1
|
Chi X, Zhang Y, Yang Q, Zhang J, Sun B, Ai N. An insight into specific flavor sensation in fermented milk: Linalool and mushroom alcohol. J Dairy Sci 2025; 108:5741-5753. [PMID: 40221037 DOI: 10.3168/jds.2025-26449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/09/2025] [Indexed: 04/14/2025]
Abstract
Flavor perception plays a decisive role in consumer choice of dairy products. For overall flavor formation, far less is known about the specific sensory aspects of critical flavor compounds, particularly for fermentation aroma and off-flavor perception. We resolved the volatile flavor compounds produced in dairy products under a prolonged fermentation process with Lactobacillus casei or Lactobacillus bulgaricus, and 49 and 47 volatile flavor compounds, respectively, were identified by using the headspace solid-phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS). Chemometrics combined with odor activity value (OAV) calculations identified 7 key flavor components (OAV > 1). Correlations between sensory attributes and flavor components were then investigated and market validation revealed the role of 2 compounds, linalool and shiitake alcohol, in conferring fermentation aroma and off-flavor perception, respectively. Overall, these results provide a potential target for the detection and development of high-quality dairy products and provide an example for the exploration of specific sensory flavor compounds in the food industry.
Collapse
Affiliation(s)
- Xuelu Chi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yating Zhang
- College of Pharmacy, University of Kentucky, Lexington, KY 40536
| | - Qingyu Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jian Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Nasi Ai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
2
|
Yang Y, Xia Y, Wang YR, Sun LS, Shuang Q, Zhang FM. Optimization of lactic acid bacterial starter culture to improve the quality and flavor characteristics of traditional Hurood. J Dairy Sci 2024; 107:105-122. [PMID: 37690709 DOI: 10.3168/jds.2023-23754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/24/2023] [Indexed: 09/12/2023]
Abstract
Hurood is a traditional fermented milk product prepared by traditional Mongolian techniques of fermenting raw milk, partial degreasing, heating, whey drainage, emulsification of curd, and molding. Currently, Hurood available in the market is generally prepared by small-scale enterprises at home or in open air. Therefore, lack of standardization of bacterial starter culture leads to variation in the flavor and sensory properties of Hurood from batch to batch. In this study, we aimed to assess the best starter culture combination obtained from 37 lactic acid bacterial strains isolated from traditional Hurood. The solidification state and sensory quality were used as indexes for determining the fermentation efficiency of the bacterial starter culture combinations. The yield and texture characteristics were used to determine the optimal ratio of bacterial strains in a combination and the processing conditions for traditional Hurood production. The most optimal bacterial culture combination was observed to be NF 9-3:NF 10-4:CH 3-1 in 5:4:1 ratio and in 3% amount. The most optimal whey temperature and heating-stirring temperature were observed to be 55°C to 60°C and 85°C to 90°C, respectively. Hurood prepared with the optimal combination of bacterial strains exhibited significantly enhanced sensory quality, flavor, and contents of AA and fatty acids. Therefore, the use of optimal starter culture of lactic acid bacteria could produce Hurood with significantly superior sensory qualities, making the product more acceptable to consumers.
Collapse
Affiliation(s)
- Yang Yang
- Department of College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
| | - Yanan Xia
- Department of College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
| | - Yu Rong Wang
- Xiangyang Lactic Acid Bacteria Biotechnology and Engineering Key Laboratory, Institute Hubei University of Arts and Science, Xiangyang, 441100, People's Republic of China
| | - Li Shan Sun
- Zhenglan Banner Changhong Dairy Factory, Hohhot, Inner Mongolia, 027200, People's Republic of China
| | - Quan Shuang
- Department of College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China.
| | - Feng Mei Zhang
- Department of College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China.
| |
Collapse
|
3
|
Bourrie BCT, Diether N, Dias RP, Nam SL, de la Mata AP, Forgie AJ, Gaur G, Harynuk JJ, Gänzle M, Cotter PD, Willing BP. Use of reconstituted kefir consortia to determine the impact of microbial composition on kefir metabolite profiles. Food Res Int 2023; 173:113467. [PMID: 37803789 DOI: 10.1016/j.foodres.2023.113467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/29/2023] [Accepted: 09/10/2023] [Indexed: 10/08/2023]
Abstract
Kefir is fermented traditionally with kefir grains, but commercial kefir production often relies on fermentation with planktonic cultures. Kefir has been associated with many health benefits, however, the utilization of kefir grains to facilitate large industrial production of kefir is challenging and makes to difficult to ensure consistent product quality and consistency. Notably, the microbial composition of kefir fermentations has been shown to impact kefir associated health benefits. This study aimed to compare volatile compounds, organic acids, and sugar composition of kefir produced through a traditional grain fermentation and through a reconstituted kefir consortium fermentation. Additionally, the impact of two key microbial communities on metabolite production in kefir was assessed using two modified versions of the consortium, with either yeasts or lactobacilli removed. We hypothesized that the complete kefir consortium would closely resemble traditional kefir, while the consortia without yeasts or lactobacilli would differ significantly from both traditional kefir and the complete consortium fermentation. Kefir fermentations were examined after 12 and 18 h using two-dimensional gas chromatography-time-of-flight mass spectrometry (GC × GC-TOFMS) to identify volatile compounds and high performance liquid chromatography (HPLC) to identify organic acid and sugar composition. The traditional kefir differed significantly from the kefir consortium fermentation with the traditional kefir having 15-20 log2(fold change) higher levels of esters and the consortium fermented kefir having between 1 and 3 log2(fold change) higher organic acids including lactate and acetate. The use of a version of kefir consortium that lacked lactobacilli resulted in between 2 and 20 log2(fold change) lower levels of organic acids, ethanol, and butanoic acid ethyl ester, while the absence of yeast from the consortium resulted in minimal change. In summary, the kefir consortium fermentation is significantly different from traditional grain fermented kefir with respect to the profile of metabolites present, and seems to be driven by lactobacilli, as evidenced by the significant decrease in multiple metabolites when the lactobacilli were removed from the fermentation and minimal differences observed upon the removal of yeast.
Collapse
Affiliation(s)
- Benjamin C T Bourrie
- Department of Agricultural, Food, and Nutrition Sciences, University of Alberta, Edmonton, AB, Canada
| | - Natalie Diether
- Department of Agricultural, Food, and Nutrition Sciences, University of Alberta, Edmonton, AB, Canada
| | - Ryan P Dias
- The Metabolomics Innovation Centre (TMIC), University of Alberta, Edmonton, AB, Canada; Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Seo Lin Nam
- The Metabolomics Innovation Centre (TMIC), University of Alberta, Edmonton, AB, Canada; Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - A Paulina de la Mata
- The Metabolomics Innovation Centre (TMIC), University of Alberta, Edmonton, AB, Canada; Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Andrew J Forgie
- Department of Agricultural, Food, and Nutrition Sciences, University of Alberta, Edmonton, AB, Canada
| | - Gautam Gaur
- Department of Agricultural, Food, and Nutrition Sciences, University of Alberta, Edmonton, AB, Canada
| | - James J Harynuk
- The Metabolomics Innovation Centre (TMIC), University of Alberta, Edmonton, AB, Canada; Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Michael Gänzle
- Department of Agricultural, Food, and Nutrition Sciences, University of Alberta, Edmonton, AB, Canada
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland; APC Microbiome Ireland, Cork, Ireland; VistaMilk, Ireland
| | - Benjamin P Willing
- Department of Agricultural, Food, and Nutrition Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
4
|
Barzideh Z, Siddiqi M, Mohamed HM, LaPointe G. Dynamics of Starter and Non-Starter Lactic Acid Bacteria Populations in Long-Ripened Cheddar Cheese Using Propidium Monoazide (PMA) Treatment. Microorganisms 2022; 10:1669. [PMID: 36014087 PMCID: PMC9413250 DOI: 10.3390/microorganisms10081669] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
The microbial community of industrially produced Canadian Cheddar cheese was examined from curd to ripened cheese at 30-32 months using a combination of viable plate counts of SLAB (GM17) and NSLAB (MRSv), qPCR and 16S rRNA gene amplicon sequencing. Cell treatment with propidium monoazide excluded DNA of permeable cells from amplification. The proportion of permeable cells of both Lactococcus spp. and Lacticaseibacillus spp. was highest at 3-6 months. While most remaining Lacticaseibacillus spp. cells were intact during later ripening stages, a consistent population of permeable Lactococcus spp. cells was maintained over the 32-month period. While Lactococcus sequence variants were significant biomarkers for viable cheese curd communities at 0-1 m, Lacticaseibacillus was identified as a distinctive biomarker for cheeses from 7 to 20 months. From 24 to 32 months, Lacticaseibacillus was replaced in significance by four genera (Pediococcus and Latilactobacillus at 24 m and at 30-32 m, Secundilactobacillus and Paucilactobacillus). These results underscore the importance of monitoring potential defects in cheeses aged over 24 months, which could be diagnosed early through microbial DNA profiling to minimize potential waste of product. Future perspectives include correlating volatile flavor compounds with microbial community composition as well as the investigation of intra-species diversity.
Collapse
Affiliation(s)
- Zoha Barzideh
- Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Myra Siddiqi
- Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Hassan Mahmoud Mohamed
- Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada
- Faculty of Computer and Artificial Intelligence, Benha University, Banha 13518, Egypt
| | - Gisèle LaPointe
- Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
5
|
Liu N, Qin L, Pan J, Miao S. Characteristics of traditional Chinese acidic rice soup (rice-acid) prepared with different fermentation methods. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.11.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
6
|
Oberg TS, McMahon DJ, Culumber MD, McAuliffe O, Oberg CJ. Invited review: Review of taxonomic changes in dairy-related lactobacilli. J Dairy Sci 2022; 105:2750-2770. [DOI: 10.3168/jds.2021-21138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/13/2021] [Indexed: 11/19/2022]
|
7
|
Anastasiou R, Kazou M, Georgalaki M, Aktypis A, Zoumpopoulou G, Tsakalidou E. Omics Approaches to Assess Flavor Development in Cheese. Foods 2022; 11:188. [PMID: 35053920 PMCID: PMC8775153 DOI: 10.3390/foods11020188] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/03/2022] [Accepted: 01/09/2022] [Indexed: 12/27/2022] Open
Abstract
Cheese is characterized by a rich and complex microbiota that plays a vital role during both production and ripening, contributing significantly to the safety, quality, and sensory characteristics of the final product. In this context, it is vital to explore the microbiota composition and understand its dynamics and evolution during cheese manufacturing and ripening. Application of high-throughput DNA sequencing technologies have facilitated the more accurate identification of the cheese microbiome, detailed study of its potential functionality, and its contribution to the development of specific organoleptic properties. These technologies include amplicon sequencing, whole-metagenome shotgun sequencing, metatranscriptomics, and, most recently, metabolomics. In recent years, however, the application of multiple meta-omics approaches along with data integration analysis, which was enabled by advanced computational and bioinformatics tools, paved the way to better comprehension of the cheese ripening process, revealing significant associations between the cheese microbiota and metabolites, as well as their impact on cheese flavor and quality.
Collapse
Affiliation(s)
- Rania Anastasiou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece; (M.K.); (M.G.); (A.A.); (G.Z.); (E.T.)
| | | | | | | | | | | |
Collapse
|
8
|
Developments in effective use of volatile organic compound analysis to assess flavour formation during cheese ripening. J DAIRY RES 2021; 88:461-467. [PMID: 34866564 DOI: 10.1017/s0022029921000790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the burgeoning demand for optimization of cheese production, ascertaining cheese flavour formation during the cheese making process has been the focal point of determining cheese quality. In this research reflection, we have highlighted how valuable volatile organic compound (VOC) analysis has been in assessing contingent cheese flavour compounds arising from non-starter lactic acid bacteria (NSLAB) along with starter lactic acid bacteria (SLAB), and whether VOC analysis associated with other high-throughput data might help provide a better understanding the cheese flavour formation during cheese process. It is widely known that there is a keen interest to merge all omics data to find specific biomarkers and/or to assess aroma formation of cheese. Towards that end, results of VOC analysis have provided valuable insights into the cheese flavour profile. In this review, we are pinpointing the effective use of flavour compound analysis to perceive flavour-forming ability of microbial strains that are convenient for dairy production, intertwining microbiome and metabolome to unveil potential biomarkers that occur during cheese ripening. In doing so, we summarised the functionality and integration of aromatic compound analysis in cheese making and gave reflections on reconsidering what the role of flavour-based analysis might have in the future.
Collapse
|
9
|
Culture media based on effluent derived from soy protein concentrate production for Lacticaseibacillus paracasei 90 biomass production: statistical optimisation, mineral characterization, and metabolic activities. Antonie van Leeuwenhoek 2021; 114:2047-2063. [PMID: 34609626 DOI: 10.1007/s10482-021-01660-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 09/11/2021] [Indexed: 10/20/2022]
Abstract
The waste and by-products of the soybean industry could be an economic source of nutrients to satisfy the high nutritional demands for the cultivation of lactic acid bacteria. The aims of this work were to maximize the biomass production of Lacticaseibacillus paracasei 90 (L90) in three culture media formulated from an effluent derived from soy protein concentrate production and to assess the effects these media have on the enzymatic activity of L90, together with their influence on its fermentation profile in milk. The presence of essential minerals and fermentable carbohydrates (sucrose, raffinose, and stachyose) in the effluent was verified. L90 reached high levels of microbiological counts (∼ 9 log cfu mL-1) and dry weight (> 1 g L-1) on the three optimized media. Enzymatic activities (lactate dehydrogenase and β-galactosidase) of L90, and its metabolism of lactose and citric acid, as well as lactic acid and pyruvic acid production in milk, were modified depending on the growth media. The ability of the L90 to produce the key flavour compounds (diacetyl and acetoin) was maintained or improved by growing in the optimized media in comparison with MRS.
Collapse
|
10
|
Fuochi V, Emma R, Furneri PM. Bacteriocins, A Natural Weapon Against Bacterial Contamination for Greater Safety and Preservation of Food: A Review. Curr Pharm Biotechnol 2021; 22:216-231. [PMID: 32621714 DOI: 10.2174/1389201021666200704145427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 11/22/2022]
Abstract
Nowadays, consumers have become increasingly attentive to human health and the use of more natural products. Consequently, the demand for natural preservatives in the food industry is more frequent. This has led to intense research to discover new antimicrobial compounds of natural origin that could effectively fight foodborne pathogens. This research aims to safeguard the health of consumers and, above all, to avoid potentially harmful chemical compounds. Lactobacillus is a bacterial genus belonging to the Lactic Acid Bacteria and many strains are defined GRAS, generally recognized as safe. These strains are able to produce substances with antibacterial activity against food spoilage bacteria and contaminating pathogens: the bacteriocins. The aim of this review was to focus on this genus and its capability to produce antibacterial peptides. The review collected all the information from the last few years about bacteriocins produced by Lactobacillus strains, isolated from clinical or food samples, with remarkable antimicrobial activities useful for being exploited in the food field. In addition, the advantages and disadvantages of their use and the possible ways of improvement for industrial applications were described.
Collapse
Affiliation(s)
- Virginia Fuochi
- Universita degli Studi di Catania, Dipartimento di Scienze Biomediche e Biotecnologiche BIOMETEC, Sez. Microbiologia, Torre Biologica, via S. Sofia 97, 95123 Catania, Italy
| | - Rosalia Emma
- Universita degli Studi di Catania, Dipartimento di Scienze Biomediche e Biotecnologiche BIOMETEC, Sez. Microbiologia, Torre Biologica, via S. Sofia 97, 95123 Catania, Italy
| | - Pio M Furneri
- Universita degli Studi di Catania, Dipartimento di Scienze Biomediche e Biotecnologiche BIOMETEC, Sez. Microbiologia, Torre Biologica, via S. Sofia 97, 95123 Catania, Italy
| |
Collapse
|
11
|
Characterization of volatile sulfur compounds in soy sauce aroma type Baijiu and changes during fermentation by GC × GC-TOFMS, organoleptic impact evaluation, and multivariate data analysis. Food Res Int 2020; 131:109043. [DOI: 10.1016/j.foodres.2020.109043] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/13/2020] [Accepted: 01/27/2020] [Indexed: 11/20/2022]
|
12
|
Dysvik A, La Rosa SL, Liland KH, Myhrer KS, Østlie HM, De Rouck G, Rukke EO, Westereng B, Wicklund T. Co-fermentation Involving Saccharomyces cerevisiae and Lactobacillus Species Tolerant to Brewing-Related Stress Factors for Controlled and Rapid Production of Sour Beer. Front Microbiol 2020; 11:279. [PMID: 32153550 PMCID: PMC7048013 DOI: 10.3389/fmicb.2020.00279] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/06/2020] [Indexed: 11/22/2022] Open
Abstract
Increasing popularity of sour beer urges the development of novel solutions for controlled fermentations both for fast acidification and consistency in product flavor and quality. One possible approach is the use of Saccharomyces cerevisiae in co-fermentation with Lactobacillus species, which produce lactic acid as a major end-product of carbohydrate catabolism. The ability of lactobacilli to ferment beer is determined by their capacity to sustain brewing-related stresses, including hop iso-α acids, low pH and ethanol. Here, we evaluated the tolerance of Lactobacillus brevis BSO464 and Lactobacillus buchneri CD034 to beer conditions and different fermentation strategies as well as their use in the brewing process in mixed fermentation with a brewer's yeast, S. cerevisiae US-05. Results were compared with those obtained with a commercial Lactobacillus plantarum (WildBrewTM Sour Pitch), a strain commonly used for kettle souring. In pure cultures, the three strains showed varying susceptibility to stresses, with L. brevis being the most resistant and L. plantarum displaying the lowest stress tolerance. When in co-fermentation with S. cerevisiae, both L. plantarum and L. brevis were able to generate sour beer in as little as 21 days, and their presence positively influenced the composition of flavor-active compounds. Both sour beers were sensorially different from each other and from a reference beer fermented by S. cerevisiae alone. While the beer produced with L. plantarum had an increased intensity in fruity odor and dried fruit odor, the L. brevis beer had a higher total flavor intensity, acidic taste and astringency. Remarkably, the beer generated with L. brevis was perceived as comparable to a commercial sour beer in multiple sensory attributes. Taken together, this study demonstrates the feasibility of using L. brevis BSO464 and L. plantarum in co-fermentation with S. cerevisiae for controlled sour beer production with shortened production time.
Collapse
Affiliation(s)
- Anna Dysvik
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Sabina Leanti La Rosa
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Kristian Hovde Liland
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Kristine S. Myhrer
- Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Hilde Marit Østlie
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Gert De Rouck
- Faculty of Engineering Technology, KU Leuven, Ghent, Belgium
| | - Elling-Olav Rukke
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Bjørge Westereng
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Trude Wicklund
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
13
|
Cuffia F, Bergamini CV, Hynes ÉR, Wolf IV, Perotti MC. Evaluation of autochthonous cultures to improve the cheese flavor: A case study in hard cheese model. FOOD SCI TECHNOL INT 2019; 26:173-184. [PMID: 31604385 DOI: 10.1177/1082013219881512] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The characterization of autochthonous cultures based on their contribution to cheese flavor is an additional selection criterion for their use in cheese making. The objective of the present work was to assess the ability of three strains of mesophilic lactobacilli: Lactobacillus casei 72 (Lc72), L. paracasei 90 (Lp90), and L. plantarum 91 (Lp91), one strain of thermophilic lactobacillus: L. helveticus 209 (Lh209), and the thermophilic-mesophilic combinations, to grow and produce aroma compounds in a hard cheese model. Microbiological counts, pH, and the profiles of carbohydrates, organic acids, and volatile compounds were analyzed during incubation for 14 days at 37 ℃. The population of mesophilic lactobacilli reached levels around 8.0 log CFU ml-1 at three days, but then decreased until ∼7.0 log CFU ml-1 toward 14 days. Thermophilic lactobacillus population reached and maintained levels around 7.7 log CFU ml-1 during incubation. Carbohydrates were absent in the hard cheese model, and so no change in the pH values and in the levels of lactic acid was detected. Mesophilic lactobacilli, inoculated individually or in association with Lh209, metabolized the citric acid and produced ethanoic acid. The profiles of volatile compounds of mesophilic lactobacilli (characterized mainly by butan-2-one, 3-hydroxybutan-2-one, 3-methylbutan-1-ol, hexan-1-ol, 2-phenylethanol, and ethanoic acid) were different from the profile of thermophilic lactobacillus Lh209 (characterized mainly by heptan-2-one, ethyl acetate, isoamyl hexanoate, pentan-1-ol, decanoic acid, and 2- and 3-methylbutanal). Cooperative effects in the production of compounds related to cheese flavor, such as 3-hydroxybutan-2-one, ethyl butanoate, ethanol, pentan-2-ol, hexan-1-ol, benzeneacetaldehyde, 2-phenylethanol, and heptanoic acid, were largely evidenced between Lh209 and Lp91; in a lesser extent, cooperative effects were also found for Lh209+Lp90 for the following compounds: 3-hydroxybutan-2-one, isoamyl acetate, and ethanoic acid. Of the mesophilic lactobacilli strains evaluated, Lp91 and Lp90 would be interesting candidates for its use as adjunct cultures in hard cheeses to improve and diversify the flavor.
Collapse
Affiliation(s)
- Facundo Cuffia
- Instituto de Lactología Industrial (INLAIN-UNL/CONICET), Santa Fe, Argentina
| | - Carina V Bergamini
- Instituto de Lactología Industrial (INLAIN-UNL/CONICET), Santa Fe, Argentina
| | - Érica R Hynes
- Instituto de Lactología Industrial (INLAIN-UNL/CONICET), Santa Fe, Argentina
| | - Irma V Wolf
- Instituto de Lactología Industrial (INLAIN-UNL/CONICET), Santa Fe, Argentina
| | - María C Perotti
- Instituto de Lactología Industrial (INLAIN-UNL/CONICET), Santa Fe, Argentina
| |
Collapse
|
14
|
Jiang X, Liu X, Liu S, Li Y, Zhao H, Zhang Y. Growth, rumen fermentation and plasma metabolites of Holstein male calves fed fermented corn gluten meal during the postweaning stage. Anim Feed Sci Technol 2019. [DOI: 10.1016/j.anifeedsci.2019.01.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
Bottari B, Levante A, Neviani E, Gatti M. How the Fewest Become the Greatest. L. casei's Impact on Long Ripened Cheeses. Front Microbiol 2018; 9:2866. [PMID: 30524419 PMCID: PMC6262004 DOI: 10.3389/fmicb.2018.02866] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/07/2018] [Indexed: 12/23/2022] Open
Abstract
Members of the Lactobacillus casei group, including species classified currently as L. casei, L. paracasei, and L. rhamnosus, are among the most frequently found species in raw milk, hard cooked, long-ripened cheeses. Starting from very low numbers in raw milk, they become dominant in the cheese during ripening, selected by physical and chemical changes produced by cheese making and ripening. Their presence at different stages of cheese making and ripening is crucial in defining product features. For these reasons, the scientific community has been more and more interested in studying these “tiny but mighty microbes” and their implications during cheese making and ripening. The present paper reviews the current literature on the effect of L. casei in cheeses, with particular reference to the case of Parmigiano Reggiano and Grana Padano, two of the most famous PDO (Protected Designation of Origin) Italian cheeses. Recent advances regarding the selection of new wild strains able to persist until the end of ripening and carrying out slow but crucial activities resulting in specific aromatic features, are also presented.
Collapse
Affiliation(s)
| | - Alessia Levante
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Erasmo Neviani
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Monica Gatti
- Department of Food and Drug, University of Parma, Parma, Italy
| |
Collapse
|
16
|
McAuliffe O, Kilcawley K, Stefanovic E. Symposium review: Genomic investigations of flavor formation by dairy microbiota. J Dairy Sci 2018; 102:909-922. [PMID: 30343908 DOI: 10.3168/jds.2018-15385] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 08/24/2018] [Indexed: 01/15/2023]
Abstract
Flavor is one of the most important attributes of any fermented dairy product. Dairy consumers are known to be willing to experiment with different flavors; thus, many companies producing fermented dairy products have looked at culture manipulation as a tool for flavor diversification. The development of flavor is a complex process, originating from a combination of microbiological, biochemical, and technological aspects. A key driver of flavor is the enzymatic activities of the deliberately inoculated starter cultures, in addition to the environmental or "nonstarter" microbiota. The contribution of microbial metabolism to flavor development in fermented dairy products has been exploited for thousands of years, but the availability of the whole genome sequences of the bacteria and yeasts involved in the fermentation process and the possibilities now offered by next-generation sequencing and downstream "omics" technologies is stimulating a more knowledge-based approach to the selection of desirable cultures for flavor development. By linking genomic traits to phenotypic outputs, it is now possible to mine the metabolic diversity of starter cultures, analyze the metabolic routes to flavor compound formation, identify those strains with flavor-forming potential, and select them for possible commercial application. This approach also allows for the identification of species and strains not previously considered as potential flavor-formers, the blending of strains with complementary metabolic pathways, and the potential improvement of key technological characteristics in existing strains, strains that are at the core of the dairy industry. An in-depth knowledge of the metabolic pathways of individual strains and their interactions in mixed culture fermentations can allow starter blends to be custom-made to suit industry needs. Applying this knowledge to starter culture research programs is enabling research and development scientists to develop superior starters, expand flavor profiles, and potentially develop new products for future market expansion.
Collapse
Affiliation(s)
- Olivia McAuliffe
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland P61 C996.
| | - Kieran Kilcawley
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland P61 C996
| | - Ewelina Stefanovic
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland P61 C996
| |
Collapse
|
17
|
Stefanovic E, Kilcawley KN, Roces C, Rea MC, O'Sullivan M, Sheehan JJ, McAuliffe O. Evaluation of the Potential of Lactobacillus paracasei Adjuncts for Flavor Compounds Development and Diversification in Short-Aged Cheddar Cheese. Front Microbiol 2018; 9:1506. [PMID: 30026739 PMCID: PMC6041430 DOI: 10.3389/fmicb.2018.01506] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/18/2018] [Indexed: 11/13/2022] Open
Abstract
The non-starter microbiota of Cheddar cheese mostly comprises mesophilic lactobacilli, such as Lactobacillus casei, Lactobacillus paracasei, Lactobacillus rhamnosus, and Lactobacillus plantarum. These bacteria are recognized for their potential to improve Cheddar cheese flavor when used as adjunct cultures. In this study, three strains of L. paracasei (DPC2071, DPC4206, and DPC4536) were evaluated for their contribution to the enhancement and diversification of flavor in short-aged Cheddar cheese. The strains were selected based on their previously determined genomic diversity, variability in proteolytic enzyme activities and metabolic capability in cheese model systems. The addition of adjunct cultures did not affect the gross composition or levels of lipolysis of the cheeses. The levels of free amino acids (FAA) in cheeses showed a significant increase after 28 days of ripening. However, the concentrations of individual amino acids in the cheeses did not significantly differ except for some amino acids (aspartic acid, threonine, serine, and tryptophan) at Day 14. Volatile profile analysis revealed that the main compounds that differentiated the cheeses were of lipid origin, such as long chain aldehydes, acids, ketones, and lactones. This study demonstrated that the adjunct L. paracasei strains contributed to the development and diversification of compounds related to flavor in short-aged Cheddar cheeses.
Collapse
Affiliation(s)
- Ewelina Stefanovic
- Department of Food Biosciences, Teagasc Food Research Centre, Fermoy, Ireland
| | - Kieran N. Kilcawley
- Department of Food Biosciences, Teagasc Food Research Centre, Fermoy, Ireland
| | - Clara Roces
- Department of Food Biosciences, Teagasc Food Research Centre, Fermoy, Ireland
| | - Mary C. Rea
- Department of Food Biosciences, Teagasc Food Research Centre, Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Maurice O'Sullivan
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Jeremiah J. Sheehan
- Department of Food Biosciences, Teagasc Food Research Centre, Fermoy, Ireland
| | - Olivia McAuliffe
- Department of Food Biosciences, Teagasc Food Research Centre, Fermoy, Ireland
| |
Collapse
|
18
|
Balthazar CF, Silva HL, Esmerino EA, Rocha RS, Moraes J, Carmo MA, Azevedo L, Camps I, K.D Abud Y, Sant'Anna C, Franco RM, Freitas MQ, Silva MC, Raices RS, Escher GB, Granato D, Senaka Ranadheera C, Nazarro F, Cruz AG. The addition of inulin and Lactobacillus casei 01 in sheep milk ice cream. Food Chem 2018; 246:464-472. [DOI: 10.1016/j.foodchem.2017.12.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/28/2017] [Accepted: 12/04/2017] [Indexed: 12/20/2022]
|
19
|
Comparative genomic and metabolic analysis of three Lactobacillus paracasei cheese isolates reveals considerable genomic differences in strains from the same niche. BMC Genomics 2018; 19:205. [PMID: 29554864 PMCID: PMC5859408 DOI: 10.1186/s12864-018-4586-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/08/2018] [Indexed: 11/10/2022] Open
Abstract
Background Strains of Lactobacillus paracasei are present in many diverse environments, including dairy and plant materials and the intestinal tracts of humans and animals. Their adaptation to various niches is correlated to intra-species diversity at the genomic and metabolic level. In this study, we compared the genome sequences of three L. paracasei strains isolated from mature Cheddar cheeses, two of which (DPC4206 and DPC4536) shared the same genomic fingerprint by PFGE, but demonstrated varying metabolic capabilities. Results Genome sizes varied from 2.9 Mbp for DPC2071, to 3.09 Mbp for DPC4206 and 3.08 Mpb for DPC4536. The presence of plasmids was a distinguishing feature between the strains with strain DPC2071 possessing an unusually high number of plasmids (up to 11), while DPC4206 had one plasmid and DPC4536 harboured no plasmids. Each of the strains possessed specific genes not present in the other two analysed strains. The three strains differed in their abundance of sugar-converting genes, and in the types of sugars that could be used as energy sources. Genes involved in the metabolism of sugars not usually connected with the dairy niche, such as myo-inositol and pullulan were also detected, but strains did not utilise these sugars. The genetic content of the three strains differed in regard to specific genes for arginine and sulfur-containing amino acid metabolism and genes contributing to resistance to heavy metal ions. In addition, variability in the presence of phage remnants and phage protection systems was evident. Conclusions The findings presented in this study confirm a considerable level of heterogeneity of Lactobacillus paracasei strains, even between strains isolated from the same niche.
Collapse
|