1
|
Liang X, Wang Y, Li T, Li P, Jiang G. Mechanistic Study on the Alleviation of Endometritis in Mice Through Inhibition of NF-κB and MAPK Signaling Pathways by Berberine and Carvacrol. Microorganisms 2025; 13:1051. [PMID: 40431224 PMCID: PMC12114256 DOI: 10.3390/microorganisms13051051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/09/2025] [Accepted: 04/29/2025] [Indexed: 05/29/2025] Open
Abstract
Berberine and carvacrol have demonstrated anti-inflammatory effects; however, their therapeutic potential in endometritis remains unclear. (Aims) This study aimed to examine the anti-inflammatory properties of berberine and carvacrol in a murine model of endometritis, with a focus on the underlying molecular mechanisms. (Main methods) The model was established via vaginal instillation of 0.1 mL of a mixture containing Escherichia coli, Staphylococcus aureus, and Group B Streptococcus, followed by treatment with 0.1 mL of berberine (4 mg/mL) and carvacrol (0.125 mg/mL) six days post-infection. All mice were euthanized on day 13, and uterine tissues were collected for subsequent analyses. (Key findings) Treatment with berberine and carvacrol significantly reduced tissue injury associated with endometritis, decreased mRNA expression of TLR2 and TLR4 (p < 0.01), and inhibited the phosphorylation of NF-κB and MAPK pathway-associated proteins, as well as the mRNA expression and levels of pro-inflammatory cytokines. (Significance) Berberine and carvacrol exhibit significant therapeutic effects against bacterial-induced endometritis by reducing TLR2 and TLR4 expression, inhibiting NF-κB and MAPK pathway activation, and decreasing pro-inflammatory cytokine production, thus demonstrating robust anti-inflammatory activity.
Collapse
Affiliation(s)
| | | | | | | | - Guojun Jiang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
2
|
Gao K, Si M, Qin X, Zhang B, Wang Z, Lin P, Chen H, Wang A, Jin Y. Transcription factor XBP1s promotes endometritis-induced epithelial-mesenchymal transition by targeting MAP3K2, a key gene in the MAPK/ERK pathway. Cell Commun Signal 2025; 23:72. [PMID: 39930412 PMCID: PMC11808991 DOI: 10.1186/s12964-025-02050-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/16/2025] [Indexed: 02/14/2025] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a biological process whereby epithelial cells are transformed into cells with a mesenchymal phenotype. The transcription factor, X-box binding protein 1 splicing variant (XBP1s) is a key regulator of the endoplasmic reticulum stress response (ERS); but the function of XBP1s in the endometritis-induced EMT process remains unclear. Here we found that uterine tissues from goats with endometritis exhibited an EMT phenotype, with a significant decrease in the epithelial cell polarity marker E-cadherin and a significant increase in the mesenchymal markers N-cadherin and vimentin. We also found that sustained LPS treatment induced EMT in goat endometrial epithelial cells (gEECs), along with ERS and XBP1s overexpression. XBP1s KO significantly inhibited LPS-induced EMT and migration in gEECs, while XBP1s overexpression showed the opposite result. CUT & Tag experiments performed on XBP1s revealed that MAP3K2 was a downstream target gene for XBP1s regulation. We also found that expression of MAP3K2 was positively correlated with XBP1s expression in uterine tissues of goats with endometritis and in gEECs. Assays for dual luciferase reporter and molecular docking indicated that XBP1s protein regulated the transcription of MAP3K2 by modulating promoter activity. The knockdown of MAP3K2 expression significantly inhibited the migration and EMT of gEECs. XBP1s and MAP3K2 significantly promoted phosphorylation of p38 and ERK, activating the MAPK/ERK pathway. Treatment with the MAPK/ERK inhibitor, PD98059, reversed the effects of XBP1s and MAP3K2 overexpression on LPS-induced EMT. The MAPK/ERK activator, DHC, reversed the effects of XBP1s KO and MAP3K2 KD on EMT.
Collapse
Affiliation(s)
- Kangkang Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mengqi Si
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xinxi Qin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Beibei Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zongjie Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Pengfei Lin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Huatao Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Aihua Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yaping Jin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
3
|
Chen K, Hu B, Ren J, Deng X, Li Q, Zhang R, Zhang Y, Shen G, Liu S, Zhang J, Lu P. Enhanced protein-metabolite correlation analysis: To investigate the association between Staphylococcus aureus mastitis and metabolic immune pathways. FASEB J 2024; 38:e23587. [PMID: 38568835 DOI: 10.1096/fj.202302242rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024]
Abstract
Mastitis is a disease characterized by congestion, swelling, and inflammation of the mammary gland and usually caused by infection with pathogenic microorganisms. Furthermore, the development of mastitis is closely linked to the exogenous pathway of the gastrointestinal tract. However, the regulatory mechanisms governing the gut-metabolism-mammary axis remain incompletely understood. The present study revealed alterations in the gut microbiota of mastitis rats characterized by an increased abundance of the Proteobacteria phylum. Plasma analysis revealed significantly higher levels of L-isoleucine and cholic acid along with 7-ketodeoxycholic acid. Mammary tissue showed elevated levels of arachidonic acid metabolites and norlithocholic acid. Proteomic analysis showed increased levels of IFIH1, Tnfaip8l2, IRGM, and IRF5 in mastitis rats, which suggests that mastitis triggers an inflammatory response and immune stress. Follistatin (Fst) and progesterone receptor (Pgr) were significantly downregulated, raising the risk of breast cancer. Extracellular matrix (ECM) receptors and focal adhesion signaling pathways were downregulated, while blood-milk barrier integrity was disrupted. Analysis of protein-metabolic network regulation revealed that necroptosis, protein digestion and absorption, and arachidonic acid metabolism were the principal regulatory pathways involved in the development of mastitis. In short, the onset of mastitis leads to changes in the microbiota and alterations in the metabolic profiles of various biological samples, including colonic contents, plasma, and mammary tissue. Key manifestations include disturbances in bile acid metabolism, amino acid metabolism, and arachidonic acid metabolism. At the same time, the integrity of the blood-milk barrier is compromised while inflammation is promoted, thereby reducing cell adhesion in the mammary glands. These findings contribute to a more comprehensive understanding of the metabolic status of mastitis and provide new insights into its impact on the immune system.
Collapse
Affiliation(s)
- Kuo Chen
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Binhong Hu
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Jingyuan Ren
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Xin Deng
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Qing Li
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Rong Zhang
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, China
| | - Yuanyuan Zhang
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Gengyu Shen
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Songqing Liu
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Jiacheng Zhang
- Department of Hepatobiliary, Pancreatic and Liver Transplantation Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pengwei Lu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Tian S, Liu T, Jiang J, Zhao X, Fan Y, Zhang W, Ma W, Guo T, Wang W, Liu Y. Salvia miltiorrhiza ameliorates endometritis in dairy cows by relieving inflammation, energy deficiency and blood stasis. Front Pharmacol 2024; 15:1349139. [PMID: 38633614 PMCID: PMC11021767 DOI: 10.3389/fphar.2024.1349139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Introduction: According to traditional Chinese veterinary medicine, endometritis is caused by a combination of Qi deficiency, blood stasis, and external evil invasion. Salvia miltiorrhiza is a traditional Chinese medicine that counteracts blood stasis and has additional demonstrated effects in boosting energy and restraining inflammation. Salvia miltiorrhiza has been employed in many traditional Chinese prescriptions that have proven effective in healing clinical dairy cow endometritis. Methods: the in vivo effect of Salvia miltiorrhiza in treating endometritis was evaluated in dairy cows. In addition, bovine endometrial epithelium cell inflammation and rat blood stasis models were employed to demonstrate the crosstalk between energy, blood circulation and inflammation. Network analysis, western blotting, qRT-PCR and ELISA were performed to investigate the molecular mechanism of Salvia miltiorrhiza in endometritis treatment. Results: The results demonstrate that treatment with Salvia miltiorrhiza relieves uterine inflammation, increases blood ATP concentrations, and prolongs blood clotting times. Four of the six Salvia miltiorrhiza main components (SMMCs) (tanshinone IIA, cryptotanshinone, salvianolic acid A and salvianolic acid B) were effective in reversing decreased ATP and increased IL-1β, IL-6, and IL-8 levels in an in vitro endometritis model, indicating their abilities to ameliorate the negative energy balance and external evil invasion effects of endometritis. Furthermore, in a blood stasis rat model, inflammatory responses were induced in the absence of external infection; and all six SMMCs inhibited thrombin-induced platelet aggregation. Network analysis of SMMC targets predicted that Salvia miltiorrhiza may mediate anti-inflammation via the Toll-like receptor signaling pathway; anti-aggregation via the Platelet activation pathway; and energy balance via the Thermogenesis and AMPK signaling pathways. Multiple molecular targets within these pathways were verified to be inhibited by SMMCs, including P38/ERK-AP1, a key molecular signal that may mediate the crosstalk between inflammation, energy deficiency and blood stasis. Conclusion: These results provide mechanistic understanding of the therapeutic effect of Salvia miltiorrhiza for endometritis achieved through Qi deficiency, blood stasis, and external evil invasion.
Collapse
Affiliation(s)
- Shiyang Tian
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Tianyi Liu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Jingwei Jiang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xiting Zhao
- Department of Women HealthCare, Changchun Lvyuan Hospital of Traditional Chinese Medicine, Changchun, China
| | - Yunpeng Fan
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Weimin Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Wuren Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Tingting Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Weiling Wang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, China
| | - Yingqiu Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
5
|
de Oliveira EB, Monteiro HF, Pereira JMV, Williams DR, Pereira RV, Silva Del Rio N, Menta PR, Machado VS, Lima FS. Changes in Uterine Metabolome Associated with Metritis Development and Cure in Lactating Holstein Cows. Metabolites 2023; 13:1156. [PMID: 37999252 PMCID: PMC10672899 DOI: 10.3390/metabo13111156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/26/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
The objective of this study was to identify alterations in the vaginal discharge (VD) metabolome and potential biomarkers to predict metritis development and a cure in dairy cows. This prospective cohort study was conducted on two dairies located in CA and TX. Vaginal discharge was evaluated and collected using the Metricheck® device. Cows were examined for metritis at 4, 7, and 9 days in milk (DIM). Cows with a fetid, watery, and reddish-brown uterine discharge were classified as having metritis and randomized to receive ceftiofur (n = 10) or remain untreated (n = 7). A cure was defined as the absence of a fetid, watery, reddish-brown uterine discharge at 14 d after enrollment. Vaginal discharge samples were collected from 86 cows within 6 h after parturition, at 4 and 7 DIM, at metritis diagnosis, and at 4 and 7 days after metritis diagnosis. Cows with metritis (MET; n = 17) were paired with counterparts without metritis (HTH) of a similar DIM and parity (n = 34). The uterine metabolome was evaluated using untargeted gas chromatography time-of-flight mass spectrometry (GC-TOF-MS). Metabolomic data were analyzed using the MetaboAnalyst 5.0. Data were log-transformed and auto-scaled for normalization. Univariate analyses, including the fold-change, were performed to identify the metabolites linked to metritis development and its cure and principal component analysis and partial least squares discriminant analysis were performed to explain metabolite variance between animals developing or not developing metritis and being cured or not being cured of metritis. Comparing HTH with MET cows at calving, 12 metabolites were upregulated, and one was downregulated. At four and seven DIM, 51 and 74 metabolites, respectively, were altered between MET and HTH cows. After metritis development, three and five metabolites were upregulated in cows that were cured and in cows that received treatment and were cured, respectively. In all scenarios, the metabolites lignoceric, malic, and maleic acids, ornithine, and hypotaurine, which are associated with arginine/aminoacyl-tRNA biosynthesis and taurine/purine metabolism, were upregulated in HTH cows. Metritis was associated with changes in the uterine metabolome. Cows not being cured of metritis had changes in the uterus metabolome independent of receiving ceftiofur or remaining untreated. Metabolome analysis may be an important tool to understand the vaginal discharge changes during postpartum and the dynamics of metritis development and cures and help to identify biomarkers to predict metritis being cured.
Collapse
Affiliation(s)
- Eduardo B. de Oliveira
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95106, USA; (E.B.d.O.); (H.F.M.); (R.V.P.); (N.S.D.R.)
- Veterinary Medicine Teaching and Research Center, Tulare, CA 93274, USA; (J.M.V.P.); (D.R.W.)
| | - Hugo F. Monteiro
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95106, USA; (E.B.d.O.); (H.F.M.); (R.V.P.); (N.S.D.R.)
| | - Jessica M. V. Pereira
- Veterinary Medicine Teaching and Research Center, Tulare, CA 93274, USA; (J.M.V.P.); (D.R.W.)
- Department of Animal Science, Federal University of Viçosa, Viçosa 36570-900, Brazil
| | - Deniece R. Williams
- Veterinary Medicine Teaching and Research Center, Tulare, CA 93274, USA; (J.M.V.P.); (D.R.W.)
| | - Richard V. Pereira
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95106, USA; (E.B.d.O.); (H.F.M.); (R.V.P.); (N.S.D.R.)
| | - Noelia Silva Del Rio
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95106, USA; (E.B.d.O.); (H.F.M.); (R.V.P.); (N.S.D.R.)
- Veterinary Medicine Teaching and Research Center, Tulare, CA 93274, USA; (J.M.V.P.); (D.R.W.)
| | - Paulo R. Menta
- Department of Veterinary Sciences, Texas Tech University, Lubbock, TX 79409, USA; (P.R.M.); (V.S.M.)
| | - Vinicius S. Machado
- Department of Veterinary Sciences, Texas Tech University, Lubbock, TX 79409, USA; (P.R.M.); (V.S.M.)
| | - Fabio S. Lima
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95106, USA; (E.B.d.O.); (H.F.M.); (R.V.P.); (N.S.D.R.)
| |
Collapse
|
6
|
Martens H. Invited Review: Increasing Milk Yield and Negative Energy Balance: A Gordian Knot for Dairy Cows? Animals (Basel) 2023; 13:3097. [PMID: 37835703 PMCID: PMC10571806 DOI: 10.3390/ani13193097] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
The continued increase in milk production during the last century has not been accompanied by an adequate dry matter intake (DMI) by cows, which therefore experience a negative energy balance (NEB). NEB is low and of minor importance at low milk yield (MY), such as for the nutrition of one calf, and under these circumstances is considered "natural". MY and low DMI around parturition are correlated and are the reason for the genetic correlation between increasing MY and increasing NEB up to 2000 MJ or more for 2-3 months postpartum in high-genetic-merit dairy cows. The extension and duration of NEB in high-producing cows cannot be judged as "natural" and are compensated by the mobilization of nutrients, particularly of fat. The released non-esterified fatty acids (NEFAs) overwhelm the metabolic capacity of the cow and lead to the ectopic deposition of NEFAs as triglycerides (TGs) in the liver. The subsequent lipidosis and the concomitant hampered liver functions cause subclinical and clinical ketosis, both of which are associated with "production diseases", including oxidative and endoplasmatic stress, inflammation and immunosuppression. These metabolic alterations are regulated by homeorhesis, with the priority of the physiological function of milk production. The prioritization of one function, namely, milk yield, possibly results in restrictions in other physiological (health) functions under conditions of limited resources (NEB). The hormonal framework for this metabolic environment is the high concentration of growth hormone (GH), the low concentration of insulin in connection with GH-dependent insulin resistance and the low concentration of IGF-1, the so-called GH-IGF-1 axis. The fine tuning of the GH-IGF-1 axis is uncoupled because the expression of the growth hormone receptor (GHR-1A) in the liver is reduced with increasing MY. The uncoupled GH-IGF-1 axis is a serious impairment for the GH-dependent stimulation of gluconeogenesis in the liver with continued increased lipolysis in fat tissue. It facilitates the pathogenesis of lipidosis with ketosis and, secondarily, "production diseases". Unfortunately, MY is still increasing at inadequate DMI with increasing NEB and elevated NEFA and beta-hydroxybutyric acid concentrations under conditions of low glucose, thereby adding health risks. The high incidences of diseases and of early culling and mortality in dairy cows are well documented and cause severe economic problems with a waste of resources and a challenge to the environment. Moreover, the growing public concerns about such production conditions in agriculture can no longer be ignored.
Collapse
Affiliation(s)
- Holger Martens
- Institute of Veterinary Physiology, Free University of Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| |
Collapse
|
7
|
Wang K, Wang K, Wang J, Yu F, Ye C. Protective Effect of Clostridium butyricum on Escherichia coli-Induced Endometritis in Mice via Ameliorating Endometrial Barrier and Inhibiting Inflammatory Response. Microbiol Spectr 2022; 10:e0328622. [PMID: 36321897 PMCID: PMC9769554 DOI: 10.1128/spectrum.03286-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022] Open
Abstract
Endometritis is a common reproductive disease occurs both in human and animals. Clostridium butyricum is a Gram-positive anaerobic bacterium that can ferment various carbohydrates into butyric acid. In this study, we investigated the effects of C. butyricum on Escherichia coli-induced endometritis and clarified the underlying mechanism. We first verified the protective effect of C. butyricum in vivo by establishing a mouse model of E. coli-induced endometritis. It was determined that C. butyricum pretreatment significantly reversed E. coli-induced uterine histopathological changes. Meanwhile, C. butyricum pretreatment significantly decreased the production of pro-inflammatory mediators and the levels of myeloperoxidase (MPO) and malondialdehyde (MDA). We found that C. butyricum could inhibit TLR4-mediated phosphorylation of NF-κB and the activity of histone deacetylase (HDAC). Furthermore, C. butyricum significantly increased the expression of the tight junction proteins (TJPs) ZO-1, claudin-3, and occludin. Additionally, treatment with C. butyricum culture supernatant dramatically suppressed the degree of inflammation in the uterus, and inactivated C. butyricum did not exert a protective effect. We subsequently investigated butyrate levels in both the uterus and blood and observed a marked augment in the C. butyricum treatment group. Collectively, our data suggest that C. butyricum maintains epithelial barrier function and suppresses inflammatory response during E. coli-induced endometritis and that the protective effect of C. butyricum may be related to the production of butyrate. IMPORTANCE Endometritis is a common reproductive disease both in human and animals. It impairs female fertility by disrupting endometrial function. Antibiotics are widely used to treat endometritis in clinical practice, but the misuse of antibiotics often leads to antibiotic resistance. Therefore, there is an urgent need for new therapeutic agents to treat bacterial endometritis and overcome bacterial resistance. In this study, we found that C. butyricum could protect from E. coli-induced endometritis.
Collapse
Affiliation(s)
- Kexin Wang
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Ke Wang
- Department of Obstetrics and Gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Junrong Wang
- Department of Obstetrics and Gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Fan Yu
- Department of Gastroenterology and Hepatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Cong Ye
- Department of Obstetrics and Gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
8
|
Valdmann M, Kurykin J, Waldmann A. Individual and Combined Effects of Diseases and Cytological Endometritis on Reproductive Performance and Culling of Dairy Cows: Preliminary Results. Animals (Basel) 2022; 12:2913. [PMID: 36359037 PMCID: PMC9656244 DOI: 10.3390/ani12212913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/10/2022] [Accepted: 10/23/2022] [Indexed: 11/17/2022] Open
Abstract
The objective of this study was to evaluate the effect of calving-related disorders/clinical diseases (DIS) and cytological endometritis (CYTO) on the reproductive performance and culling of dairy cows. In a total of 119 multiparous Holstein cows, DIS were recorded and CYTO was diagnosed at 40 ± 2 d in milk. Onset of luteal activity was defined as the first postpartum measurement of milk progesterone >5 ng/mL. A dummy variable containing all four possible permutations between DIS and CYTO statuses was created. The pregnancy rates after first artificial insemination were 57.7, 42.9, 23.0 and 15.8% for the DIS−/CYTO−, DIS+/CYTO−, DIS−/CYTO+ and DIS+/CYTO+ groups, respectively. The hazard of pregnancy was affected by DIS−/CYTO+ and DIS+/CYTO+ health statuses (hazard ratio (HR) = 0.43 and 0.29, respectively), whereas DIS+/CYTO− and DIS−/CYTO− cows had a similar hazard to pregnancy. The hazard of onset of luteal activity was affected by DIS+/CYTO+ health status (HR = 0.45), but not by DIS+/CYTO− and DIS−/CYTO+ health statuses. Compared with DIS−/CYTO− cows, DIS−/CYTO+ and DIS+/CYTO+ cows had 4.24 and 5.57 times the odds of being culled, respectively. Culling was not affected by DIS+/CYTO− health status. In conclusion, CYTO+ status, irrespective of DIS status, decreased the pregnancy rate. When DIS+ and CYTO+ were combined, they had an additive negative effect. Our preliminary findings suggest that the far-reaching consequences of clinical diseases on fertility and culling can be mediated through the development of CYTO. Further investigations including a larger number of cows are required to confirm these results.
Collapse
Affiliation(s)
- Merle Valdmann
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | - Jevgeni Kurykin
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | - Andres Waldmann
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
- Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia
| |
Collapse
|
9
|
Fang L, Cui L, Liu K, Shao X, Sun W, Li J, Wang H, Qian C, Li J, Dong J. Cortisol inhibits lipopolysaccharide-induced inflammatory response in bovine endometrial stromal cells via NF-κB and MAPK signaling pathways. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 133:104426. [PMID: 35452691 DOI: 10.1016/j.dci.2022.104426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/17/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Bovine uterine infection is commonly caused by Escherichia coli (E. coli). Elevated concentrations of plasma cortisol have been reported in postpartum cows. However, the direct role of cortisol in the inflammatory response of bovine endometrial stromal cells (BESCs) remains unclear. Therefore, the aim of the study was to explore the regulatory effect of cortisol on lipopolysaccharide (LPS)-induced inflammatory response in BESCs. Both the primary and immortalized BESCs were used in this study. BESCs were treated with cortisol (5, 15, and 30 ng/mL) in the presence of LPS. The mRNA expression of inflammatory cytokines and chemokines was detected using RT-qPCR. Western blot and immunofluorescence were used to analyze the activation of the NF-κB and MAPK signaling pathways. The results revealed that cortisol downregulated the LPS-induced overexpression of interleukin(IL)-1β, IL-6, IL-8, TNF-α, COX-2, iNOS in BESCs. Moreover, cortisol inhibited LPS-induced phosphorylation levels of IκB, p65, ERK1/2, JNK and p38, and p65 nuclear translocation in BESCs. These results indicated that cortisol inhibited LPS-induced inflammatory response in BESCs, which may be mediated by suppressing the NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Li Fang
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, 225009, China
| | - Luying Cui
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, 225009, China
| | - Kangjun Liu
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, 225009, China
| | - Xinyu Shao
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, 225009, China
| | - Wenye Sun
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, 225009, China
| | - Jun Li
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, 225009, China
| | - Heng Wang
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, 225009, China
| | - Chen Qian
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, 225009, China
| | - Jianji Li
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, 225009, China.
| | - Junsheng Dong
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
10
|
Wang Y, Chen T, Gan Z, Li H, Li Y, Zhang Y, Zhao X. Metabolomic analysis of untargeted bovine uterine secretions in dairy cows with endometritis using ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry. Res Vet Sci 2021; 139:51-58. [PMID: 34252702 DOI: 10.1016/j.rvsc.2021.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/26/2021] [Accepted: 07/01/2021] [Indexed: 10/20/2022]
Abstract
Endometritis is among the most common bovine uterine diseases; as a cause of infertility, it affects the progress of the cattle industry. In this study, we used a novel technique based on ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry for comparative metabolomics of uterine secretions in healthy cows and cows with endometritis, classified based on clinical symptoms. Univariate and multivariate statistical analyses revealed significant differences between the two groups (n = 12). Compared with healthy uterine secretion samples, in the clinical endometritis samples, coumaric acid, benzoic acid, and equol were downregulated. However, l-phenylalanine, glutamine, succinic acid, linoleate, arachidonic acid, and other metabolites were upregulated, revealing variations between healthy cows and cows with endometritis (p < 0.05). This metabolomic approach may provide an in-depth understanding of endometritis pathobiology, along with a theoretical framework for the diagnosis and treatment of this bovine disease.
Collapse
Affiliation(s)
- Yuanyuan Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Tingting Chen
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Ze Gan
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Haijiang Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Yina Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
11
|
Ma X, Li Y, Shen W, Oladejo AO, Yang J, Jiang W, Imam BH, Wu X, Ding X, Yang Y, Wang S, Yan Z. LPS Mediates Bovine Endometrial Epithelial Cell Pyroptosis Directly Through Both NLRP3 Classical and Non-Classical Inflammasome Pathways. Front Immunol 2021; 12:676088. [PMID: 34122438 PMCID: PMC8195237 DOI: 10.3389/fimmu.2021.676088] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/07/2021] [Indexed: 12/18/2022] Open
Abstract
As a highly inflammatory form of programmed cell death, pyroptosis is triggered by pro-inflammatory signals and associated with inflammation. It is characterized by cell swelling and large bubbles emerging from the plasma membrane, which release cytokines during inflammation. Compared with other types of cell death, pyroptosis has a distinct morphology and mechanism and involves special inflammasome cascade pathways. However, the inflammasome mechanism through which endometrial epithelial cell pyroptosis occurs in LPS-mediated inflammation remains unclear. We confirmed that there was an increased mRNA and protein expression of the IL-6, TNF-α, IL-1β, IL-18 cytokines, the inflammasome molecules NLRP3, CASPASE-1, CASPASE-4, and GSDMD in LPS-induced primary bovine endometrial epithelial cells (BEECs) in an in vitro established inflammatory model using ELISA, real-time PCR (RT-PCR), vector construction and transfection, and Western blotting. Scanning electron microscopy and lactate dehydrogenase (LDH) activity assays revealed induced cell membrane rupture, which is the main characteristic of pyroptosis. In conclusion, the cytolytic substrate GSDMD’s cleavage by caspase-1 or caspase-4 through the NLRP3 classical and non-classical inflammasome pathways, GSDMD N-terminus bind to the plasma membrane to form pores and release IL -18, IL-1β cause cell death during LPS induced BEECs inflammation.
Collapse
Affiliation(s)
- Xiaoyu Ma
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Science, Lanzhou, China.,College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Yajuan Li
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Science, Lanzhou, China
| | - Wenxiang Shen
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Science, Lanzhou, China
| | - Ayodele Olaolu Oladejo
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Science, Lanzhou, China.,Department of Animal Health Technology, Oyo State College of Agriculture and Technology, Igboora, Nigeria
| | - Jie Yang
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Science, Lanzhou, China
| | - Wei Jiang
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Science, Lanzhou, China
| | - Bereket Habte Imam
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Science, Lanzhou, China
| | - Xiaohu Wu
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Science, Lanzhou, China
| | - Xuezhi Ding
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Science, Lanzhou, China
| | - Ying Yang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Shengyi Wang
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Science, Lanzhou, China
| | - Zuoting Yan
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Science, Lanzhou, China
| |
Collapse
|
12
|
Boustan A, Vahedi V, Abdi Farab M, Karami H, Seyedsharifi R, Hedayat Evrigh N, Ghazaei C, Salem AZM. Effects of dry period length on milk yield and content and metabolic status of high-producing dairy cows under heat stress. Trop Anim Health Prod 2021; 53:205. [PMID: 33712888 DOI: 10.1007/s11250-021-02634-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/21/2021] [Indexed: 11/28/2022]
Abstract
The objective of the present study was to investigate the effects of shortening dry period (DP) on milk yield, milk composition, and blood parameters in cows under heat stress. For this purpose, three DP groups were considered (30, 45, and 60 days), and 14 heat-stressed high-producing dairy cows (7 primiparous and 7 multiparous) were assigned to each DP group. The results showed that shortening the DP (from 60 to 30 days) decreased a 305-day milk yield in subsequent lactation. The difference in milk yield between 30- and 60-day DP groups was significant in the second 100 days of lactation. Accounting for additional milk yield before calving completely compensate for the loss of milk production resulting from shortening the DP. Milk protein, lactose, and solids non-fat percentages were significantly lower for cows with a 60-day DP compared to cows with a 45- or 30-day DP. Serum BHBA and urea concentrations were significantly higher, and serum glucose concentration was significantly lower for cows with a 60-day DP compared to cows with a 30-day DP. In conclusion, results showed that shortening the DP improved the metabolic status of heat-stressed transition dairy cows without decreasing total milk yield.
Collapse
Affiliation(s)
- A Boustan
- Department of Animal Science, Moghan College of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran.
| | - V Vahedi
- Department of Animal Science, Moghan College of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - M Abdi Farab
- Department of Animal Science, Moghan College of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - H Karami
- Department of Animal Science, Ahar Faculty of Agriculture and Natural Resources, University of Tabriz, Tabriz, Iran
| | - R Seyedsharifi
- Department of Animal Science, Faculty of Agriculture Science and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - N Hedayat Evrigh
- Department of Animal Science, Faculty of Agriculture Science and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - C Ghazaei
- Department of Animal Science, Moghan College of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - A Z M Salem
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, Estado de México, México.
| |
Collapse
|
13
|
Alhussien MN, Dang AK. Interaction between stress hormones and phagocytic cells and its effect on the health status of dairy cows: A review. Vet World 2020; 13:1837-1848. [PMID: 33132594 PMCID: PMC7566244 DOI: 10.14202/vetworld.2020.1837-1848] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 07/22/2020] [Indexed: 12/14/2022] Open
Abstract
Dairy cows are exposed to various stressors during their production cycle that makes them more susceptible to various diseases. Phagocytes (neutrophils and macrophages) are important soldiers of the innate immune system. Neutrophils are the first responders to an inflammatory response and stress and kill pathogens by generating reactive oxygen species and by the release of various antimicrobial peptides, enzymes, neutrophil extracellular trap formation, etc. Macrophages, the other phagocytes, are also the cleanup crew for the innate immune system that removes debris, pathogens, and dead neutrophils later on after an inflammatory response. The neuroendocrine system along with phagocytes exhibits an immunomodulatory potential during stressful conditions. Neuroendocrine system directly affects the activity of phagocytes by communicating bidirectionally through shared receptors and messenger molecules such as hormones, neurotransmitters, or cytokines. Different immune cells may show variable responses to each hormone. Short time exposure to stress can be beneficial, but repeated or extended exposure to stress may be detrimental to the overall health and well-being of an animal. Although some stresses associated with farming practices in dairy cows are unavoidable, better understanding of the interactions occurring between various stress hormones and phagocytic cells can help to reduce stress, improve productivity and animal welfare. This review highlights the role played by various stress hormones in modulating phagocytic cell performance of dairy cattle under inflammatory conditions.
Collapse
Affiliation(s)
- Mohanned Naif Alhussien
- Lactation and Immuno-Physiology Laboratory, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Ajay Kumar Dang
- Lactation and Immuno-Physiology Laboratory, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
14
|
Neubrand L, Wagener K, Drillich M. [Bovine uterine diseases: Aspects of microbiology, molecular biology, and immunology]. Tierarztl Prax Ausg G Grosstiere Nutztiere 2020; 48:253-261. [PMID: 32823330 DOI: 10.1055/a-1197-5720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Postpartum uterine diseases, such as puerperal metritis and clinical endometritis may affect over 40 % of cows in dairy farms. Regardless of their severity, these diseases are one of the main reasons for impaired fertility, causing declines in dairy cow productivity and hence, resulting in economic losses. Although uterine diseases have been the topic of scientific discussion for many years, until now it was not possible to agree on uniform definitions for the different kinds of manifestation. By including technical innovations and testing procedures, enormous scientific progress and a deeper knowledge of the physiology as well as the pathologic mechanisms have been achieved. Bovine metritis and endometritis may be regarded as multifactorial diseases caused by a combination of microbial infection, the dysregulation of the immune system, and additional risk factors. These interactions have been analyzed on microbial and molecular biological levels as well as by the use of bioinformatics and molecular genetics. As a result, new species of bacteria and inflammatory mediators possibly contributing to the development of uterine diseases have recently been described. Additionally, metabolic and genetic risk factors and their roles in leading to fertility impairment have been evaluated. In conclusion, it was possible to identify new approaches for possible therapeutic and preventive methods, a subset of which may already be implemented into daily practical routine. This article provides an overview of recent scientific results concerning bovine metritis and endometritis with a focus on microbial, microbiological and immunological studies.
Collapse
Affiliation(s)
- Lisa Neubrand
- Universitätsklinik für Wiederkäuer, Abteilung Bestandsbetreuung, Veterinärmedizinische Universität Wien
| | - Karen Wagener
- Universitätsklinik für Wiederkäuer, Abteilung Bestandsbetreuung, Veterinärmedizinische Universität Wien
| | - Marc Drillich
- Universitätsklinik für Wiederkäuer, Abteilung Bestandsbetreuung, Veterinärmedizinische Universität Wien
| |
Collapse
|
15
|
de Lima FS. Recent advances and future directions for uterine diseases diagnosis, pathogenesis, and management in dairy cows. Anim Reprod 2020; 17:e20200063. [PMID: 33029222 PMCID: PMC7534574 DOI: 10.1590/1984-3143-ar2020-0063] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Researchers, veterinarians, and farmers' pursuit of a consistent diagnosis, treatment, and prevention of uterine diseases remains challenging. The diagnosis and treatment of metritis is inconsistent, a concerning situation when considered the global threat of antimicrobial resistance dissemination. Endometritis is an insidious disease absent on routine health programs in many dairy farms and from pharmaceutical therapeutics arsenal in places like the US market. Conversely, a multitude of studies advanced the understanding of how uterine diseases compromise oocyte, follicle, and embryo development, and the uterine environment having long-lasting effects on fertility. The field of uterine disease microbiome also experienced tremendous progress and created opportunities for the development of novel preventives to improve the management of uterine diseases. Activity monitors, biomarkers, genomic selection, and machine learning predictive models are other innovative developments that have been explored in recent years to help mitigate the negative impacts of uterine diseases. Albeit novel tools such as vaccines for metritis, immune modulators, probiotics, genomic selection, and selective antimicrobial therapy are promising, further research is warranted to implement these technologies in a systematic and cost-effective manner.
Collapse
Affiliation(s)
- Fabio Soares de Lima
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA
| |
Collapse
|
16
|
Bogado Pascottini O, LeBlanc SJ. Metabolic markers for purulent vaginal discharge and subclinical endometritis in dairy cows. Theriogenology 2020; 155:43-48. [PMID: 32622204 DOI: 10.1016/j.theriogenology.2020.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/26/2020] [Accepted: 06/07/2020] [Indexed: 02/04/2023]
Abstract
This study compares serum markers for systemic inflammation, and liver, mineral, and energy status in samples obtained -7, 1, 3, 5, 7, 14 ± 1, 21 ± 1, and 35 d relative to calving from healthy dairy cows and those diagnosed with purulent vaginal discharge (PVD) or subclinical endometritis (SCE). Metabolites and markers measured in serum were total calcium, total protein, albumin, globulin, cholesterol, urea, glucose, gamma-glutamyl transferase, aspartate aminotransferase, glutamate dehydrogenase, β-hydroxybutyrate (BHB), non-esterified fatty acids (NEFA), haptoglobin (Hp), and insulin-like growth factor-1 (IGF-1). Holstein cows with no recorded clinical disease were classified healthy (neither PVD nor SCE; n = 38), PVD (n = 10) or SCE (n = 10) at 35 d postpartum. The cut-point for PVD was mucopurulent vaginal discharge or worse, measured with Metricheck, and for SCE > 5% endometrial polymorphonuclear cells (PMN). Purulent vaginal discharge and SCE were mutually exclusive categories. The association of each serum marker with reproductive tract health classification was fitted in mixed linear regression models, accounting for repeated measures, sampling day, parity, BCS, and interactions of reproductive tract status and day. Serum Hp concentrations were greater at 3, 5, 7, and 14 ± 1 d postpartum for SCE and at 7 and 35 d postpartum for PVD than in healthy cows. Albumin concentrations were lesser for PVD than healthy at 14 ± 1 d postpartum and lesser for SCE than healthy at 35 d postpartum. The week before calving, SCE had lesser total calcium than healthy cows, and at 7 and 14 ± 1 d postpartum PVD had lesser total calcium than healthy cows. At 14 ± 1 d postpartum, serum NEFA, BHB, and globulin were greater, and IGF-1 lower for SCE than PVD or healthy cows. For all other metabolites, no differences were found. Before diagnosis, PVD or SCE had more indication of postpartum systemic inflammation (high Hp and low albumin) than healthy cows, and markers of energy status were more compromised in SCE than in PVD or healthy cows. This supports the hypothesis that SCE is associated with maladaptation to postpartum metabolic demands and with metabolic inflammation.
Collapse
Affiliation(s)
- O Bogado Pascottini
- Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.
| | - S J LeBlanc
- Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
17
|
Quiroga J, Alarcón P, Manosalva C, Taubert A, Hermosilla C, Hidalgo MA, Carretta MD, Burgos RA. Glycolysis and mitochondrial function regulate the radical oxygen species production induced by platelet-activating factor in bovine polymorphonuclear leukocytes. Vet Immunol Immunopathol 2020; 226:110074. [PMID: 32540687 DOI: 10.1016/j.vetimm.2020.110074] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/03/2020] [Accepted: 05/17/2020] [Indexed: 10/24/2022]
Abstract
Dairy cows undergo metabolic disturbances in the peripartum period, during which infectious inflammatory diseases and detrimental polymorphonuclear leukocytes (PMN) functions, such as radical oxygen species (ROS) production, are observed. Platelet-activating factor (PAF) is a key pro-inflammatory mediator that increases PMN ROS production. To date, the role of glycolysis and mitochondria in PAF-induced ROS production in bovine PMN has not been known. The aim of this study was to assess whether inhibition of glycolysis and disruption of mitochondrial function alter the oxidative response induced by PAF. We isolated PMN from non-pregnant Holstein Friesian heifers and pre-incubated them with 2-deoxy-d-glucose (2-DG; 2 mM, 30 min), carbonyl cyanide 3-chlorophenylhydrazone (CCCP; 5 μM, 5 min), oligomycin (10 μM, 30 min) or rotenone (10 μM, 30 min). Respiratory burst was measured by luminol-chemiluminescence assay, while mitochondrial ROS (mtROS) were evaluated by MitoSOX probe and flow cytometry. Also, we detected the presence of mitochondria by MitoTracker Deep Red FM probe and changes in mitochondrial membrane potential (Δψm) were assessed by JC-1 probe and flow cytometry. We observed that all inhibitors separately were able to reduce PAF-induced ROS production. Presence of mitochondria was detected and PAF increased the Δψm, while CCCP reduced it. 2-DG and rotenone reduced the mtROS production induced by PAF. CCCP did not alter the mtROS and oligomycin administered independently increased mtROS production. We concluded that PAF-induced ROS production is glycolysis- and mitochondria-dependent. Bovine PMN have a functional mitochondrion and PAF induced mtROS via glycolysis and mitochondrial complex-I activity. Our results highlight an important modulation of cellular metabolism in the oxidative response induced by proinflammatory agents, which could contribute to PMN disfunction during peripartum in cattle.
Collapse
Affiliation(s)
- John Quiroga
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile; Laboratory of Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile; Doctoral Program in Veterinary Sciences, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Pablo Alarcón
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile; Laboratory of Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Carolina Manosalva
- Institute of Pharmacy, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Anja Taubert
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Carlos Hermosilla
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - María Angélica Hidalgo
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile; Laboratory of Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - María Daniella Carretta
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile; Laboratory of Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Rafael Agustín Burgos
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile; Laboratory of Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
18
|
Pascottini OB, Van Schyndel SJ, Spricigo JFW, Carvalho MR, Mion B, Ribeiro ES, LeBlanc SJ. Effect of anti-inflammatory treatment on systemic inflammation, immune function, and endometrial health in postpartum dairy cows. Sci Rep 2020; 10:5236. [PMID: 32251312 PMCID: PMC7090035 DOI: 10.1038/s41598-020-62103-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/06/2020] [Indexed: 01/05/2023] Open
Abstract
Systemic inflammation (SI) is increasingly studied in several species because it may be central in many metabolic disturbances and be a risk factor for clinical disease. This proof-of-concept study evaluated the effects of the anti-inflammatory drug meloxicam on markers of SI and energy metabolism, polymorphonuclear neutrophil (PMN) function, and endometritis in clinically healthy postpartum dairy cows. Cows received meloxicam (0.5 mg/kg of body weight; n = 20) once daily for 4 days (10-13 days postpartum) or were untreated (n = 22). Blood samples were collected -7, 1, 3, 5, 7, 10, 11, 12, 13, 14, 18, 21, 28, and 35 days relative to calving to measure serum concentrations of metabolic and inflammatory markers. Function of peripheral blood PMN were evaluated at 5, 10, 14, and 21, and proportion of PMN in endometrial cytology were performed at 5, 10, 14, 21, 28 and 35 days postpartum. Meloxicam decreased serum haptoglobin from the second until the last day of treatment, and improved indicators of energy metabolism (lesser β-hydroxybutyrate and greater insulin-like growth factor-1 during treatment, and greater glucose at the end of treatment than control cows). This improved PMN function at 14 days postpartum, but the endometrial inflammatory status was not affected.
Collapse
Affiliation(s)
- O Bogado Pascottini
- Department of Population Medicine, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - S J Van Schyndel
- Department of Population Medicine, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - J F W Spricigo
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - M R Carvalho
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - B Mion
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - E S Ribeiro
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - S J LeBlanc
- Department of Population Medicine, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
19
|
Alhussien MN, Dang AK. Potential roles of neutrophils in maintaining the health and productivity of dairy cows during various physiological and physiopathological conditions: a review. Immunol Res 2019; 67:21-38. [PMID: 30644032 DOI: 10.1007/s12026-019-9064-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neutrophils represent the first line of innate immunity and are the most prominent line of cellular defence against invading microorganisms. On stimulation, they can quickly move through the walls of veins and into the tissues of the body to immediately attack or monitor the foreign antigens. Neutrophils are highly versatile and sophisticated cells which are endowed with highly sensitive receptor-based perception systems. They were traditionally classified as short-lived phagocytes actively involved during infection and inflammation, but recently, it has been seen that neutrophils are capable of detecting the presence of sperms during insemination as well as an implanting embryo in the female reproductive tract. These specialised phagocytes play a major role in tissue remodelling and wound healing, and maintain homeostasis during parturition, expulsion of placenta, folliculogenesis, corpus luteum formation and luteolysis. Here, we review the role played by neutrophils in maintaining homeostasis during normal and inflammatory conditions of dairy cattle. We have summarised the alteration in the expression of some cell adhesion molecules and cytokines on bovine neutrophils during different physiological and physiopathological conditions. Some emerging issues in the field of neutrophil biology and the possible strategies to strengthen their activity during the period of immunosuppression have also been discussed.
Collapse
Affiliation(s)
- Mohanned Naif Alhussien
- Animal Production Division, Agricultural College, Aleppo University, Aleppo, Syrian Arab Republic. .,Lactation and Immuno-Physiology Laboratory, ICAR-National Dairy Research Institute, Karnal, Haryana, 132 001, India.
| | - Ajay Kumar Dang
- Lactation and Immuno-Physiology Laboratory, ICAR-National Dairy Research Institute, Karnal, Haryana, 132 001, India
| |
Collapse
|
20
|
Abstract
Inflammation is not only the first line of defense of the organism but is also required in many reproductive processes such as ovulation, corpus luteum development, luteolysis, uterine clearance after insemination and post partum. Nevertheless, if excessive or persistent, inflammation can switch from a positive mechanism to a deleterious process, impairing oocyte quality and embryo development. Not only uterine but also non genital inflammatory sites can depreciate reproductive performances, with a carry over effect of 2 to 4 months. Since the metabolic challenges of the peripartum transition period make difficult for the cow to control inflammation, dairy cows are frequently in a pro-inflammatory stage, suggesting that inflammation, rather than infection, is a limiting factor of fertility in modern dairy cows. Within the first week after calving, cows have to mount an intense inflammatory response to the bacterial invasion of the uterine cavity with the challenge of being able to switch it off in no more than 5-6 weeks. The absence of neutrophils on endometrial smear is associated with the highest success rate at insemination. Since a fine tuning – rather than an absence - of inflammation is required along the reproductive cycle, anti-inflammatory drugs do not allow any improvement of pregnancy rate, except in the specific case of embryo transfer. Appropriate management of the transition period (especially nutritional) and in a long term perspective, genetic selection contribute to improve the aptitude of cows to controls the intensity of inflammatory process.
Collapse
Affiliation(s)
- Sylvie Chastant
- Reproduction, UMR INRA/ENVT 1225, Toulouse National Veterinary School, Toulouse, France
| | - Marie Saint-Dizier
- Université de Tours, UMR85 Physiologie de la Reproduction et des Comportements, Centre INRA Val-de-Loire, Nouzilly, France
| |
Collapse
|
21
|
Lucy MC. Stress, strain, and pregnancy outcome in postpartum cows. Anim Reprod 2019; 16:455-464. [PMID: 32435289 PMCID: PMC7234163 DOI: 10.21451/1984-3143-ar2019-0063] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/25/2019] [Indexed: 12/02/2022] Open
Abstract
Stress affects the productivity and fertility of cattle. Stress causes strain and individual animals experience different amounts of strain in response to the same amount of stress. The amount of strain determines the impact of stress on fertility. Typical stresses experienced by cattle include environmental, disease, production, nutritional, and psychological. The effect of stress on the reproductive system is mediated by body temperature (heat stress), energy metabolites and metabolic hormones (production and nutritional stresses), the functionality of the hypothalamus-pituitary-gonadal (HPG) axis and (or) the activation of the hypothalamus-pituitary-adrenal (HPA) axis. The strain that occurs in response to stress affects uterine health, oocyte quality, ovarian function, and the developmental capacity of the conceptus. Cows that have less strain in response to a given stress will be more fertile. The goal for future management and genetic selection in farm animals is to reduce production stress, manage the remaining strain, and genetically select cattle with minimal strain in response to stress.
Collapse
Affiliation(s)
- Matthew C. Lucy
- Division of Animal Sciences, University of Missouri, Animal Science Research Center, Columbia, MO, USA.
| |
Collapse
|
22
|
Cameron A, McAllister TA. Could probiotics be the panacea alternative to the use of antimicrobials in livestock diets? Benef Microbes 2019; 10:773-799. [PMID: 31965849 DOI: 10.3920/bm2019.0059] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Probiotics are most frequently derived from the natural microbiota of healthy animals. These bacteria and their metabolic products are viewed as nutritional tools for promoting animal health and productivity, disease prevention and therapy, and food safety in an era defined by increasingly widespread antimicrobial resistance in bacterial pathogens. In contemporary livestock production, antimicrobial usage is indispensable for animal welfare, and employed to enhance growth and feed efficiency. Given the importance of antimicrobials in both human and veterinary medicine, their effective replacement with direct-fed microbials or probiotics could help reduce antimicrobial use, perhaps restoring or extending the usefulness of these precious drugs against serious infections. Thus, probiotic research in livestock is rapidly evolving, aspiring to produce local and systemic health benefits on par with antimicrobials. Although many studies have clearly demonstrated the potential of probiotics to positively affect animal health and inhibit pathogens, experimental evidence suggests that probiotics' successes are modest, conditional, strain-dependent, and transient. Here, we explore current understanding, trends, and emerging applications of probiotic research and usage in major livestock species, and highlight successes in animal health and performance.
Collapse
Affiliation(s)
- A Cameron
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.,Agriculture and Agri-Food Canada, 5403 1st Ave South, Lethbridge, AB T1J 4P4, Canada
| | - T A McAllister
- Agriculture and Agri-Food Canada, 5403 1st Ave South, Lethbridge, AB T1J 4P4, Canada
| |
Collapse
|
23
|
Immune status during postpartum, peri-implantation and early pregnancy in cattle: An updated view. Anim Reprod Sci 2019; 206:1-10. [PMID: 31133358 DOI: 10.1016/j.anireprosci.2019.05.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/25/2019] [Accepted: 05/20/2019] [Indexed: 02/06/2023]
Abstract
Throughout the estrous cycle the mammalian endometrium undergoes morphological and functional changes that are essential for the establishment of pregnancy and proper ovarian and uterine functions. Among these changes, the most important are alterations in both inter- and intracellular signalling molecules, many of which modulate immune processes. In the endometrial tissue there are local innate (nonspecific) and adaptive (specific/acquired) response mechanisms which vary because of the endocrine status during the estrous cycle, pregnancy and postpartum period. Endometrial cells have responses that support the immune system by producing pro-inflammatory factors such as cytokines, sensors, effector molecules and chemokines. This response is important during gestation, pregnancy, and fetal growth, as well as in preventing infection, and immuno-rejection of the semi-allogeneic embryo. In dairy cows, both before and immediately after calving, there are marked changes in the values for hormonal and metabolic variables and the immune status is impaired. Thus, in several studies there has been assessment of the physiological and/or abnormal maternal immune changes and possible effects on dairy cow reproductive performance. The objective with this review is to summarize the novel information about the immune mechanisms involved during the postpartum period, subsequent peri-implantation period and pregnancy in dairy cows, and the possible effects on reproductive performance. This information provides for an enhanced understanding of the local and systemic immune responses associated with the metabolic and hormonal status of dairy cows, and alterations in the immune system of high producing cows and the possible effects on subsequent fertility.
Collapse
|
24
|
Lucy M. Symposium review: Selection for fertility in the modern dairy cow—Current status and future direction for genetic selection. J Dairy Sci 2019; 102:3706-3721. [DOI: 10.3168/jds.2018-15544] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 11/16/2018] [Indexed: 01/02/2023]
|
25
|
Relationship between Protein Oxidation Biomarkers and Uterine Health in Dairy Cows during the Postpartum Period. Antioxidants (Basel) 2019; 8:antiox8010021. [PMID: 30646595 PMCID: PMC6356478 DOI: 10.3390/antiox8010021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 02/06/2023] Open
Abstract
High neutrophil (PMN, Polymorphonuclear neutrophil) counts in the endometrium of cows affected by endometritis, suggests the involvement of oxidative stress (OS) among the causes of impaired fertility. Protein oxidation, in particular, advanced oxidation protein products (AOPP), are OS biomarkers linked to PMN activity. To test this hypothesis, the relationship between protein oxidation and uterus health was studied in thirty-eight dairy cows during the puerperium. The animals were found to be cycling, without any signs of disease and pharmacological treatments. PMN count was performed either through a cytobrush or a uterine horn lavage (UHL). Cows were classified into four groups, based on the uterine ultrasonographic characteristics and the PMN percentage in the uterine horns with a higher percentage of high neutrophil horn (HNH). They were classified as: Healthy (H); Subclinical Endometritis (SCE); Grade 1 Endometritis (EM1); and Grade 2 Endometritis (EM2). AOPP and carbonyls were measured in plasma and UHL. UHL samples underwent Western blot analysis to visualize the carbonyl and dityrosine formation. Plasma AOPP were higher (p < 0.05) in EM2. AOPP and carbonyl group concentrations were higher in the HNH samples (p < 0.05). Protein concentration in the UHL was higher in the EM2 (p < 0.05). Carbonyl and dityrosine formation was more intense in EM1 and EM2. Protein oxidation observed in the EM2 suggests the presence of an inflammatory status in the uterus which, if not adequately hindered, could result in low fertility.
Collapse
|