1
|
Pupo MR, Ferraretto LF, Nicholson CF. Effects of feeding 3-nitrooxypropanol for methane emissions reduction on income over feed costs in the United States. J Dairy Sci 2025; 108:5061-5075. [PMID: 40139373 DOI: 10.3168/jds.2024-25502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 02/07/2025] [Indexed: 03/29/2025]
Abstract
Dairy cows contribute to climate change primarily through enteric methane (CH4) emissions. Several mitigating strategies have been evaluated, including the inhibitor 3-nitrooxypropanol (3-NOP). Our objectives were to (1) evaluate the effect of feeding 3-NOP in dairy diets on lactation performance and income over feed costs (IOFC) per cow and per farm, and (2) discuss the potential implications for dairy producers. Data from 15 articles (16 experiments) met the selection criteria, with a total of 412 lactating cows used. The analysis calculated the mean difference data from the 3-NOP treatment mean minus the control treatment mean from that of the NOP-supplemented group. A mixed effects model was fitted to the data. The model included 3-NOP supplementation as fixed effect, and study as a random effect. The 3-NOP dose (mg/kg DM) was included as an explanatory variable. The presence of bias was evaluated by Egger's test, but no publication biases were observed for any of the responses of interest. Income over feed costs per cow per day was calculated based on statistically significant changes in feed consumption, milk yield, and values of milk fat and protein produced less costs for diets feeding 3-NOP. The effects of changes in IOFC were evaluated for herds with different numbers of milking cows (100, 250, and 1,000 lactating cows). Dairy cows fed 3-NOP had 0.5 kg/d lower DMI and a reduction in milk yield of 0.7 kg/d compared with control cows. Milk fat and protein yields were unaffected for dairy cows supplemented with 3-NOP compared with control. Similarly, the ECM yield and feed efficiency were unaffected for dairy cows supplemented with 3-NOP compared with control. However, dose of 3-NOP was negatively associated with the 3-NOP effect size on these performance-related parameters. Feeding 3-NOP caused a reduction of 27.9% for CH4 production at an average 3-NOP dose of 80.3 mg/kg DM. Given changes in DMI, milk yield, and milk fat and protein, supplementation of 3-NOP decreased mean IOFC by $0.35 cow-1/d-1 for a cow producing 39 kg/d. These effects on IOFC indicate that under present economic conditions, dairy farmers will need to be compensated by participation in carbon credits programs, provided other incentives for emissions reduction, or both. Reduction of methane emissions with 3-NOP supplementation requires compensation of -$128,320/yr for a dairy with 1,000 milking cows. In addition, the breakeven compensation for use of 3-NOP varied from -$0.42 cow-1/d-1 to -$0.21 cow-1/d-1 based on feed and milk component values from 2014 to 2023. Future research is warranted to evaluate long-term effects of feeding 3-NOP on the productivity of dairy cows.
Collapse
Affiliation(s)
- M R Pupo
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - L F Ferraretto
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - C F Nicholson
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706; Department of Agricultural and Applied Economics, University of Wisconsin-Madison, Madison, WI 53706.
| |
Collapse
|
2
|
Martins LF, Maigaard M, Johansen M, Lund P, Ma X, Niu M, Hristov AN. Lactational performance effects of 3-nitrooxypropanol supplementation to dairy cows: A meta-regression. J Dairy Sci 2025; 108:1538-1553. [PMID: 39848758 DOI: 10.3168/jds.2024-25653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/28/2024] [Indexed: 01/25/2025]
Abstract
A meta-regression was conducted to determine the production effects of 3-nitrooxypropanol (3-NOP) and investigate their associations with dose, dietary nutrient composition, and supplementation length in dairy cows. Forty treatment and control mean comparisons extracted from 21 studies conducted or published between 2014 to 2024 were used in the meta-regression. Response variables were DMI, milk yield (MY), ECM yield, ECM feed efficiency, BW, BW change, and concentrations of milk fat, true protein, lactose, and MUN. Treatment and control mean differences (MD) as well as standardized MD were calculated and used for data presentation and statistical analysis, respectively. Dose (± SD; 77.0 ± 33.17 mg 3-NOP/kg DMI), forage-to-concentrate ratio (FC; 58.9 ± 8.83%, expressed as average ± SD% of forage in the diet), dietary concentrations of CP, ether extract, NDF, and starch (16.3 ± 1.84%, 4.3 ± 1.03%, 33.7 ± 4.40%, and 20.9 ± 3.97%, as average ± SD% of DM, respectively), supplementation length (days), and DIM and BW of the cows at the beginning of the study were used as continuous explanatory variables. Mixed-effects models were fitted using the robust variance estimation method. Full models containing uncorrelated explanatory variables (Pearson correlation <0.50) were fitted, and variables were removed from the final model if nonsignificant using the stepwise selection approach. Compared with control, supplementation of 3-NOP decreased DMI and MY by 0.80 ± 0.149 and 0.98 ± 0.250 kg/d, respectively, but only numerically decreased ECM by 0.50 ± 0.298 kg/d. Consequently, feed efficiency was increased by 0.05 ± 0.012 kg ECM/kg DMI with 3-NOP supplementation. Body weight and BW change were not affected by 3-NOP supplementation. Milk fat, true protein, and MUN concentrations were increased by 0.09 ± 0.028%, 0.02 ± 0.006%, and 0.59 ± 0.106 mg/dL, respectively. Increasing 3-NOP dose further decreased DMI and increased milk fat and MUN concentrations. Increasing dietary NDF and FC lessened the negative effect of 3-NOP on DMI and MY, respectively, and decreased its effect on milk fat and MUN (dietary NDF concentration effect only). Similarly, increasing dietary CP lessened the negative effect of 3-NOP on DMI and decreased its effect on MUN. To explain some of the production effects herein observed, ruminal fermentation data from 6 published studies were included in the meta-regression. Supplementation of 3-NOP tended to increase rumen pH and decreased NH3 concentration. Concentrations of total VFA, acetate, and the acetate-to-propionate ratio were decreased, whereas the concentration of propionate was increased, and that of butyrate was numerically increased by 3-NOP supplementation. Overall, 3-NOP supplementation of dairy cow diets decreased DMI and MY but did not affect ECM because of increased milk fat and true protein contents. Increased milk fat and MUN responses can be explained by shifted ruminal fermentation, and the increased milk true protein response may be explained by increased rumen propionate molar proportion by 3-NOP supplementation.
Collapse
Affiliation(s)
- L F Martins
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802
| | - M Maigaard
- Department of Animal and Veterinary Sciences, AU Viborg-Research Centre Foulum, Aarhus University, Tjele 8830, Denmark
| | - M Johansen
- Department of Animal and Veterinary Sciences, AU Viborg-Research Centre Foulum, Aarhus University, Tjele 8830, Denmark
| | - P Lund
- Department of Animal and Veterinary Sciences, AU Viborg-Research Centre Foulum, Aarhus University, Tjele 8830, Denmark
| | - X Ma
- Animal Nutrition, Institute of Agricultural Sciences, Department of Environmental Systems Science, ETH Zürich, Zürich 8092, Switzerland
| | - M Niu
- Animal Nutrition, Institute of Agricultural Sciences, Department of Environmental Systems Science, ETH Zürich, Zürich 8092, Switzerland
| | - A N Hristov
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802.
| |
Collapse
|
3
|
Roskam E, Kenny DA, Kelly AK, O'Flaherty V, Waters SM. Dietary supplementation with calcium peroxide improves methane mitigation potential of finishing beef cattle. Animal 2024; 18:101340. [PMID: 39423677 DOI: 10.1016/j.animal.2024.101340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 10/21/2024] Open
Abstract
Calcium peroxide (CaO2) offers potential as an anti-methanogenic dietary feed material. The compound has been previously assessed in vitro, with methane (CH4) reductions of > 50% observed. The objective of this study was to assess dietary supplementation of CaO2 at different inclusion levels and physical formats in a finishing beef system on the effects of animal performance, gaseous emissions, rumen fermentation parameters and digestibility. Seventy-two dairy-beef bulls (465 kg; 16 months of age) were randomly allocated to one of four treatments supplemented with CaO2; in a coarse ration (1) CON (0% CaO2), (2) LO (1.35% CaO2), (3) HI (2.25% CaO2), and in a pellet (4) HP (2.25% CaO2) (n = 18). Animals received their respective treatments for a 77 d finishing period, during which DM intake (American Calan Inc., Northwood, NH), average daily gain (ADG), feed efficiency and enteric emissions (GreenFeed emissions monitoring system; C-Lock Inc., Rapid City, SD) were measured. The finishing diet was isonitrogenous and isoenergetic across the four treatment groups, composed of 60:40 grass silage:concentrate. Silage was offered each morning (0900 h), and concentrates were offered twice daily (0800 and 1500 h). Supplementation of CaO2 had no effect on final weight (P = 0.09), ADG (P = 0.22) or feed efficiency (P = 0.13). Regarding DM intake, the HI treatment group consumed in the order of 1 kg less than CON (P < 0.01), while HP did not affect DM intake compared to CON (P = 0.79). Across treatments, DM intake ranged from 8.43 to 9.57 kg/d, equating to 1.6-1.8% of BW. Daily CH4 values for the control were 240 g/d, while CaO2 supplemented diets ranged from 202 to 170 g/d, resulting in daily CH4 reductions of 16, 29 and 27% for LO, HI and HP, respectively, compared to CON (P < 0.0001). Additionally, hydrogen was reduced in CaO2 supplemented animals by 32-36% relative to CON (P < 0.0001), with a simultaneous reduction in volatile fatty acid production (P < 0.01) and an increase in propionate concentration (P < 0.0001). Across all universally accepted CH4 metrics (yield, intensity, production), the dietary inclusion of CaO2 whether at a low or high rate, or indeed, through a coarse ration or pelleted format reduced CH4 in the order of 16-32%. This study also concluded that CaO2 can successfully endure the pelleting process, therefore, improving ease of delivery if implemented at farm level.
Collapse
Affiliation(s)
- E Roskam
- Animal and Bioscience Research Department, Teagasc Grange, Co. Meath C15PW93, Ireland; School of Biological and Chemical Sciences and Ryan Institute, University of Galway, Co. Galway H91TK33, Ireland
| | - D A Kenny
- Animal and Bioscience Research Department, Teagasc Grange, Co. Meath C15PW93, Ireland; School of Agriculture and Food Science, University College Dublin, Co. Dublin D04V1W8, Ireland
| | - A K Kelly
- School of Agriculture and Food Science, University College Dublin, Co. Dublin D04V1W8, Ireland
| | - V O'Flaherty
- School of Biological and Chemical Sciences and Ryan Institute, University of Galway, Co. Galway H91TK33, Ireland; GlasPort Bio Ltd, Unit 204, Business Innovation Centre, University of Galway, Co. Galway H91TK33, Ireland
| | - S M Waters
- School of Biological and Chemical Sciences and Ryan Institute, University of Galway, Co. Galway H91TK33, Ireland.
| |
Collapse
|
4
|
Costigan H, Shalloo L, Egan M, Kennedy M, Dwan C, Walsh S, Hennessy D, Walker N, Zihlmann R, Lahart B. The effect of twice daily 3-nitroxypropanol supplementation on enteric methane emissions in grazing dairy cows. J Dairy Sci 2024; 107:9197-9208. [PMID: 38851571 DOI: 10.3168/jds.2024-24772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/11/2024] [Indexed: 06/10/2024]
Abstract
Although 3-nitroxypropanol (3-NOP) has been proven to reduce enteric methane (CH4) by ∼30% in indoor systems of dairying when the additive is mixed throughout a TMR, very limited research has been done to date in grazing systems in which the most convenient method of additive supplementation is at milking twice daily. To investigate the effect of twice daily 3-NOP supplementation on enteric CH4 emissions, a 12-wk study was undertaken in which treatment cows (n = 26) were supplemented with 3-NOP (80 mg/kg DMI) twice daily at morning and evening milking, and control cows (n = 26) received no additive supplementation. Enteric CH4, hydrogen (H2) and carbon dioxide (CO2) were measured using GreenFeed units, and milk production, BW, BCS, and DMI were monitored to determine the effect of 3-NOP supplementation on productivity. No significant effect was observed for 3-NOP supplementation on any of the aforementioned parameters with the exception of CH4 and H2 production, respectively. Cows supplemented with 3-NOP produced 1.6-fold more H2 (P < 0.001) across a 24-h period, with reductions in CH4 production of 28.5% recorded in the 3 h after additive consumption (P < 0.001), however, levels of CH4 production returned to that of the control group thereafter. When CH4 production was considered across the entire 24-h period, the cows offered 3-NOP produced ∼5% less CH4 than the control (P < 0.050). Future research should focus on methods to increase the efficacy of the additive throughout the day which would include the deployment of a slow-release form or an out-of-parlor feeding system that allows animals consume the product at additional time points.
Collapse
Affiliation(s)
- H Costigan
- Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland P61 P302.
| | - L Shalloo
- Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland P61 P302
| | - M Egan
- Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland P61 P302
| | - M Kennedy
- Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland P61 P302; School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - C Dwan
- Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland P61 P302; School of Biological, Earth and Environmental Science, University College Cork, Cork, Ireland T23 N73K
| | - S Walsh
- Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland P61 P302; School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - D Hennessy
- School of Biological, Earth and Environmental Science, University College Cork, Cork, Ireland T23 N73K
| | - N Walker
- DSM Nutritional Products, Animal Nutrition & Health, 4002 Basel, Switzerland
| | - R Zihlmann
- DSM Nutritional Products, Animal Nutrition & Health, 4002 Basel, Switzerland
| | - B Lahart
- Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland P61 P302
| |
Collapse
|
5
|
Worku D. Unraveling the genetic basis of methane emission in dairy cattle: a comprehensive exploration and breeding approach to lower methane emissions. Anim Biotechnol 2024; 35:2362677. [PMID: 38860914 DOI: 10.1080/10495398.2024.2362677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Ruminant animals, such as dairy cattle, produce CH4, which contributes to global warming emissions and reduces dietary energy for the cows. While the carbon foot print of milk production varies based on production systems, milk yield and farm management practices, enteric fermentation, and manure management are major contributors togreenhouse gas emissions from dairy cattle. Recent emerging evidence has revealed the existence of genetic variation for CH4 emission traits among dairy cattle, suggests their potential inclusion in breeding goals and genetic selection programs. Advancements in high-throughput sequencing technologies and analytical techniques have enabled the identification of potential metabolic biomarkers, candidate genes, and SNPs linked to methane emissions. Indeed, this review critically examines our current understanding of carbon foot print in milk production, major emission sources, rumen microbial community and enteric fermentation, and the genetic architecture of methane emission traits in dairy cattle. It also emphasizes important implications for breeding strategies aimed at halting methane emissions through selective breeding, microbiome driven breeding, breeding for feed efficiency, and breeding by gene editing.
Collapse
Affiliation(s)
- Destaw Worku
- Department of Animal Science, College of Agriculture, Food and Climate Science, Injibara University, Injibara, Ethiopia
| |
Collapse
|
6
|
Kjeldsen MH, Johansen M, Weisbjerg MR, Hellwing ALF, Bannink A, Colombini S, Crompton L, Dijkstra J, Eugène M, Guinguina A, Hristov AN, Huhtanen P, Jonker A, Kreuzer M, Kuhla B, Martin C, Moate PJ, Niu P, Peiren N, Reynolds C, Williams SRO, Lund P. Predicting CO 2 production of lactating dairy cows from animal, dietary, and production traits using an international dataset. J Dairy Sci 2024; 107:6771-6784. [PMID: 38754833 DOI: 10.3168/jds.2023-24414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/26/2024] [Indexed: 05/18/2024]
Abstract
Automated measurements of the ratio of concentrations of methane and carbon dioxide, [CH4]:[CO2], in breath from individual animals (the so-called "sniffer technique") and estimated CO2 production can be used to estimate CH4 production, provided that CO2 production can be reliably calculated. This would allow CH4 production from individual cows to be estimated in large cohorts of cows, whereby ranking of cows according to their CH4 production might become possible and their values could be used for breeding of low CH4-emitting animals. Estimates of CO2 production are typically based on predictions of heat production, which can be calculated from body weight (BW), energy-corrected milk yield, and days of pregnancy. The objectives of the present study were to develop predictions of CO2 production directly from milk production, dietary, and animal variables, and furthermore to develop different models to be used for different scenarios, depending on available data. An international dataset with 2,244 records from individual lactating cows including CO2 production and associated traits, as dry matter intake (DMI), diet composition, BW, milk production and composition, days in milk, and days pregnant, was compiled to constitute the training dataset. Research location and experiment nested within research location were included as random intercepts. The method of CO2 production measurement (respiration chamber [RC] or GreenFeed [GF]) was confounded with research location, and therefore excluded from the model. In total, 3 models were developed based on the current training dataset: model 1 ("best model"), where all significant traits were included; model 2 ("on-farm model"), where DMI was excluded; and model 3 ("reduced on-farm model"), where both DMI and BW were excluded. Evaluation on test dat sets with either RC data (n = 103), GF data without additives (n = 478), or GF data only including observations where nitrate, 3-nitrooxypropanol (3-NOP), or a combination of nitrate and 3-NOP were fed to the cows (GF+: n = 295), showed good precision of the 3 models, illustrated by low slope bias both in absolute values (-0.22 to 0.097) and in percentage (0.049 to 4.89) of mean square error (MSE). However, the mean bias (MB) indicated systematic overprediction and underprediction of CO2 production when the models were evaluated on the GF and the RC test datasets, respectively. To address this bias, the 3 models were evaluated on a modified test dataset, where the CO2 production (g/d) was adjusted by subtracting (where measurements were obtained by RC) or adding absolute MB (where measurements were obtained by GF) from evaluation of the specific model on RC, GF, and GF+ test datasets. With this modification, the absolute values of MB and MB as percentage of MSE became negligible. In conclusion, the 3 models were precise in predicting CO2 production from lactating dairy cows.
Collapse
Affiliation(s)
- M H Kjeldsen
- Department of Animal and Veterinary Sciences, AU Viborg-Research Centre Foulum, Aarhus University, 8830 Tjele, Denmark.
| | - M Johansen
- Department of Animal and Veterinary Sciences, AU Viborg-Research Centre Foulum, Aarhus University, 8830 Tjele, Denmark
| | - M R Weisbjerg
- Department of Animal and Veterinary Sciences, AU Viborg-Research Centre Foulum, Aarhus University, 8830 Tjele, Denmark
| | - A L F Hellwing
- Department of Animal and Veterinary Sciences, AU Viborg-Research Centre Foulum, Aarhus University, 8830 Tjele, Denmark
| | - A Bannink
- Wageningen Livestock Research, Wageningen University and Research, 6700 AH Wageningen, the Netherlands
| | - S Colombini
- Department of Agricultural and Environmental Science, University of Milan, 20133 Milano, Italy
| | - L Crompton
- School of Agriculture, Policy and Development, University of Reading, RG6 GAR Reading, United Kingdom
| | - J Dijkstra
- Animal Nutrition Group, Wageningen University and Research, 6700 AH Wageningen, the Netherlands
| | - M Eugène
- VetAgro Sup, UMR 1213 Herbivores, INRAE, Université Clermont Auvergne, 63122 Saint-Genès-Champanelle, France
| | - A Guinguina
- Department of Applied Animal Science and Welfare, Swedish University of Agricultural Sciences, SE-901 87 Umeå, Sweden; Production Systems, Natural Resources Institute, Luke, 31600 Jokioinen, Finland
| | - A N Hristov
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802
| | - P Huhtanen
- Production Systems, Natural Resources Institute, Luke, 31600 Jokioinen, Finland
| | - A Jonker
- Grasslands Research Centre, AgResearch Ltd., Palmerston North 4442, New Zealand
| | - M Kreuzer
- Institute of Agricultural Science, ETH Zurich, 8092 Zurich, Switzerland
| | - B Kuhla
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - C Martin
- VetAgro Sup, UMR 1213 Herbivores, INRAE, Université Clermont Auvergne, 63122 Saint-Genès-Champanelle, France
| | - P J Moate
- Department of Energy, Environment and Climate Action, Agriculture Victoria Research, Victoria 3821, Australia
| | - P Niu
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås 1432, Norway
| | - N Peiren
- Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, 9090 Melle, Belgium
| | - C Reynolds
- School of Agriculture, Policy and Development, University of Reading, RG6 GAR Reading, United Kingdom
| | - S R O Williams
- Department of Energy, Environment and Climate Action, Agriculture Victoria Research, Victoria 3821, Australia
| | - P Lund
- Department of Animal and Veterinary Sciences, AU Viborg-Research Centre Foulum, Aarhus University, 8830 Tjele, Denmark
| |
Collapse
|
7
|
Indugu N, Narayan K, Stefenoni HA, Hennessy ML, Vecchiarelli B, Bender JS, Shah R, Dai G, Garapati S, Yarish C, Welchez SC, Räisänen SE, Wasson D, Lage C, Melgar A, Hristov AN, Pitta DW. Microbiome-informed study of the mechanistic basis of methane inhibition by Asparagopsis taxiformis in dairy cattle. mBio 2024; 15:e0078224. [PMID: 38953639 PMCID: PMC11323727 DOI: 10.1128/mbio.00782-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Abstract
Copious amounts of methane, a major constituent of greenhouse gases currently driving climate change, are emitted by livestock, and efficient methods that curb such emissions are urgently needed to reduce global warming. When fed to cows, the red seaweed Asparagopsis taxiformis (AT) can reduce enteric methane emissions by up to 80%, but the achieved results can vary widely. Livestock produce methane as a byproduct of methanogenesis, which occurs during the breakdown of feed by microbes in the rumen. The ruminant microbiome is a diverse ecosystem comprising bacteria, protozoa, fungi, and archaea, and methanogenic archaea work synergistically with bacteria to produce methane. Here, we find that an effective reduction in methane emission by high-dose AT (0.5% dry matter intake) was associated with a reduction in methanol-utilizing Methanosphaera within the rumen, suggesting that they may play a greater role in methane formation than previously thought. However, a later spike in Methanosphaera suggested an acquired resistance, possibly via the reductive dehalogenation of bromoform. While we found that AT inhibition of methanogenesis indirectly impacted ruminal bacteria and fermentation pathways due to an increase in spared H2, we also found that an increase in butyrate synthesis was due to a direct effect of AT on butyrate-producing bacteria such as Butyrivibrio, Moryella, and Eubacterium. Together, our findings provide several novel insights into the impact of AT on both methane emissions and the microbiome, thereby elucidating additional pathways that may need to be targeted to maintain its inhibitory effects while preserving microbiome health and animal productivity. IMPORTANCE Livestock emits copious quantities of methane, a major constituent of the greenhouse gases currently driving climate change. Methanogens within the bovine rumen produce methane during the breakdown of feed. While the red seaweed Asparagopsis taxiformis (AT) can significantly reduce methane emissions when fed to cows, its effects appear short-lived. This study revealed that the effective reduction of methane emissions by AT was accompanied by the near-total elimination of methane-generating Methanosphaera. However, Methanosphaera populations subsequently rebounded due to their ability to inactivate bromoform, a major inhibitor of methane formation found in AT. This study presents novel findings on the contribution of Methanosphaera to ruminal methanogenesis, the mode of action of AT, and the possibility for complementing different strategies to effectively curb methane emissions.
Collapse
Affiliation(s)
- Nagaraju Indugu
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, Pennsylvania, USA
| | - Kapil Narayan
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, Pennsylvania, USA
| | - Hannah A. Stefenoni
- Department of Animal Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Meagan L. Hennessy
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, Pennsylvania, USA
| | - Bonnie Vecchiarelli
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, Pennsylvania, USA
| | - Joseph S. Bender
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, Pennsylvania, USA
| | - Reeti Shah
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, Pennsylvania, USA
| | - Grace Dai
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, Pennsylvania, USA
| | - Satvik Garapati
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, Pennsylvania, USA
| | - Charles Yarish
- Department of Ecology and Evolutionary Biology, The University of Connecticut, Stamford, Connecticut, USA
| | - Sergio C. Welchez
- Department of Animal Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Susanna E. Räisänen
- Department of Animal Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Derek Wasson
- Department of Animal Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Camila Lage
- Department of Animal Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Audino Melgar
- Department of Animal Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Alexander N. Hristov
- Department of Animal Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Dipti W. Pitta
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, Pennsylvania, USA
| |
Collapse
|
8
|
de Mol R, Bannink A, Dijkstra J, Walker N, van Gastelen S. The effect of feeding and visiting behavior on methane and hydrogen emissions of dairy cattle measured with the GreenFeed system under different dietary conditions. J Dairy Sci 2024:S0022-0302(24)00853-1. [PMID: 38825123 DOI: 10.3168/jds.2024-24673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/11/2024] [Indexed: 06/04/2024]
Abstract
The objectives were to investigate the effect of feeding and visiting behavior of dairy cattle on CH4 and H2 production measured with voluntary visits to the GreenFeed system (GF) and to determine whether these effects depended on basal diet (BD) and 3-nitrooxypropanol (3-NOP) supplementation. The experiment involved 64 lactating dairy cattle (146 ± 45 d in milk at the start of trial; mean ± SD) in 2 overlapping crossover trials, each consisting of 2 measurement periods. Cows within block were randomly allocated to 1 of 3 types of BD: a grass silage-based diet consisting of 30% concentrates and 70% grass silage (DM basis), a grass silage- and corn silage-mixed diet consisting of 30% concentrates, 42% grass silage, and 28% corn silage (DM basis), or a corn silage-based diet consisting of 30% concentrates, 14% grass silage, and 56% corn silage (DM basis). Each type of BD was subsequently supplemented with 0 and 60 mg 3-NOP/kg DM in one crossover, or 0 and 80 mg 3-NOP/kg DM in the other crossover. Diets were provided in feed bins which automatically recorded feed intake and feeding behavior, with additional concentrate fed in the GF. All visits to the GF that resulted in a spot measurement of both CH4 and H2 emission were analyzed in relation to feeding behavior (e.g., meal size and time interval to preceding meal) as well as GF visiting behavior (e.g., duration of visit). Feeding and GF visiting behavior was related to CH4 and H2 production measured with the GF, in particular the meal size before a GF measurement and the time interval between a GF measurement and the preceding meal. Relationships between gas production and both feeding and GF visiting behavior were affected both by type of BD and 3-NOP supplementation. With an increase of the time interval between a GF measurement and the preceding meal, CH4 production decreased with 0 mg 3-NOP/kg DM but increased with 60 and 80 mg 3-NOP/kg DM, whereas type of BD did not affect these relationships. In contrast, CH4 production increased with 0 mg 3-NOP/kg DM but decreased with 60 and 80 mg 3-NOP/kg DM upon an increase in the size of the meal preceding a GF measurement. With an increase of the time interval between a GF measurement and the preceding meal, or with a decrease of the size of the meal preceding a GF measurement, H2 production decreased for all treatments, although the effect was generally somewhat stronger for 60 and 80 mg 3-NOP/kg DM than for 0 mg 3-NOP/kg DM. Hence, the timing of GF measurements next to feeding and GF visiting behavior are essential when assessing the effect of dietary treatment on the production of CH4 and H2 in a setting where a spot sampling device such as a GF is used and where the measurements depend on voluntary visits from the cows.
Collapse
Affiliation(s)
- Rudi de Mol
- Wageningen Livestock Research, Wageningen University & Research, PO Box 338, 6700 AH Wageningen, the Netherlands
| | - André Bannink
- Wageningen Livestock Research, Wageningen University & Research, PO Box 338, 6700 AH Wageningen, the Netherlands
| | - Jan Dijkstra
- Animal Nutrition Group, Wageningen University & Research, PO Box 338, 6700 AH, Wageningen, the Netherlands
| | - Nicola Walker
- DSM Nutritional Products, Animal Nutrition & Health, PO Box 2676, 4002 Basel, Switzerland
| | - Sanne van Gastelen
- Wageningen Livestock Research, Wageningen University & Research, PO Box 338, 6700 AH Wageningen, the Netherlands.
| |
Collapse
|
9
|
Hodge I, Quille P, O’Connell S. A Review of Potential Feed Additives Intended for Carbon Footprint Reduction through Methane Abatement in Dairy Cattle. Animals (Basel) 2024; 14:568. [PMID: 38396536 PMCID: PMC10885959 DOI: 10.3390/ani14040568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Eight rumen additives were chosen for an enteric methane-mitigating comparison study including garlic oil (GO), nitrate, Ascophyllum nodosum (AN), Asparagopsis (ASP), Lactobacillus plantarum (LAB), chitosan (CHI), essential oils (EOs) and 3-nitrooxypropanol (3-NOP). Dose-dependent analysis was carried out on selected feed additives using a meta-analysis approach to determine effectiveness in live subjects or potential efficacy in live animal trials with particular attention given to enteric gas, volatile fatty acid concentrations, and rumen microbial counts. All meta-analysis involving additives GO, nitrates, LAB, CHI, EOs, and 3-NOP revealed a reduction in methane production, while individual studies for AN and ASP displayed ruminal bacterial community improvement and a reduction in enteric CH4. Rumen protozoal depression was observed with GO and AN supplementation as well as an increase in propionate production with GO, LAB, ASP, CHI, and 3-NOP rumen fluid inoculation. GO, AN, ASP, and LAB demonstrated mechanisms in vitro as feed additives to improve rumen function and act as enteric methane mitigators. Enzyme inhibitor 3-NOP displays the greatest in vivo CH4 mitigating capabilities compared to essential oil commercial products. Furthermore, this meta-analysis study revealed that in vitro studies in general displayed a greater level of methane mitigation with these compounds than was seen in vivo, emphasising the importance of in vivo trials for final verification of use. While in vitro gas production systems predict in vivo methane production and fermentation trends with reasonable accuracy, it is necessary to confirm feed additive rumen influence in vivo before practical application.
Collapse
Affiliation(s)
- Ian Hodge
- Department of Biological and Pharmaceutical Science, Munster Technological University, V92 HD4V Tralee, Kerry, Ireland; (P.Q.); (S.O.)
- Research and Development Biotechnology Centre, Marigot Ltd., Shanbally, P43 E409 Ringaskiddy, Cork, Ireland
| | - Patrick Quille
- Department of Biological and Pharmaceutical Science, Munster Technological University, V92 HD4V Tralee, Kerry, Ireland; (P.Q.); (S.O.)
| | - Shane O’Connell
- Department of Biological and Pharmaceutical Science, Munster Technological University, V92 HD4V Tralee, Kerry, Ireland; (P.Q.); (S.O.)
- Research and Development Biotechnology Centre, Marigot Ltd., Shanbally, P43 E409 Ringaskiddy, Cork, Ireland
| |
Collapse
|
10
|
Kirwan SF, Tamassia LFM, Walker ND, Karagiannis A, Kindermann M, Waters SM. Effects of dietary supplementation with 3-nitrooxypropanol on enteric methane production, rumen fermentation, and performance in young growing beef cattle offered a 50:50 forage:concentrate diet. J Anim Sci 2024; 102:skad399. [PMID: 38038711 PMCID: PMC11282959 DOI: 10.1093/jas/skad399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 11/30/2023] [Indexed: 12/02/2023] Open
Abstract
There is an urgent requirement internationally to reduce enteric methane (CH4) emissions from ruminants to meet greenhouse gas emissions reduction targets. Dietary supplementation with feed additives is one possible strategy under investigation as an effective solution. The effects of the CH4 inhibitor 3-nitrooxypropanol (3-NOP) at reducing CH4 emissions in beef have been shown mainly in adult cattle consuming backgrounding and high-energy finishing diets. In this study, the effects of dietary supplementation of young growing (≤6 mo) beef cattle with 3-NOP were examined in a 50:50 forage:concentrate diet. A total of 68 Dairy × Beef (Aberdeen Angus and Hereford dairy cross) male calves (≤6 mo of age at the start of experiment, body weight: 147 ± 38 kg) underwent a 3-wk acclimatization period and were then assigned to one of two treatments in a completely randomized block design. Dietary treatments were (1) control, placebo (no 3-NOP), and (2) 3-NOP applied at 150 mg kg-1 DM. Calves were fed a partial mixed ration for 12 wk. Body weight was recorded weekly and feed intake daily using the Calan Broadbent feeding system. Methane and hydrogen emissions were measured using the GreenFeed system. Total weight gained, dry matter intake (DMI), and average daily gain were not affected by 3-NOP (P > 0.05) supplementation. On average, the inclusion of 3-NOP decreased (P < 0.001) CH4 emissions: g d-1; g kg-1 DMI; by 30.6% and 27.2%, respectively, during the study with a greater reduction occurring over time. Incorporating 3-NOP into beef cattle diets is an efficient solution to decrease CH4 emissions during indoor feeding and when offered 50:50 forage:concentrate diet.
Collapse
Affiliation(s)
- Stuart F Kirwan
- Animal Bioscience Research Department, Teagasc Grange, Dunsany, County Meath, Ireland C15 PW93
| | - Luis F M Tamassia
- DSM Nutritional Products, Animal Nutrition and Health, Wurmisweg 576, 4303 Kaiseraugst, Switzerland
| | - Nicola D Walker
- DSM Nutritional Products, Animal Nutrition and Health, Wurmisweg 576, 4303 Kaiseraugst, Switzerland
| | - Alexios Karagiannis
- DSM Nutritional Products, Animal Nutrition and Health, Wurmisweg 576, 4303 Kaiseraugst, Switzerland
| | - Maik Kindermann
- DSM Nutritional Products, Animal Nutrition and Health, Wurmisweg 576, 4303 Kaiseraugst, Switzerland
| | - Sinéad M Waters
- Animal Bioscience Research Department, Teagasc Grange, Dunsany, County Meath, Ireland C15 PW93
| |
Collapse
|
11
|
Maigaard M, Weisbjerg MR, Johansen M, Walker N, Ohlsson C, Lund P. Effects of dietary fat, nitrate, and 3-nitrooxypropanol and their combinations on methane emission, feed intake, and milk production in dairy cows. J Dairy Sci 2024; 107:220-241. [PMID: 37690719 DOI: 10.3168/jds.2023-23420] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/26/2023] [Indexed: 09/12/2023]
Abstract
The objective of the present study was to investigate the effect of individual and combined use of dietary fat, nitrate, and 3-nitrooxypropanol (3-NOP) on dairy cows' enteric methane (CH4) emission and production performance. Twenty-four primiparous and 24 multiparous Danish Holstein cows (111 ± 44.6 d in milk; mean ± standard deviation) were included in an incomplete 8 × 8 Latin square design with six 21-d periods. Dietary treatments were organized in a 2 × 2 × 2 factorial arrangement aiming for 2 levels of FAT (30 or 63 g of crude fat/kg of dry matter [DM]; LF or HF, respectively), 2 levels of NITRATE (0 or 10 g of nitrate/kg of DM; UREA or NIT, respectively), and 2 levels of 3-NOP (0 or 80 mg/kg DM; BLANK or NOP, respectively). Treatments were included in ad libitum-fed partial mixed rations in bins that automatically measured feed intake and eating behavior. Additional concentrate was offered as bait in GreenFeed units used for measurement of gas emission. For total DM intake (DMI), a FAT × NITRATE interaction showed that DMI, across parities and levels of 3-NOP, was unaffected by separate fat supplementation, but reduced by nitrate with 4.6% and synergistically decreased (significant 2-way interaction) with 13.0% when fat and nitrate were combined. Additionally, 3-NOP decreased DMI by 13.4% and the combination of 3-NOP with fat and nitrate decreased DMI in an additive way (no significant 3-way interaction). The decreasing effects on DMI were more pronounced in multiparous cows than in primiparous cows. For treatments with largest reductions in DMI, eating behavior was altered toward more frequent, but smaller meals, a slower eating rate and increased attempts to visit unassigned feed bins. Energy-corrected milk (ECM) yield increased by 6.3% with fat supplementation, whereas ECM yield did not differ among diets including nitrate (FAT × NITRATE interaction). Cows supplemented with 3-NOP had 9.0% lower ECM yield than cows fed no 3-NOP. Based on three 2-way interactions including FAT, NITRATE, and 3-NOP, the combined use of the additives resulted in antagonistic effects on CH4 reduction. A 6% to 7% reduction in CH4 yield (CH4/kg of DMI) could be ascribed to the effect of fat, a 12% to 13% reduction could be ascribed to the effect of nitrate and an 18% to 23% reduction could be ascribed to the effect of 3-NOP. Hence, no combinations of additives resulted in CH4 yield-reductions that were greater than what was obtained by separate supplementation of the most potent additive within the combination. The CH4 yield reduction potential of additives was similar between parities. Increased apparent total-tract digestibility of organic matter (OM) in cows fed combinations including nitrate or 3-NOP was a result of a NITRATE × 3-NOP interaction. Apparent total-tract digestibility of OM was also increased by fat supplementation. These increases reflected observed decreases in DMI. In conclusion, combined use of fat, nitrate, and 3-NOP in all combinations did not result in CH4 reductions that were greater than separate supplementation of the most potent additive within the combination (3-NOP > nitrate > fat). Additionally, separate supplementation of some additives and combined use of all additives reduced DMI.
Collapse
Affiliation(s)
- Morten Maigaard
- Department of Animal and Veterinary Sciences, AU Viborg-Research Centre Foulum, Aarhus University, 8830 Tjele, Denmark.
| | - Martin R Weisbjerg
- Department of Animal and Veterinary Sciences, AU Viborg-Research Centre Foulum, Aarhus University, 8830 Tjele, Denmark
| | - Marianne Johansen
- Department of Animal and Veterinary Sciences, AU Viborg-Research Centre Foulum, Aarhus University, 8830 Tjele, Denmark
| | - Nicola Walker
- DSM Nutritional Products, Animal Nutrition & Health, 4002 Basel, Switzerland
| | - Christer Ohlsson
- DSM Nutritional Products, Animal Nutrition & Health, 4002 Basel, Switzerland
| | - Peter Lund
- Department of Animal and Veterinary Sciences, AU Viborg-Research Centre Foulum, Aarhus University, 8830 Tjele, Denmark
| |
Collapse
|
12
|
Kebreab E, Bannink A, Pressman EM, Walker N, Karagiannis A, van Gastelen S, Dijkstra J. A meta-analysis of effects of 3-nitrooxypropanol on methane production, yield, and intensity in dairy cattle. J Dairy Sci 2023; 106:927-936. [PMID: 36494226 PMCID: PMC9868067 DOI: 10.3168/jds.2022-22211] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/08/2022] [Indexed: 12/12/2022]
Abstract
Ruminants, particularly dairy and beef cattle, contribute to climate change through mostly enteric methane emissions. Several mitigating options have been proposed, including the feed additive 3-nitrooxypropanol (3-NOP). The objectives of this study were to explain the variability in the mitigating effect of 3-NOP and to investigate the interaction between diet composition and 3-NOP dose, using meta-analytical approaches. Data from 13 articles (14 experiments) met the selection criteria for inclusion in the meta-analysis, and 48 treatment means were used for the analysis. Mean differences were calculated as 3-NOP treatment mean minus control treatment mean and then expressed as a percentage of the control mean. Three types of models were developed: (1) one including 3-NOP dose, overall mean, and individual covariate; (2) a combination of neutral detergent fiber (NDF), 3-NOP dose, and overall mean; and (3) one selected model from all combinations of up to 5 covariates, which were compared using a leave-one-out cross validation method. Models including only 3-NOP dose resulted in a significant reduction of 32.7%, 30.9%, and 32.6% for CH4 production (g/d), yield (g/kg dry matter intake), and intensity (g/kg energy-corrected milk), respectively, at an average 3-NOP dose of 70.5 mg/kg dry matter (DM). The greater the NDF content in the diet, the lower the reduction efficiency for a given 3-NOP dose. For 10 g/kg DM increase in NDF content from its mean (329 g of NDF/kg of DM) the 3-NOP effect on CH4 production was impaired by 0.633%, the 3-NOP effect on CH4 yield by 0.647%, and the 3-NOP effect on CH4 intensity by 0.723%. The analysis based on leave-one-out cross validation showed an increase in NDF and crude fat content reduces efficacy of 3-NOP and an increase in 3-NOP dose increases efficacy. A 1% (10 g/kg) DM decrease in dietary NDF content from its mean may increase the efficacy of 3-NOP in reducing CH4 production by 0.915%. A 1% (10 g/kg DM) decrease in dietary crude fat content from its mean enhances the efficacy of 3-NOP on CH4 production by 3.080% at a given dose and NDF level. For CH4 yield, next to 3-NOP dose, dietary NDF content and dietary crude fat content were included in the selected model, but also dietary starch content with an opposite direction to NDF and crude fat. The effect of 3-NOP dose on CH4 intensity was similar to its effect on CH4 production, whereas the effect of dietary NDF content was slightly lower. Expanding the previously published models with the newly available data published from trials since then improved model performance, hence demonstrating the value of regularly updating meta-analyses if a wider range of data becomes available.
Collapse
Affiliation(s)
- Ermias Kebreab
- Department of Animal Science, University of California, Davis 95616.
| | - André Bannink
- Wageningen Livestock Research, Wageningen University & Research, PO Box 338, 6700 AH, Wageningen, the Netherlands
| | | | - Nicola Walker
- DSM Nutritional Products, Animal Nutrition & Health, PO Box 2676, 4002 Basel, Switzerland
| | - Alexios Karagiannis
- DSM Nutritional Products, Animal Nutrition & Health, PO Box 2676, 4002 Basel, Switzerland
| | - Sanne van Gastelen
- Wageningen Livestock Research, Wageningen University & Research, PO Box 338, 6700 AH, Wageningen, the Netherlands
| | - Jan Dijkstra
- Animal Nutrition Group, Wageningen University & Research, PO Box 338, 6700 AH, Wageningen, the Netherlands
| |
Collapse
|
13
|
Almeida AK, Cowley F, McMeniman JP, Karagiannis A, Walker N, Tamassia LFM, McGrath JJ, Hegarty RS. Effect of 3-nitrooxypropanol on enteric methane emissions of feedlot cattle fed with a tempered barley-based diet with canola oil. J Anim Sci 2023; 101:skad237. [PMID: 37429613 PMCID: PMC10370881 DOI: 10.1093/jas/skad237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 07/09/2023] [Indexed: 07/12/2023] Open
Abstract
A dose-response experiment was designed to examine the effect of 3-nitrooxypropanol (3-NOP) on methane (CH4) emissions, rumen function and performance of feedlot cattle fed a tempered barley-based diet with canola oil. Twenty Angus steers of initial body weight (BW) of 356 ± 14.4 kg were allocated in a randomized complete block design. Initial BW was used as the blocking criterion. Cattle were housed in individual indoor pens for 112 d, including the first 21 d of adaptation followed by a 90-d finishing period when five different 3-NOP inclusion rates were compared: 0 mg/kg dry matter (DM; control), 50 mg/kg DM, 75 mg/kg DM, 100 mg/kg DM, and 125 mg/kg DM. Daily CH4 production was measured on day 7 (last day of starter diet), day 14 (last day of the first intermediate diet), and day 21 (last day of the second intermediate diet) of the adaptation period and on days 28, 49, 70, 91, and 112 of the finisher period using open circuit respiration chambers. Rumen digesta samples were collected from each steer on the day prior to chamber measurement postfeeding, and prefeeding on the day after the chamber measurement, for determination of rumen volatile fatty acids (VFA), ammonium-N, protozoa enumeration, pH, and reduction potential. Dry matter intake (DMI) was recorded daily and BW weekly. Data were analyzed in a mixed model including period, 3-NOP dose and their interaction as fixed effects, and block as a random effect. Our results demonstrated both a linear and quadratic (decreasing rate of change) effect on CH4 production (g/d) and CH4 yield (g/kg DMI) as 3-NOP dose increased (P < 0.01). The achieved mitigation for CH4 yield in our study ranged from approximately 65.5% up to 87.6% relative to control steers fed a finishing feedlot diet. Our results revealed that 3-NOP dose did not alter rumen fermentation parameters such as ammonium-N, VFA concentration nor VFA molar proportions. Although this experimental design was not focused on the effect of 3-NOP dose on feedlot performance, no negative effects of any 3-NOP dose were detected on animal production parameters. Ultimately, the knowledge on the CH4 suppression pattern of 3-NOP may facilitate sustainable pathways for the feedlot industry to lower its carbon footprint.
Collapse
Affiliation(s)
- Amelia K Almeida
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
- School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
| | - Frances Cowley
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Joe P McMeniman
- Feedlot Program, Meat and Livestock Australia Limited (MLA), North Sydney, NSW 2060, Australia
| | - Alex Karagiannis
- Animal Nutrition and Health, DSM Nutritional Products, Wurmisweg 576 4303, Kaiseraugst, Switzerland
| | - Nicola Walker
- Animal Nutrition and Health, DSM Nutritional Products, Wurmisweg 576 4303, Kaiseraugst, Switzerland
| | - Luis F M Tamassia
- Animal Nutrition and Health, DSM Nutritional Products, Wurmisweg 576 4303, Kaiseraugst, Switzerland
| | - Joseph J McGrath
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
- Animal Nutrition and Health, DSM Nutritional Products, Wurmisweg 576 4303, Kaiseraugst, Switzerland
| | - Roger S Hegarty
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
14
|
Smith PE, Kelly AK, Kenny DA, Waters SM. Enteric methane research and mitigation strategies for pastoral-based beef cattle production systems. Front Vet Sci 2022; 9:958340. [PMID: 36619952 PMCID: PMC9817038 DOI: 10.3389/fvets.2022.958340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/09/2022] [Indexed: 12/25/2022] Open
Abstract
Ruminant livestock play a key role in global society through the conversion of lignocellulolytic plant matter into high-quality sources of protein for human consumption. However, as a consequence of the digestive physiology of ruminant species, methane (CH4), which originates as a byproduct of enteric fermentation, is accountable for 40% of global agriculture's carbon footprint and ~6% of global greenhouse gas (GHG) emissions. Therefore, meeting the increasing demand for animal protein associated with a growing global population while reducing the GHG intensity of ruminant production will be a challenge for both the livestock industry and the research community. In recent decades, numerous strategies have been identified as having the potential to reduce the methanogenic output of livestock. Dietary supplementation with antimethanogenic compounds, targeting members of the rumen methanogen community and/or suppressing the availability of methanogenesis substrates (mainly H2 and CO2), may have the potential to reduce the methanogenic output of housed livestock. However, reducing the environmental impact of pasture-based beef cattle may be a challenge, but it can be achieved by enhancing the nutritional quality of grazed forage in an effort to improve animal growth rates and ultimately reduce lifetime emissions. In addition, the genetic selection of low-CH4-emitting and/or faster-growing animals will likely benefit all beef cattle production systems by reducing the methanogenic potential of future generations of livestock. Similarly, the development of other mitigation technologies requiring minimal intervention and labor for their application, such as anti-methanogen vaccines, would likely appeal to livestock producers, with high uptake among farmers if proven effective. Therefore, the objective of this review is to give a detailed overview of the CH4 mitigation solutions, both currently available and under development, for temperate pasture-based beef cattle production systems. A description of ruminal methanogenesis and the technologies used to estimate enteric emissions at pastures are also presented.
Collapse
Affiliation(s)
- Paul E. Smith
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Dunsany, Ireland,*Correspondence: Paul E. Smith
| | - Alan K. Kelly
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - David A. Kenny
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Dunsany, Ireland
| | - Sinéad M. Waters
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Dunsany, Ireland
| |
Collapse
|
15
|
Liu Z, Wang K, Nan X, Yang L, Wang Y, Zhang F, Cai M, Zhao Y, Xiong B. Effects of combined addition of 3-nitrooxypropanol and vitamin B12 on methane and propionate production in dairy cows by in vitro-simulated fermentation. J Dairy Sci 2022; 106:219-232. [DOI: 10.3168/jds.2022-22207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/13/2022] [Indexed: 11/09/2022]
|
16
|
Hörtenhuber S, Seiringer M, Theurl M, Größbacher V, Piringer G, Kral I, Zollitsch W. Implementing an appropriate metric for the assessment of greenhouse gas emissions from livestock production: A national case study. Animal 2022; 16:100638. [DOI: 10.1016/j.animal.2022.100638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/27/2022] [Accepted: 09/01/2022] [Indexed: 12/01/2022] Open
|
17
|
Pitta DW, Indugu N, Melgar A, Hristov A, Challa K, Vecchiarelli B, Hennessy M, Narayan K, Duval S, Kindermann M, Walker N. The effect of 3-nitrooxypropanol, a potent methane inhibitor, on ruminal microbial gene expression profiles in dairy cows. MICROBIOME 2022; 10:146. [PMID: 36100950 PMCID: PMC9469553 DOI: 10.1186/s40168-022-01341-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Enteric methane emissions from dairy cows are an environmental problem as well as a gross feed energy loss to the animal. Methane is generated in the rumen by methanogenic archaea from hydrogen (H2) + carbon dioxide and from H2 + methanol or methylamines. The methanogenic substrates are provided by non-methanogens during feed fermentation. Methane mitigation approaches have yielded variable results, partially due to an incomplete understanding of the contribution of hydrogenotrophic and methylotrophic archaea to methanogenesis. Research indicates that 3-nitrooxypropanol (3-NOP) reduces enteric methane formation in dairy cows by inhibiting methyl-coenzyme M reductase (MCR), the enzyme responsible for methane formation. The purpose of this study was to utilize metagenomic and metatranscriptomic approaches to investigate the effect of 3-NOP on the rumen microbiome and to determine the fate of H2 that accumulates less than expected under inhibited methanogenesis. RESULTS The inhibitor 3-NOP was more inhibitory on Methanobrevibacter species than methanol-utilizing Methanosphaera and tended to reduce the gene expression of MCR. Under inhibited methanogenesis by 3-NOP, fluctuations in H2 concentrations were accompanied by changes in the expression of [FeFe] hydrogenases in H2-producing bacteria to regulate the amount of H2 production. No previously reported alternative H2 sinks increased under inhibited methanogenesis except for a significant increase in gene expression of enzymes involved in the butyrate pathway. CONCLUSION By taking a metatranscriptomic approach, this study provides novel insights on the contribution of methylotrophic methanogens to total methanogenesis and regulation of H2 metabolism under normal and inhibited methanogenesis by 3-NOP in the rumen. Video Abstract.
Collapse
Affiliation(s)
- Dipti W. Pitta
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, New Bolton Center, Kennett Square, PA 19348 USA
| | - Nagaraju Indugu
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, New Bolton Center, Kennett Square, PA 19348 USA
| | - Audino Melgar
- Department of Animal Science, The Pennsylvania State University, State College, PA 16801 USA
| | - Alexander Hristov
- Department of Animal Science, The Pennsylvania State University, State College, PA 16801 USA
| | - Krishna Challa
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, New Bolton Center, Kennett Square, PA 19348 USA
| | - Bonnie Vecchiarelli
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, New Bolton Center, Kennett Square, PA 19348 USA
| | - Meagan Hennessy
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, New Bolton Center, Kennett Square, PA 19348 USA
| | - Kapil Narayan
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, New Bolton Center, Kennett Square, PA 19348 USA
| | - Stephane Duval
- Research Centre for Animal Nutrition and Health, DSM Nutritional Products, CH-4303 Kaiseraugst, Switzerland
| | - Maik Kindermann
- Research Centre for Animal Nutrition and Health, DSM Nutritional Products, CH-4303 Kaiseraugst, Switzerland
| | - Nicola Walker
- Research Centre for Animal Nutrition and Health, DSM Nutritional Products, CH-4303 Kaiseraugst, Switzerland
| |
Collapse
|
18
|
Fouts JQ, Honan MC, Roque BM, Tricarico JM, Kebreab E. Board Invited Review: Enteric methane mitigation interventions. Transl Anim Sci 2022; 6:txac041. [PMID: 35529040 PMCID: PMC9071062 DOI: 10.1093/tas/txac041] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/29/2022] [Indexed: 12/02/2022] Open
Abstract
Mitigation of enteric methane (CH4) presents a feasible approach to curbing agriculture’s contribution to climate change. One intervention for reduction is dietary reformulation, which manipulates the composition of feedstuffs in ruminant diets to redirect fermentation processes toward low CH4 emissions. Examples include reducing the relative proportion of forages to concentrates, determining the rate of digestibility and passage rate from the rumen, and dietary lipid inclusion. Feed additives present another intervention for CH4 abatement and are classified based on their mode of action. Through inhibition of key enzymes, 3-nitrooxypropanol (3-NOP) and halogenated compounds directly target the methanogenesis pathway. Rumen environment modifiers, including nitrates, essential oils, and tannins, act on the conditions that affect methanogens and remove the accessibility of fermentation products needed for CH4 formation. Low CH4-emitting animals can also be directly or indirectly selected through breeding interventions, and genome-wide association studies are expected to provide efficient selection decisions. Overall, dietary reformulation and feed additive inclusion provide immediate and reversible effects, while selective breeding produces lasting, cumulative CH4 emission reductions.
Collapse
Affiliation(s)
- Julia Q Fouts
- Department of Animal Science, University of California, Davis, Davis, CA 95616 USA
| | - Mallory C Honan
- Department of Animal Science, University of California, Davis, Davis, CA 95616 USA
| | - Breanna M Roque
- Department of Animal Science, University of California, Davis, Davis, CA 95616 USA
- FutureFeed Pty Ltd Townsville, QLD, Australia
| | | | - Ermias Kebreab
- Department of Animal Science, University of California, Davis, Davis, CA 95616 USA
| |
Collapse
|
19
|
Min BR, Lee S, Jung H, Miller DN, Chen R. Enteric Methane Emissions and Animal Performance in Dairy and Beef Cattle Production: Strategies, Opportunities, and Impact of Reducing Emissions. Animals (Basel) 2022; 12:948. [PMID: 35454195 PMCID: PMC9030782 DOI: 10.3390/ani12080948] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 01/14/2023] Open
Abstract
Enteric methane (CH4) emissions produced by microbial fermentation in the rumen resulting in the emission of greenhouse gases (GHG) into the atmosphere. The GHG emissions reduction from the livestock industry can be attained by increasing production efficiency and improving feed efficiency, by lowering the emission intensity of production, or by combining the two. In this work, information was compiled from peer-reviewed studies to analyze CH4 emissions calculated per unit of milk production, energy-corrected milk (ECM), average daily gain (ADG), dry matter intake (DMI), and gross energy intake (GEI), and related emissions to rumen fermentation profiles (volatile fatty acids [VFA], hydrogen [H2]) and microflora activities in the rumen of beef and dairy cattle. For dairy cattle, there was a positive correlation (p < 0.001) between CH4 emissions and DMI (R2 = 0.44), milk production (R2 = 0.37; p < 0.001), ECM (R2 = 0.46), GEI (R2 = 0.50), and acetate/propionate (A/P) ratio (R2 = 0.45). For beef cattle, CH4 emissions were positively correlated (p < 0.05−0.001) with DMI (R2 = 0.37) and GEI (R2 = 0.74). Additionally, the ADG (R2 = 0.19; p < 0.01) and A/P ratio (R2 = 0.15; p < 0.05) were significantly associated with CH4 emission in beef steers. This information may lead to cost-effective methods to reduce enteric CH4 production from cattle. We conclude that enteric CH4 emissions per unit of ECM, GEI, and ADG, as well as rumen fermentation profiles, show great potential for estimating enteric CH4 emissions.
Collapse
Affiliation(s)
- Byeng-Ryel Min
- College of Agriculture, Environment and Nutrition Sciences, Tuskegee University, Tuskegee, AL 36088, USA;
| | - Seul Lee
- Animal Nutrition & Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Jeollabuk-do, Korea; (S.L.); (H.J.)
| | - Hyunjung Jung
- Animal Nutrition & Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Jeollabuk-do, Korea; (S.L.); (H.J.)
| | - Daniel N. Miller
- Agroecosystem Management Research Unit, USDA/ARS, 354 Filly Hall, Lincoln, NE 68583, USA;
| | - Rui Chen
- College of Agriculture, Environment and Nutrition Sciences, Tuskegee University, Tuskegee, AL 36088, USA;
| |
Collapse
|
20
|
van Gastelen S, Dijkstra J, Heck JM, Kindermann M, Klop A, de Mol R, Rijnders D, Walker N, Bannink A. Methane mitigation potential of 3-nitrooxypropanol in lactating cows is influenced by basal diet composition. J Dairy Sci 2022; 105:4064-4082. [DOI: 10.3168/jds.2021-20782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 12/20/2021] [Indexed: 11/19/2022]
|
21
|
Yu G, Beauchemin KA, Dong R. A Review of 3-Nitrooxypropanol for Enteric Methane Mitigation from Ruminant Livestock. Animals (Basel) 2021; 11:3540. [PMID: 34944313 PMCID: PMC8697901 DOI: 10.3390/ani11123540] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
Methane (CH4) from enteric fermentation accounts for 3 to 5% of global anthropogenic greenhouse gas emissions, which contribute to climate change. Cost-effective strategies are needed to reduce feed energy losses as enteric CH4 while improving ruminant production efficiency. Mitigation strategies need to be environmentally friendly, easily adopted by producers and accepted by consumers. However, few sustainable CH4 mitigation approaches are available. Recent studies show that the chemically synthesized CH4 inhibitor 3-nitrooxypropanol is one of the most effective approaches for enteric CH4 abatement. 3-nitrooxypropanol specifically targets the methyl-coenzyme M reductase and inhibits the final catalytic step in methanogenesis in rumen archaea. Providing 3-nitrooxypropanol to dairy and beef cattle in research studies has consistently decreased enteric CH4 production by 30% on average, with reductions as high as 82% in some cases. Efficacy is positively related to 3-NOP dose and negatively affected by neutral detergent fiber concentration of the diet, with greater responses in dairy compared with beef cattle when compared at the same dose. This review collates the current literature on 3-nitrooxypropanol and examines the overall findings of meta-analyses and individual studies to provide a synthesis of science-based information on the use of 3-nitrooxypropanol for CH4 abatement. The intent is to help guide commercial adoption at the farm level in the future. There is a significant body of peer-reviewed scientific literature to indicate that 3-nitrooxypropanol is effective and safe when incorporated into total mixed rations, but further research is required to fully understand the long-term effects and the interactions with other CH4 mitigating compounds.
Collapse
Affiliation(s)
- Guanghui Yu
- College of Animal Science and Technology, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao 266109, China;
| | - Karen A. Beauchemin
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada;
| | - Ruilan Dong
- College of Animal Science and Technology, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao 266109, China;
| |
Collapse
|
22
|
Almeida AK, Hegarty RS, Cowie A. Meta-analysis quantifying the potential of dietary additives and rumen modifiers for methane mitigation in ruminant production systems. ACTA ACUST UNITED AC 2021; 7:1219-1230. [PMID: 34754963 PMCID: PMC8556609 DOI: 10.1016/j.aninu.2021.09.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 12/01/2022]
Abstract
Increasingly countries are seeking to reduce emission of greenhouse gases from the agricultural industries, and livestock production in particular, as part of their climate change management. While many reviews update progress in mitigation research, a quantitative assessment of the efficacy and performance-consequences of nutritional strategies to mitigate enteric methane (CH4) emissions from ruminants has been lacking. A meta-analysis was conducted based on 108 refereed papers from recent animal studies (2000–2020) to report effects on CH4 production, CH4 yield and CH4 emission intensity from 8 dietary interventions. The interventions (oils, microalgae, nitrate, ionophores, protozoal control, phytochemicals, essential oils and 3-nitrooxypropanol). Of these, macroalgae and 3-nitrooxypropanol showed greatest efficacy in reducing CH4 yield (g CH4/kg of dry matter intake) at the doses trialled. The confidence intervals derived for the mitigation efficacies could be applied to estimate the potential to reduce national livestock emissions through the implementation of these dietary interventions.
Collapse
Affiliation(s)
- Amelia K Almeida
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| | - Roger S Hegarty
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| | - Annette Cowie
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia.,NSW Department of Primary Industries, Trevenna Rd, Armidale, NSW, 2351, Australia
| |
Collapse
|
23
|
Mizrahi I, Wallace RJ, Moraïs S. The rumen microbiome: balancing food security and environmental impacts. Nat Rev Microbiol 2021; 19:553-566. [PMID: 33981031 DOI: 10.1038/s41579-021-00543-6] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2021] [Indexed: 02/03/2023]
Abstract
Ruminants produce edible products and contribute to food security. They house a complex rumen microbial community that enables the host to digest their plant feed through microbial-mediated fermentation. However, the rumen microbiome is also responsible for the production of one of the most potent greenhouse gases, methane, and contributes about 18% of its total anthropogenic emissions. Conventional methods to lower methane production by ruminants have proved successful, but to a limited and often temporary extent. An increased understanding of the host-microbiome interactions has led to the development of new mitigation strategies. In this Review we describe the composition, ecology and metabolism of the rumen microbiome, and the impact on host physiology and the environment. We also discuss the most pertinent methane mitigation strategies that emerged to balance food security and environmental impacts.
Collapse
Affiliation(s)
- Itzhak Mizrahi
- Department of Life Sciences, Ben-Gurion University of the Negev and the National Institute for Biotechnology in the Negev, Marcus Family Campus, Be'er-Sheva, Israel.
| | - R John Wallace
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Sarah Moraïs
- Department of Life Sciences, Ben-Gurion University of the Negev and the National Institute for Biotechnology in the Negev, Marcus Family Campus, Be'er-Sheva, Israel
| |
Collapse
|
24
|
van Lingen HJ, Fadel JG, Yáñez-Ruiz DR, Kindermann M, Kebreab E. Inhibited Methanogenesis in the Rumen of Cattle: Microbial Metabolism in Response to Supplemental 3-Nitrooxypropanol and Nitrate. Front Microbiol 2021; 12:705613. [PMID: 34385990 PMCID: PMC8353594 DOI: 10.3389/fmicb.2021.705613] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
3-Nitrooxypropanol (3-NOP) supplementation to cattle diets mitigates enteric CH4 emissions and may also be economically beneficial at farm level. However, the wider rumen metabolic response to methanogenic inhibition by 3-NOP and the NO2- intermediary metabolite requires further exploration. Furthermore, NO3- supplementation potently decreases CH4 emissions from cattle. The reduction of NO3- utilizes H2 and yields NO2-, the latter of which may also inhibit rumen methanogens, although a different mode of action than for 3-NOP and its NO2- derivative was hypothesized. Our objective was to explore potential responses of the fermentative and methanogenic metabolism in the rumen to 3-NOP, NO3- and their metabolic derivatives using a dynamic mechanistic modeling approach. An extant mechanistic rumen fermentation model with state variables for carbohydrate substrates, bacteria and protozoa, gaseous and dissolved fermentation end products and methanogens was extended with a state variable of either 3-NOP or NO3-. Both new models were further extended with a NO2- state variable, with NO2- exerting methanogenic inhibition, although the modes of action of 3-NOP-derived and NO3--derived NO2- are different. Feed composition and intake rate (twice daily feeding regime), and supplement inclusion were used as model inputs. Model parameters were estimated to experimental data collected from the literature. The extended 3-NOP and NO3- models both predicted a marked peak in H2 emission shortly after feeding, the magnitude of which increased with higher doses of supplement inclusion. The H2 emission rate appeared positively related to decreased acetate proportions and increased propionate and butyrate proportions. A decreased CH4 emission rate was associated with 3-NOP and NO3- supplementation. Omission of the NO2- state variable from the 3-NOP model did not change the overall dynamics of H2 and CH4 emission and other metabolites. However, omitting the NO2- state variable from the NO3- model did substantially change the dynamics of H2 and CH4 emissions indicated by a decrease in both H2 and CH4 emission after feeding. Simulations do not point to a strong relationship between methanogenic inhibition and the rate of NO3- and NO2- formation upon 3-NOP supplementation, whereas the metabolic response to NO3- supplementation may largely depend on methanogenic inhibition by NO2-.
Collapse
Affiliation(s)
- Henk J van Lingen
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - James G Fadel
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | | | - Maik Kindermann
- Research and Development, DSM Nutritional Products, Basel, Switzerland
| | - Ermias Kebreab
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| |
Collapse
|
25
|
Sun K, Liu H, Fan H, Liu T, Zheng C. Research progress on the application of feed additives in ruminal methane emission reduction: a review. PeerJ 2021; 9:e11151. [PMID: 33850664 PMCID: PMC8019312 DOI: 10.7717/peerj.11151] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/03/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Ruminal methane (CH4) emissions from ruminants not only pollute the environment and exacerbate the greenhouse effect, but also cause animal energy losses and low production efficiency. Consequently, it is necessary to find ways of reducing methane emissions in ruminants. Studies have reported that feed additives such as nitrogen-containing compounds, probiotics, prebiotics, and plant extracts significantly reduce ruminant methane; however, systematic reviews of such studies are lacking. The present article summarizes research over the past five years on the effects of nitrogen-containing compounds, probiotics, probiotics, and plant extracts on methane emissions in ruminants. The paper could provide theoretical support and guide future research in animal production and global warming mitigation. METHODS This review uses the Web of Science database to search keywords related to ruminants and methane reduction in the past five years, and uses Sci-Hub, PubMed, etc. as auxiliary searchers. Read, filter, list, and summarize all the retrieved documents, and finally complete this article. RESULTS Most of the extracts can not only significantly reduce CH4 greenhouse gas emissions, but they will not cause negative effects on animal and human health either. Therefore, this article reviews the mechanisms of CH4 production in ruminants and the application and effects of N-containing compounds, probiotics, prebiotics, and plant extracts on CH4 emission reduction in ruminants based on published studies over the past 5 years. CONCLUSION Our review provides a theoretical basis for future research and the application of feed additives in ruminant CH4 emission reduction activities.
Collapse
Affiliation(s)
- Kang Sun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Huihui Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Huiyu Fan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Ting Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Chen Zheng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
26
|
Schilde M, von Soosten D, Hüther L, Meyer U, Zeyner A, Dänicke S. Effects of 3-nitrooxypropanol and varying concentrate feed proportions in the ration on methane emission, rumen fermentation and performance of periparturient dairy cows. Arch Anim Nutr 2021; 75:79-104. [PMID: 33641544 DOI: 10.1080/1745039x.2021.1877986] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The climate-relevant enteric methane (CH4) formation represents a loss of feed energy that is potentially meaningful for energetically undersupplied peripartal dairy cows. Higher concentrate feed proportions (CFP) are known to reduce CH4 emissions in cows. The same applies to the feed additive 3-nitrooxypropanol (3-NOP), albeit through different mechanisms. It was hypothesised that the hydrogen not utilised for CH4 formation through the inhibition by 3-NOP would be sequestered by propionate formation triggered by higher CFP so that it could thereby give rise to a synergistically reduced CH4 emission. In a 2 × 2-factorial design, low (LC) or high (HC) CFP were either tested without supplements (CONLC, CONHC) or combined with 3-NOP (NOPLC, 48.4 mg/kg dry matter (DM); NOPHC, 51.2 mg 3-NOP/kg DM). These four rations were fed to a total of 55 Holstein cows from d 28 ante partum until d 120 post partum. DM intake (DMI) was not affected by 3-NOP but increased with CFP (CFP; p < 0.001). CH4/DMI and CH4/energy-corrected milk (ECM) were mitigated by 3-NOP (23% NOPLC, 33% NOPHC) (p < 0.001) and high CFP (12% CON, 22% 3-NOP groups) (CFP × TIME p < 0.001). Under the conditions of the present experiment, the CH4 emissions of NOPLC increased to the level of the CON groups from week 8 until the end of trial (3-NOP × CFP × TIME; p < 0.01). CO2 yield decreased by 3-NOP and high CFP (3-NOP × CFP; p < 0.001). The reduced body weight loss and feed efficiency in HC groups paralleled a more positive energy balance being most obvious in NOPHC (3-NOP × CFP; p < 0.001). ECM was lower for NOPHC compared to CONHC (3-NOP × CFP; p < 0.05), whereas LC groups did not differ. A decreased fat to protein ratio was observed in HC groups and, until week 6 post partum, in NOPLC. Milk lactose and urea increased by 3-NOP (3-NOP; p < 0.05). 3-NOP and high CFP changed rumen fermentation to a more propionic-metabolic profile (3-NOP; CFP; p < 0.01) but did not affect rumen pH. In conclusion, CH4 emission was synergistically reduced when high CFP was combined with 3-NOP while the CH4 mitigating 3-NOP effect decreased with progressing time when the supplement was added to the high-forage ration. The nature of these interactions needs to be clarified.
Collapse
Affiliation(s)
- Matthias Schilde
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Brunswick, Germany
| | - Dirk von Soosten
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Brunswick, Germany
| | - Liane Hüther
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Brunswick, Germany
| | - Ulrich Meyer
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Brunswick, Germany
| | - Annette Zeyner
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Sven Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Brunswick, Germany
| |
Collapse
|
27
|
Melgar A, Lage CFA, Nedelkov K, Räisänen SE, Stefenoni H, Fetter ME, Chen X, Oh J, Duval S, Kindermann M, Walker ND, Hristov AN. Enteric methane emission, milk production, and composition of dairy cows fed 3-nitrooxypropanol. J Dairy Sci 2020; 104:357-366. [PMID: 33131815 DOI: 10.3168/jds.2020-18908] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/12/2020] [Indexed: 01/07/2023]
Abstract
This study examined the effect of 3-nitrooxypropanol (3-NOP), an investigational substance, on enteric methane emission, milk production, and composition in Holstein dairy cows. Following a 3-wk covariate period, 48 multi- and primiparous cows averaging (± standard deviation) 118 ± 28 d in milk, 43.4 ± 8 kg/d milk yield, and 594 ± 57 kg of body weight were blocked based on days in milk, milk yield, and enteric methane emission and randomly assigned to 1 of 2 treatment groups: (1) control, no 3-NOP, and (2) 3-NOP applied at 60 mg/kg feed dry matter. Inclusion of 3-NOP was through the total mixed ration and fed for 15 consecutive weeks. Cows were housed in a freestall barn equipped with a Calan Broadbent Feeding System (American Calan Inc., Northwood, NH) for monitoring individual dry matter intake and fed ad libitum once daily. Enteric gaseous emissions (methane, carbon dioxide, and hydrogen) were measured using 3 GreenFeed (C-Lock Inc., Rapid City, SD) units. Dry matter intake, cow body weight, and body weight change were not affected by 3-NOP. Compared with the control group, 3-NOP applied at 60 mg/kg feed dry matter decreased daily methane emission, emission yield, and emission intensity by 26, 27, and 29%, respectively. Enteric emission of carbon dioxide was not affected, and hydrogen emission was increased 6-fold by 3-NOP. Administration of 3-NOP had no effect on milk and energy-corrected milk yields and feed efficiency, increased milk fat and milk urea nitrogen concentrations, and increased milk fat yield but had no other effects on milk components. Concentration of C6:0 and C8:0 and the sum of saturated fatty acids in milk fat were increased by 3-NOP. Total trans fatty acids and the sum of polyunsaturated fatty acids were decreased by 3-NOP. In this experiment, 3-NOP decreased enteric methane daily emission, yield, and intensity without affecting dry matter intake and milk yield, but increased milk fat in high-producing dairy cows.
Collapse
Affiliation(s)
- A Melgar
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - C F A Lage
- Department of Animal Science, The Pennsylvania State University, University Park 16802; Department of Animal Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil 31270-901
| | - K Nedelkov
- Department of Animal Science, The Pennsylvania State University, University Park 16802; Department of Animal Husbandry, Faculty of Veterinary Medicine, Trakia University, Stara Zagora 6000, Bulgaria
| | - S E Räisänen
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - H Stefenoni
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - M E Fetter
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - X Chen
- Department of Animal Science, The Pennsylvania State University, University Park 16802; School of Computing, University of Ulster, Co. Antrim, Northern Ireland, BT37 0QB, United Kingdom
| | - J Oh
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - S Duval
- Research Centre for Animal Nutrition and Health, DSM Nutritional Products, Saint Louis Cedex 68305, France
| | - M Kindermann
- Department of Animal Nutrition, DSM Nutritional Products, Wurmisweg 576, 4303 Kaiseraugst, Switzerland
| | - N D Walker
- Department of Animal Nutrition, DSM Nutritional Products, Wurmisweg 576, 4303 Kaiseraugst, Switzerland
| | - A N Hristov
- Department of Animal Science, The Pennsylvania State University, University Park 16802.
| |
Collapse
|
28
|
Melgar A, Nedelkov K, Martins CMMR, Welter KC, Chen X, Räisänen SE, Harper MT, Oh J, Duval S, Hristov AN. Short communication: Short-term effect of 3-nitrooxypropanol on feed dry matter intake in lactating dairy cows. J Dairy Sci 2020; 103:11496-11502. [PMID: 33041021 DOI: 10.3168/jds.2020-18331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 07/29/2020] [Indexed: 11/19/2022]
Abstract
The objective of this study was to investigate the effect of 3-nitrooxypropanol (3-NOP), an enteric methane inhibitor under investigation, on short-term dry matter intake (DMI) in lactating dairy cows. Following a 1-wk adaptation period, 12 multiparous Holstein cows were fed a basal total mixed ration (TMR) containing increasing levels of 3-NOP during 5 consecutive, 6-d periods. The experiment was conducted in a tiestall barn. Feed bins were split in half by a solid divider, and cows simultaneously received the basal TMR supplemented with the following: (1) a placebo without 3-NOP or (2) 3-NOP included in the TMR at 30, 60, 90, or 120 mg/kg of feed dry matter (experimental periods 2, 3, 4, and 5, respectively). Cows received the control diet (basal TMR plus placebo premix) during experimental period 1. A premix containing ground corn grain, soybean oil, and dry molasses was used to incorporate 3-NOP in the ration. Cows were fed twice daily as follows: 60% of the daily feed allowance at 0800 h and 40% at 1800 h. Feed offered and refused was recorded at each feeding. During the morning feedings, each cow was offered either control or 3-NOP-treated TMR at 150% of her average intake during the previous 3 d. After collection of the evening refusals, cows received only the basal TMR without the premix until the next morning feeding. The test period for the short-term DMI data collection was defined from morning feeding to afternoon refusals collection during each day of each experimental period. Location (left or right) of the control and 3-NOP diets within a feed bin was switched every day during each period to avoid feed location bias. Dry matter intake of TMR during the test period was quadratically increased by 3-NOP compared with the control. Inclusion of 3-NOP at 120 mg/kg of feed dry matter resulted in decreased 10-h DMI compared with the lower 3-NOP doses, but was similar to the control. There was no effect of feed location (left or right) within feed bin on DMI. Data from this short-term study suggests that 3-NOP does not have a negative effect on DMI in lactating dairy cows.
Collapse
Affiliation(s)
- A Melgar
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - K Nedelkov
- Department of Animal Science, The Pennsylvania State University, University Park 16802; Department of Animal Husbandry, Faculty of Veterinary Medicine, Trakia University, Stara Zagora 6000, Bulgaria
| | - C M M R Martins
- Department of Animal Science, The Pennsylvania State University, University Park 16802; Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga 13635-900, São Paulo, Brazil
| | - K C Welter
- Department of Animal Science, The Pennsylvania State University, University Park 16802; Department of Animal Science, School of Food Engineering and Animal Science, University of São Paulo, Pirassununga 13635-900, São Paulo, Brazil
| | - X Chen
- Department of Animal Science, The Pennsylvania State University, University Park 16802; School of Computing, University of Ulster, Co. Antrim, Northern Ireland, BT37 0QB, United Kingdom
| | - S E Räisänen
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - M T Harper
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - J Oh
- Department of Animal Science, The Pennsylvania State University, University Park 16802; Cargill Animal Nutrition, Seongnam, South Korea 13630
| | - S Duval
- Research Centre for Animal Nutrition and Health, DSM Nutritional Products, Saint Louis Cedex 68305, France
| | - A N Hristov
- Department of Animal Science, The Pennsylvania State University, University Park 16802.
| |
Collapse
|
29
|
Feng X, Kebreab E. Net reductions in greenhouse gas emissions from feed additive use in California dairy cattle. PLoS One 2020; 15:e0234289. [PMID: 32946456 PMCID: PMC7500595 DOI: 10.1371/journal.pone.0234289] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/01/2020] [Indexed: 11/18/2022] Open
Abstract
The livestock industry is one of the main contributors to greenhouse gas emissions and there is an increasing demand for the industry to reduce its carbon footprint. Several studies have shown that feed additives 3-nitroxypropanol and nitrate to be effective in reducing enteric methane emissions. The objective of this study was to estimate the net mitigating effect of using 3-nitroxypropanol and nitrate on total greenhouse gas emissions in California dairy industry. A life cycle assessment approach was used to conduct a cradle-to-farm gate environmental impact analysis based on dairy production system in California. Emissions associated with crop production, feed additive production, enteric methane, farm management, and manure storage were calculated and expressed as kg CO2 equivalents (CO2e) per kg of energy corrected milk. The total greenhouse gas emissions from baseline, 3-nitroxypropanol and nitrate offered during lactation were 1.12, 0.993, and 1.08 kg CO2e/kg energy corrected milk, respectively. The average net reduction rates for 3-nitroxypropanol and nitrate were 11.7% and 3.95%, respectively. In both cases, using the feed additives on the whole herd slightly improved overall carbon footprint reduction compared to limiting its use during lactation phase. Although both 3-nitroxypropanol and nitrate had effects on decreasing the total greenhouse gas emission, the former was much more effective with no known safety issues in reducing the carbon footprint of dairy production in California.
Collapse
Affiliation(s)
- Xiaoyu Feng
- Department of Animal Science, University of California, Davis, California, United States of America
| | - Ermias Kebreab
- Department of Animal Science, University of California, Davis, California, United States of America
| |
Collapse
|
30
|
Arango J, Ruden A, Martinez-Baron D, Loboguerrero AM, Berndt A, Chacón M, Torres CF, Oyhantcabal W, Gomez CA, Ricci P, Ku-Vera J, Burkart S, Moorby JM, Chirinda N. Ambition Meets Reality: Achieving GHG Emission Reduction Targets in the Livestock Sector of Latin America. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
31
|
Melgar A, Welter KC, Nedelkov K, Martins CMMR, Harper MT, Oh J, Räisänen SE, Chen X, Cueva SF, Duval S, Hristov AN. Dose-response effect of 3-nitrooxypropanol on enteric methane emissions in dairy cows. J Dairy Sci 2020; 103:6145-6156. [PMID: 32278563 DOI: 10.3168/jds.2019-17840] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 02/22/2020] [Indexed: 12/21/2022]
Abstract
This experiment was designed to test the effect of inclusion rate of 3-nitrooxypropanol (3-NOP), a methane inhibitor, on enteric methane emissions in dairy cows. The study was conducted with 49 multiparous Holstein cows in a randomized complete block design in 2 phases; phase 1 was with 28 cows, and phase 2 with 21 cows. Cows were fed a basal total mixed ration ad libitum and were blocked based on days in milk, milk yield, and enteric methane emissions during a 14-d covariate period. Treatments were control (no 3-NOP) and 40, 60, 80, 100, 150, and 200 mg of 3-NOP/kg of feed dry matter. Following a 14-d adaptation period, enteric gaseous emissions (methane, carbon dioxide, and hydrogen) were measured using the GreenFeed system (C-Lock Inc., Rapid City, SD) over a 3-d period. Compared with the control, inclusion rate of 3-NOP quadratically decreased daily enteric methane emissions from 22 to 40%. Maximum mitigation effect was achieved with the 3 highest 3-NOP doses (with no statistical difference among 100, 150, and 200 mg/kg). The decrease in methane emission yield and emission intensity ranged from 16 to 36% and from 25 to 45%, respectively. Emissions of hydrogen quadratically increased 6- to 10-fold, compared with the control; the maximum increase was with 150 mg/kg 3-NOP. Treatment did not affect daily emissions of carbon dioxide, but a linear increase in carbon dioxide emission yield was observed with increasing 3-NOP doses. Dry matter intake and milk yield of the cows was not affected by 3-NOP. Milk fat concentration and yield were increased by 3-NOP due to increased concentration of de novo synthetized short-chain fatty acids in milk. Inclusion of 3-NOP also tended to increase milk urea nitrogen but had no other effects on milk components. In this short-term experiment, 3-NOP decreased enteric methane emissions without affecting dry matter intake or milk yield and increased milk fat in dairy cows. Maximum mitigation effect was achieved at 100 to 200 mg/kg of feed dry matter.
Collapse
Affiliation(s)
- A Melgar
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - K C Welter
- Department of Animal Science, The Pennsylvania State University, University Park 16802; Department of Animal Science, School of Food Engineering and Animal Science, University of São Paulo, Pirassununga 13635-900, São Paulo, Brazil
| | - K Nedelkov
- Department of Animal Science, The Pennsylvania State University, University Park 16802; Department of Animal Husbandry, Faculty of Veterinary Medicine, Trakia University, Stara Zagora 6000, Bulgaria
| | - C M M R Martins
- Department of Animal Science, The Pennsylvania State University, University Park 16802; Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga 13635-900, São Paulo, Brazil
| | - M T Harper
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - J Oh
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - S E Räisänen
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - X Chen
- Department of Animal Science, The Pennsylvania State University, University Park 16802; School of Computing, University of Ulster, Newtonabbey, Co. Antrim, BT37 0QB, United Kingdom
| | - S F Cueva
- Department of Animal Science, The Pennsylvania State University, University Park 16802; Panamerican Agricultural University, Zamorano, Francisco Morazan, Km 30, Tegucigalpa 11101, Honduras
| | - S Duval
- Research Centre for Animal Nutrition and Health, DSM Nutritional Products, Saint Louis Cedex 68305, France
| | - A N Hristov
- Department of Animal Science, The Pennsylvania State University, University Park 16802.
| |
Collapse
|
32
|
Kim H, Lee HG, Baek YC, Lee S, Seo J. The effects of dietary supplementation with 3-nitrooxypropanol on enteric methane emissions, rumen fermentation, and production performance in ruminants: a meta-analysis. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2020; 62:31-42. [PMID: 32082596 PMCID: PMC7008120 DOI: 10.5187/jast.2020.62.1.31] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/13/2019] [Accepted: 12/02/2019] [Indexed: 11/20/2022]
Abstract
The aim of this study was to investigate the effects of 3-nitrooxypropanol (NOP)
on gas production, rumen fermentation, and animal performances depending on
animal type using a meta-analysis approach. A database consisted of data from 14
studies, 18 experiments and 55 treatments. The supplementation of NOP linearly
decreased methane (CH4) emissions [g/kg dry matter intake (DMI)]
regardless of animal type and length of experimental period (beef,
p < 0.0001, R2 = 0.797;
dairy, p = 0.0003, R2 = 0.916; and
long term, p < 0.0001, R2 =
0.910). The total volatile fatty acids (VFA) concentration and the proportion of
acetate, based on beef cattle database, were significantly decreased with
increasing NOP supplementation (p = 0.0015,
R2 = 0.804 and p = 0.0003,
R2 = 0.918), whereas other individual VFAs was
increased. Based on the dairy database, increasing levels of NOP supplementation
linearly decreased proportion of acetate (p = 0.0284,
R2 = 0.769) and increased that of valerate
(p = 0.0340, R2 = 0.522),
regardless of significant change on other individual VFAs. In animal
performances, the DMI, from beef cattle database, tended to decrease when the
levels of NOP supplementation increased (p = 0.0574,
R2 = 0.170), whereas there was no significant
change on DMI from dairy cattle database. The NOP supplementation tended to
decrease milk yield (p = 0.0606, R2
= 0.381) and increase milk fat and milk protein (p = 0.0861,
R2 = 0.321, p = 0.0838,
R2 = 0.322). NOP is a viable candidate as a feed
additive because of its CH4 mitigation effects, regardless of animal
type and experiment period, without adverse effects on animal performances.
Collapse
Affiliation(s)
- Hanbeen Kim
- Department of Animal Science, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Korea
| | - Hyo Gun Lee
- Department of Animal Science, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Korea
| | - Youl-Chang Baek
- National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Seyoung Lee
- Division of Animal Husbandry, Yonam College, Cheonan 31005, Korea
| | - Jakyeom Seo
- Department of Animal Science, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Korea
| |
Collapse
|
33
|
Melgar A, Harper MT, Oh J, Giallongo F, Young ME, Ott TL, Duval S, Hristov AN. Effects of 3-nitrooxypropanol on rumen fermentation, lactational performance, and resumption of ovarian cyclicity in dairy cows. J Dairy Sci 2019; 103:410-432. [PMID: 31733848 DOI: 10.3168/jds.2019-17085] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 09/18/2019] [Indexed: 11/19/2022]
Abstract
This study examined the effect of 3-nitrooxypropanol (3-NOP), a substance under investigation, on enteric methane (CH4) emission, rumen fermentation, lactational performance, sensory properties of milk, and the resumption of ovarian cyclicity in early-lactation dairy cows. Fifty-six multi- and primiparous Holstein cows, including 8 that were rumen cannulated, were used in a 15-wk randomized complete block design experiment. Cows were blocked based on parity and previous lactation milk yield (MY) or predicted MY, and within each block were randomly assigned to one of 2 treatments: (1) control (CON), administered no 3-NOP, or (2) 3-NOP applied at 60 mg/kg of feed dry matter (3-NOP). Enteric CH4 emission was measured during experimental wk 2, 6, 9, and 15, using the GreenFeed system. Dry matter intake (DMI) and MY data were collected daily throughout the experiment, and milk composition samples were collected 7 times during the experiment. Milk samples were collected from 14 to 60 (±2) d after calving, 3 d per week, and assayed for progesterone concentration to determine resumption of ovarian activity. Compared with CON, 3-NOP decreased daily CH4 emission by 26%, CH4 yield (CH4 per kg of DMI) by 21%, and CH4 emission intensity [CH4 per kg of MY or energy-corrected milk (ECM)] by 25%. Enteric emission of carbon dioxide was decreased by 5%, and hydrogen emission was increased 48-fold by 3-NOP. Inclusion of 3-NOP decreased concentration of total volatile fatty acids (by 9.3%) and acetate but increased butyrate molar proportion, ethanol, and formate concentrations in ruminal fluid. Dry matter intake was lower for 3-NOP compared with CON, but DMI expressed as a percentage of body weight was not different between treatments. Treatment had no effect on milk and ECM, body weight change, or body condition score. Milk composition and milk fat and protein yields were not affected by treatment, except that concentrations of short-chain fatty acids in milk were increased by 3-NOP. Nutrient digestibility and blood metabolites and hormones were not affected by 3-NOP, except that insulin was decreased by 3-NOP. There was no effect of 3-NOP on postpartum resumption of ovarian activity, including days to first and second luteal phases, length of first and second luteal phases, and interval from first to second luteal phase. Sensory properties of milk from cows fed 3-NOP and cheese made from that milk were not affected by treatment. In this experiment, 3-NOP decreased daily enteric CH4 emission, emission yield, and emission intensity, improved feed efficiency, and did not affect lactational performance or onset of ovarian activity in early-lactation dairy cows.
Collapse
Affiliation(s)
- A Melgar
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - M T Harper
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - J Oh
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - F Giallongo
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - M E Young
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - T L Ott
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - S Duval
- Research Centre for Animal Nutrition and Health, DSM Nutritional Products, Saint Louis Cedex 68305, France
| | - A N Hristov
- Department of Animal Science, The Pennsylvania State University, University Park 16802.
| |
Collapse
|