression of galectins in blood-derived neutrophils, and secretion of galectins, IL (interleukin)-1β, IL-6, myeloperoxidase (MPO), and glucose in plasma. Because supplementation of rumen-protected Met would alleviate inflammation and oxidative stress during the peripartal period, we hypothesized that enhancing Met supply would benefit the innate immune response at least in part by altering the expression of galectin genes associated with neutrophil activity and inflammation. Galectins (Gal) have an immuno-modulating effect acting like cell-surface receptors whose activation often results in signaling cascades stimulating cells such as neutrophils. This study revealed an association between Met supplementation and galectin expression and secretion. This implies that galectin expression and secretion can be modulated by Met supplementation. Further studies are needed to evaluate the regulation of galectin gene expression for therapeutic and dietary intervention in the peripartal cow.
Collapse
|
24
|
Lopreiato V, Vailati-Riboni M, Bellingeri A, Khan I, Farina G, Parys C, Loor J. Inflammation and oxidative stress transcription profiles due to in vitro supply of methionine with or without choline in unstimulated blood polymorphonuclear leukocytes from lactating Holstein cows. J Dairy Sci 2019; 102:10395-10410. [DOI: 10.3168/jds.2019-16413] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/28/2019] [Indexed: 01/06/2023]
|
25
|
Alharthi AS, Coleman DN, Liang Y, Batistel F, Elolimy AA, Yambao RC, Abdel-Hamied E, Pan YX, Parys C, Alhidary IA, Abdelrahman MM, Loor JJ. Hepatic 1-carbon metabolism enzyme activity, intermediate metabolites, and growth in neonatal Holstein dairy calves are altered by maternal supply of methionine during late pregnancy. J Dairy Sci 2019; 102:10291-10303. [PMID: 31477291 DOI: 10.3168/jds.2019-16562] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 07/10/2019] [Indexed: 01/24/2023]
Abstract
Maternal supply of methyl donors such as methionine (Met) during late pregnancy can affect offspring growth and development. The objective was to investigate the effect of postruminal Met supply during late pregnancy on 1-carbon, Met cycle, and transsulfuration pathways in the calf liver. During the last 28 d of pregnancy, cows were individually fed a control diet or the control diet plus rumen-protected dl-Met (MET; 0.09% dry matter intake). Liver samples obtained from calves (n = 14/group) at 4, 14, 28, and 50 d of age were used for metabolomics, real-time PCR, and enzyme activity analyses. Genes associated with 1-carbon metabolism, DNA methylation, and the cytidine 5'-diphosphocholine-choline pathway were analyzed via real-time PCR. Activity of betaine homocysteine methyltransferase, cystathionine β-synthase, and 5-methyltetrahydrofolate homocysteine methyltransferase (MTR) was analyzed using 14C isotopes. Data were analyzed using a mixed model that included the fixed effects of maternal treatment, day, and their interaction, and the random effect was calf within maternal diet. Calves born to dams offered MET tended to have greater birth body weight and had overall greater body weight during the first 9 wk of life. However, no differences were detected for daily feed intake and average daily gain between groups. Concentrations of betaine and choline, reflecting Met cycle activity, at d 14 through 28 were greater in MET calves. Transsulfuration pathway intermediates also were altered in MET calves, with concentrations of cysteine sulfinic acid and hypotaurine (d 4 and 14) and taurine being greater (d 4, 14, 28, and 50). Despite the lack of differences in daily feed intake, the greater concentrations of the tricarboxylic acid cycle intermediates fumarate and glutamate along with NAD/NADH in MET calves indicated enhanced rates of energy metabolism. Although activity of betaine homocysteine methyltransferase was greater in MET calves at d 14, cystathionine β-synthase was lower and increased at d 14 and 28, where it was greater compared with the control diet. Activity of MTR was lower at d 4 and 50 in MET calves. Among gene targets measured, MET calves had greater overall expression of MTR, phosphatidylethanolamine N-methyltransferase, and choline kinase α and β. An interaction of maternal diet by time was detected for mRNA abundance of DNA methyltransferase 3α (involved in de novo methylation) due to greater values at d 4 and 14 in MET calves. Overall, the data indicate that enhanced postruminal supply of Met to cows during late pregnancy may program hepatic metabolism of the calf in the context of maintaining Met homeostasis, phosphatidylcholine and taurine synthesis, DNA methylation, and energy metabolism. These alterations potentially result in better efficiency of nutrient use, hence conferring the calf a physiologic advantage during a period of rapid growth and development. The precise biologic mechanisms remain to be established.
Collapse
Affiliation(s)
- A S Alharthi
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801; Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - D N Coleman
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Y Liang
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - F Batistel
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan 84322-4815
| | - A A Elolimy
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - R C Yambao
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - E Abdel-Hamied
- Animal Medicine Department, Beni-Suef University, Beni-Suef, Egypt 62511
| | - Y-X Pan
- Food Science and Human Nutrition, Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - C Parys
- Evonik Nutrition and Care GmbH, Hanau-Wolfgang, Germany 63457
| | - I A Alhidary
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - M M Abdelrahman
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - J J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
26
|
Alharthi AS, Lopreiato V, Dai H, Bucktrout R, Abdelmegeid M, Batistel F, Parys C, Shen X, Ballou MA, Trevisi E, Alhidary IA, Abdelrahman MM, Loor JJ. Short communication: Supply of methionine during late pregnancy enhances whole-blood innate immune response of Holstein calves partly through changes in mRNA abundance in polymorphonuclear leukocytes. J Dairy Sci 2019; 102:10599-10605. [PMID: 31447163 DOI: 10.3168/jds.2018-15676] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 07/02/2019] [Indexed: 12/18/2022]
Abstract
The supply of methionine (Met) in late pregnancy can alter mRNA abundance of genes associated with metabolism and immune response in liver and polymorphonuclear leukocytes (PMN) of the neonatal calf. Whether prenatal supply of Met elicits postnatal effects on systemic inflammation and innate immune response of the calf is not well known. We investigated whether enhancing the maternal supply of Met via feeding ethyl-cellulose rumen-protected Met (RPM) was associated with differences in calf innate immune response mRNA abundance in PMN and systemic indicators of inflammation during the first 50 d of life. Calves (n = 14 per maternal diet) born to cows fed RPM at 0.09% of diet dry matter per day (MET) for the last 28 ± 2 d before calving or fed a control diet with no added Met (CON) were used. Blood for biomarker analysis and isolation of PMN for innate immune function assays and mRNA abundance was harvested at birth (before colostrum feeding) and at 7, 21 and 50 d of age. Whole blood was challenged with enteropathogenic bacteria (Escherichia coli 0118:H8) and phagocytosis and oxidative burst of neutrophils and monocytes were quantified via flow cytometry. Although concentration of haptoglobin and activity of myeloperoxidase among calves from both maternal groups increased markedly between 0 and 7 d of age followed by a decrease to baseline at d 21 the responses were lower in MET compared with CON calves. Nitric oxide concentration decreased markedly between 0 and 7 d regardless of maternal group but MET calves tended to have lower overall concentrations during the study. In vitro phagocytosis in stimulated neutrophils increased markedly over time in both CON and MET calves but responses were overall greater in MET calves. Oxidative burst in both neutrophils and monocytes increased over time regardless of maternal treatment. The mRNA abundance of lactate dehydrogenase (LDHA) signal transducer and activator of transcription 3 (STAT3) and S100 calcium binding protein A8 (S100A8) in PMN was overall greater in MET calves. Overall data suggest that increasing the maternal supply of Met during late pregnancy could affect the neonatal calf inflammatory status and innate immune response. Although changes in mRNA abundance could play a role in coordinating the immune response the exact mechanisms merit further study.
Collapse
Affiliation(s)
- A S Alharthi
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801; Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - V Lopreiato
- Department of Animal Sciences, Food and Nutrition, Università Cattolica del Sacro Cuore, Piacenza 29122, Italy
| | - H Dai
- Department of Clinical Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - R Bucktrout
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - M Abdelmegeid
- Department of Animal Medicine, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Shaikh 33516, Egypt
| | - F Batistel
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan 84322
| | - C Parys
- Evonik Nutrition and Care GmbH, 63457 Hanau-Wolfgang, Germany
| | - X Shen
- Department of Clinical Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - M A Ballou
- Department of Animal Sciences, Texas Tech University, Lubbock 79409
| | - E Trevisi
- Department of Animal Sciences, Food and Nutrition, Università Cattolica del Sacro Cuore, Piacenza 29122, Italy
| | - I A Alhidary
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - M M Abdelrahman
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - J J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
27
|
Vailati-Riboni M, Xu T, Qadir B, Bucktrout R, Parys C, Loor JJ. In vitro methionine supplementation during lipopolysaccharide stimulation modulates immunometabolic gene network expression in isolated polymorphonuclear cells from lactating Holstein cows. J Dairy Sci 2019; 102:8343-8351. [PMID: 31301830 DOI: 10.3168/jds.2018-15737] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 05/14/2019] [Indexed: 11/19/2022]
Abstract
Methionine (Met) is one of the 2 most limiting amino acids for milk production in dairy cow diets. The accepted "ideal" ratio of lysine (Lys) to Met (L:M) when formulating diets is 3:1. However, blood from cows fed corn silage-based diets without supplemental rumen-protected Met averages approximately 3.6:1 L:M. Recent in vivo research on cattle immunonutrition has revealed that the immune system could benefit from greater Met supply. To study more closely the effects of different L:M ratios, blood polymorphonuclear cells (PMN) were isolated from 5 Holstein cows in mid-lactation (238 ± 20 d postpartum, 33.8 ± 3.8 kg of milk/d; mean ± SD). The PMN were incubated at 3 different levels of L:M (3.6:1, 2.9:1, or 2.4:1) and stimulated with lipopolysaccharide (LPS) at either 0 or 50 μg/mL for 2 h at 37°C. Target genes were associated with cytokines, pathogen recognition, nuclear receptors, killing mechanisms, and Met and glutathione metabolism. Data were subjected to ANOVA using PROC MIXED in SAS, with L:M, LPS, and their interaction as fixed effects. Stimulation with LPS upregulated genes related to cytokines (IL1B, TNF, IL10 and IL6) and nuclear receptors, including nuclear factor kappa B (NFKB1) and glucocorticoid receptor (NR3C1), and downregulated the mRNA abundance of chemokine receptor 1 (CXCR1), lysozyme (LYZ) and glutathione reductase (GSR). A linear decrease was observed in the mRNA abundance of TNF when L:M was decreased. A similar response was observed for interleukin-1 receptor-associated kinase 1 (IRAK1) and NFKB1 abundance in cells stimulated with LPS (linear effect). A linear increase of LYZ mRNA expression as L:M decreased was detected in unstimulated cells. Furthermore, a decrease in L:M led to a linear decrease of superoxide dismutase 1 (SOD1) mRNA abundance in cells challenged with LPS. Overall, LPS challenge triggered the activation of isolated PMN from mid-lactation cows. However, data suggest the use of a shorter incubation time to capture the peak response and not the resolution of the inflammatory response as in the present study. Our results indicate a possible involvement of Met in modulating PMN inflammatory and oxidative stress status and in helping the resolution of inflammation after initial stimulation.
Collapse
Affiliation(s)
- M Vailati-Riboni
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana 61801
| | - T Xu
- Joint International Research Laboratory of Agriculture and Agri-product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China 225009
| | - B Qadir
- Veterinary Division, Kurdistan Regional Government, Sulaymaniyah, Iraq 46001
| | - R Bucktrout
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana 61801
| | - C Parys
- Evonik Nutrition and Care GmbH, 63457 Hanau-Wolfgang, Germany
| | - J J Loor
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana 61801.
| |
Collapse
|
28
|
Salama AAK, Duque M, Wang L, Shahzad K, Olivera M, Loor JJ. Enhanced supply of methionine or arginine alters mechanistic target of rapamycin signaling proteins, messenger RNA, and microRNA abundance in heat-stressed bovine mammary epithelial cells in vitro. J Dairy Sci 2019; 102:2469-2480. [PMID: 30639019 DOI: 10.3168/jds.2018-15219] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 11/13/2018] [Indexed: 12/15/2022]
Abstract
Heat stress (HS) causes reductions in milk production, but it is unclear whether this effect is due to reduced number or functional capacity (or both) of mammary cells. Methionine supplementation improves milk protein, whereas Arg is taken up in excess by mammary cells to produce energy and nonessential AA that can be incorporated into milk protein. To evaluate molecular mechanisms by which mammary functional capacity is affected by HS and Met or Arg, mammary alveolar (MAC-T) cells were incubated at thermal-neutral (37°C) or HS (42°C) temperatures. Treatments were optimal AA profiles (control; Lys:Met = 2.9:1.0; Lys:Arg = 2.1:1.0), control plus Met (Lys:Met = 2.5:1.0), or control plus Arg (Lys:Arg = 1.0:1.0). After incubation for 6 h, cells were harvested and RNA and protein were extracted for quantitative real-time PCR and Western blotting. Protein abundance of mechanistic target of rapamycin (MTOR), eukaryotic initiation factor 2a, serine-threonine protein kinase (AKT), 4E binding protein 1 (EIF4EBP1), and phosphorylated EIF4EBP1 was lower during HS. The lower phosphorylated EIF4EBP1 with HS would diminish translation initiation and reduce protein synthesis. Both Met and Arg had no effect on MTOR proteins, but the phosphorylated EIF4EBP1 decreased by AA, especially Arg. Additionally, Met but not Arg decreased the abundance of phosphorylated eukaryotic elongation factor 2, which could be positive for protein synthesis. Although HS upregulated the heat shock protein HSPA1A, the apoptotic gene BAX, and the translation inhibitor EIF4EBP1, the mRNA abundance of PPARG, FASN, ACACA (lipogenesis), and BCL2L1 (antiapoptotic) decreased. Greater supply of Met or Arg reversed most of the effects of HS occurring at the mRNA level and upregulated the abundance of HSPA1A. In addition, compared with the control, supply of Met or Arg upregulated genes related to transcription and translation (MAPK1, MTOR, SREBF1, RPS6KB1, JAK2), insulin signaling (AKT2, IRS1), AA transport (SLC1A5, SLC7A1), and cell proliferation (MKI67). Upregulation of microRNA related to cell growth arrest and apoptosis (miR-34a, miR-92a, miR-99, and miR-184) and oxidative stress (miR-141 and miR-200a) coupled with downregulation of fat synthesis-related microRNA (miR-27ab and miR-221) were detected with HS. Results suggest that HS has a direct negative effect on synthesis of protein and fat, mediated in part by coordinated changes in mRNA, microRNA, and protein abundance of key networks. The positive responses with Met and Arg raise the possibility that supplementation with these AA during HS might have a positive effect on mammary metabolism.
Collapse
Affiliation(s)
- A A K Salama
- Group of Research in Ruminants (G2R), Department of Animal and Food Sciences, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - M Duque
- Grupo de Investigación Biogénesis, Facultad de Ciencias Agrarias, Universidad de Antioquia, Carrera 75 # 65-87, Medellín, Colombia
| | - L Wang
- Department of Animal Science, Southwest University, Rongchang, Chongqing 402460, China
| | - K Shahzad
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - M Olivera
- Grupo de Investigación Biogénesis, Facultad de Ciencias Agrarias, Universidad de Antioquia, Carrera 75 # 65-87, Medellín, Colombia
| | - J J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
29
|
Lopes MG, Dominguez JHE, Corrêa MN, Schmitt E, Fischer G. Rumen-protected methionine in cattle: influences on reproduction, immune response, and productive performance. ARQUIVOS DO INSTITUTO BIOLÓGICO 2019. [DOI: 10.1590/1808-1657001292018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
ABSTRACT: Nowadays, information and knowledge generated about the main ingredients used in cattle diets have enabled greater assertiveness in their formulation. Among the ingredients, amino acids stand out as a promising tool, capable of reducing total crude protein (CP) levels and adjusting optimal metabolizable protein concentrations in diets. Nutritional programs allow diets due to amino acid requirements, providing the opportunity to increase the efficiency of the use of dietary nitrogen, increasing the scarce protein concentrates, maintaining or even boosting performance. This review aimed to present the influences of methionine, in its formulation protected from ruminal degradation, according to reproductive parameters, immune response, and productive performance in cattle. Reproduction-related benefits are linked to the early days of embryonic implantation in the uterine environment, which initially secretes through the histotroph produced by endometrial glands, the nutrients needed to develop the conceptus until implantation, and vascular communication with the mother. Given the immune response, the main results are related to the benefits of innate immunity, with marked increase in phagocytic capacity of neutrophils and monocytes, as well as an important antioxidant effect mediated by methionine products, such as glutathione. When evaluating the influences on productivity, the most evident correlation is the increase in protein in the milk of cows supplemented with methionine. Over the past decade, studies investigating the potential benefits of this strategic supplementation in beef cattle were intensified, expanding the opportunities for the development of new experimental projects.
Collapse
|
30
|
Garcia M, Mamedova LK, Barton B, Bradford BJ. Choline Regulates the Function of Bovine Immune Cells and Alters the mRNA Abundance of Enzymes and Receptors Involved in Its Metabolism in vitro. Front Immunol 2018; 9:2448. [PMID: 30410489 PMCID: PMC6211314 DOI: 10.3389/fimmu.2018.02448] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 10/03/2018] [Indexed: 12/16/2022] Open
Abstract
Dietary choline can impact systemic immunity, but it remains unclear whether this is primarily via direct impacts on immune cells or secondary effects of altered metabolic function. To determine whether increased choline concentrations (3.2, 8.2, 13.2 μM) in cell culture alter the function of bovine innate and adaptive immune cells, we isolated cells from dairy cows in early and mid-lactation as models of immuno-compromised and competent cells, respectively. Phagocytic and killing capacity of isolated neutrophils were linearly diminished with increasing doses of choline. In contrast, lymphocyte proliferation was linearly enhanced with increasing doses of choline. Furthermore, increasing doses of choline increased the mRNA abundance of genes involved in the synthesis of choline products (betaine, phosphatidylcholine, and acetylcholine) as well as muscarinic and nicotinic acetylcholine receptors in a quadratic and linear fashion for neutrophils and monocytes, respectively. Phagocytic and killing capacity of neutrophils and proliferation of lymphocytes were not affected by stage of lactation or its interaction with choline or LPS. In neutrophils from early lactation cows, choline linearly increased the mRNA abundance of muscarinic and nicotinic cholinergic receptors, whereas choline-supplemented monocytes from mid-lactation cows linearly increased the mRNA abundance of several genes coding for choline metabolism enzymes. These data demonstrate that choline regulates the inflammatory response of immune cells and suggest that the mechanism may involve one or more of its metabolic products.
Collapse
Affiliation(s)
- Miriam Garcia
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS, United States
| | - Laman K Mamedova
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS, United States
| | | | - Barry J Bradford
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
31
|
Zhou YF, Zhou Z, Batistel F, Martinez-Cortés I, Pate RT, Luchini DL, Loor JJ. Methionine and choline supply alter transmethylation, transsulfuration, and cytidine 5'-diphosphocholine pathways to different extents in isolated primary liver cells from dairy cows. J Dairy Sci 2018; 101:11384-11395. [PMID: 30316602 DOI: 10.3168/jds.2017-14236] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 09/07/2018] [Indexed: 11/19/2022]
Abstract
Insufficient supply of Met and choline (Chol) around parturition could compromise hepatic metabolism and milk protein synthesis in dairy cows. Mechanistic responses associated with supply of Met or Chol in primary liver cells enriched with hepatocytes (PHEP) from cows have not been thoroughly ascertained. Objectives were to isolate and culture PHEP to examine abundance of genes and proteins related to transmethylation, transsulfuration, and cytidine 5'-diphosphocholine (CDP-choline) pathways in response to Met or Chol. The PHEP were isolated from liver biopsies of Holstein cows (160 d in lactation). More than 90% of isolated cells stained positively for the hepatocyte marker cytokeratin 18. Cytochrome P450 (CYP1A1) mRNA abundance was only detectable in the PHEP and liver tissue compared with mammary tissue. Furthermore, in response to exogenous Met (80 μM vs. control) PHEP secreted greater amounts of albumin and urea. Subsequently, PHEP were cultured with Met (40 μM) or Chol (80 mg/dL) for 24 h. Compared with control or Chol, mRNA and protein abundance of methionine adenosyltransferase 1A (MAT1A) and phosphatidylethanolamine methyltransferase (PEMT) were greater in PHEP treated with Met. The mRNA abundance of S-adenosylhomocysteine hydrolase (SAHH), betaine-homocysteine methyltransferase (BHMT), and sarcosine dehydrogenase (SARDH) was greater in Met-treated PHEP compared with control or Chol. Compared with control, greater expression of 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR), betaine aldehyde dehydrogenase (BADH), and choline dehydrogenase (CHDH) was observed in cells supplemented with Met and Chol. However, Chol led to the greatest mRNA abundance of CHDH. Abundance of choline kinase α (CHKA), choline kinase β (CHKB), phosphate cytidylyltransferase 1 α (PCYT1A), and choline/ethanolamine phosphotransferase 1 (CEPT1) in the CDP-choline pathway was greater in PHEP treated with Chol compared with control or Met. In the transsulfuration pathway, mRNA and protein abundance of cystathionine β-synthase (CBS) was greater in PHEP treated with Met compared with control or Chol. Similarly, abundance of cysteine sulfinic acid decarboxylase (CSAD), glutamate-cysteine ligase, catalytic subunit (GCLC), and glutathione reductase (GSR) was greater in response to Met compared with control or Chol. Overall, these findings suggest that transmethylation and transsulfuration in dairy cow primary liver cells are more responsive to Met supply, whereas the CDP-choline pathway is more responsive to Chol supply. The relevance of these data in vivo merit further study.
Collapse
Affiliation(s)
- Y F Zhou
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agriculture University, Wuhan 430070, Hubei, China; Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Z Zhou
- Department of Animal and Veterinary Sciences, Clemson University, Clemson 29634
| | - F Batistel
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - I Martinez-Cortés
- Department of Immunology, National Autonomous University of Mexico (UNAM), Mexico City, Mexico 04510
| | - R T Pate
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | | | - J J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
32
|
Jacometo C, Alharthi A, Zhou Z, Luchini D, Loor J. Maternal supply of methionine during late pregnancy is associated with changes in immune function and abundance of microRNA and mRNA in Holstein calf polymorphonuclear leukocytes. J Dairy Sci 2018; 101:8146-8158. [DOI: 10.3168/jds.2018-14428] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/02/2018] [Indexed: 12/12/2022]
|