1
|
Tai W, Khanal D, Arnold JC, Chan HK, Kwok PCL. Solubilising and Aerosolising Cannabidiol Using Methyl β-Cyclodextrin and Human Serum Albumin. AAPS PharmSciTech 2025; 26:120. [PMID: 40307653 DOI: 10.1208/s12249-025-03121-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 04/17/2025] [Indexed: 05/02/2025] Open
Abstract
Pulmonary delivery can deliver cannabidiol (CBD) with high bioavailability and fast onset of action. One formulation obstacle is the low aqueous solubility of CBD, so solubilsers are necessary. This study aimed to develop inhalable CBD powders using excipients that help dissolving CBD. The solubilisation effects of human serum albumin (HSA), β-cyclodextrin, 2-hydroxypropyl-β-cyclodextrin, and methyl-β-cyclodextrin (mbCD) were investigated with phase solubility test. MbCD showed the highest CBD solubilisation ability at all tested concentrations, followed by HSA. Therefore, mbCD and HSA were co-spray freeze dried with CBD to obtain CBD + mbCD and CBD + HSA powders, respectively. Both powders were amorphous, had < 3% residual solvent, and contained CBD in complexes. CBD + mbCD maintained its amorphicity at < 70% relative humidity. On the other hand, CBD + HSA resisted recrystallisation even at 90% relative humidity. However, although both formulations emitted about 90% of CBD, CBD + HSA was less dispersible than CBD + mbCD (fine particle fraction < 5 µm: 30.2 ± 1.0% vs 53.5 ± 1.5%). The higher level of CBD solubility enhancement and better aerosol performance from mbCD indicated that it was an effective excipient to deliver CBD and potentially other cannabinoids in the future.
Collapse
Affiliation(s)
- Waiting Tai
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Dipesh Khanal
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Jonathon Carl Arnold
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, 2050, Australia
- Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Philip Chi Lip Kwok
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
2
|
Złotkowska D, Kuczyński M, Fuc E, Fotschki J, Wróblewska B. Glycation of Whey Proteins Increases the Ex Vivo Immune Response of Lymphocytes Sensitized to β-Lactoglobulin. Nutrients 2023; 15:3110. [PMID: 37513528 PMCID: PMC10384914 DOI: 10.3390/nu15143110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
Glycation is a spontaneous reaction accompanying the thermal processing and storage of food. It can lead to changes in the allergenic and immunogenic potential of protein. This study aimed to evaluate the effect of the glycation of α-lactalbumin and β-lactoglobulin (β-lg) on the ex vivo response of β-lg sensitized lymphocytes. C57BL/6 mice were immunized intragastrically (i-g) or intraperitoneally (i-p) with β-lg. The humoral response of the groups differed only with respect to the IgE level of the i-p group. Cellular response was studied after stimulation with antigen variants. The lymphocytes from the i-g/group mesenteric lymph nodes, stimulated with β-lg before and after glycation, presented a higher percentage of CD4 and CD8 T cells compared to the i-p/group. The cytokine profile of the i-p/group splenocytes stimulated with antigens showed elevated levels of pro-inflammatory IL-17A regardless of protein modification. In conclusion, the ex vivo model proved that the glycation process does not reduce protein immunogenicity.
Collapse
Affiliation(s)
- Dagmara Złotkowska
- Institute of Animal Reproduction and Food Research Polish Academy of Sciences in Olsztyn, Department of Immunology and Food Microbiology, Tuwima 10, 10-748 Olsztyn, Poland
| | - Mateusz Kuczyński
- Institute of Animal Reproduction and Food Research Polish Academy of Sciences in Olsztyn, Department of Immunology and Food Microbiology, Tuwima 10, 10-748 Olsztyn, Poland
| | - Ewa Fuc
- Institute of Animal Reproduction and Food Research Polish Academy of Sciences in Olsztyn, Department of Immunology and Food Microbiology, Tuwima 10, 10-748 Olsztyn, Poland
| | - Joanna Fotschki
- Institute of Animal Reproduction and Food Research Polish Academy of Sciences in Olsztyn, Department of Immunology and Food Microbiology, Tuwima 10, 10-748 Olsztyn, Poland
| | - Barbara Wróblewska
- Institute of Animal Reproduction and Food Research Polish Academy of Sciences in Olsztyn, Department of Immunology and Food Microbiology, Tuwima 10, 10-748 Olsztyn, Poland
| |
Collapse
|
3
|
Melnik BC, Stadler R, Weiskirchen R, Leitzmann C, Schmitz G. Potential Pathogenic Impact of Cow’s Milk Consumption and Bovine Milk-Derived Exosomal MicroRNAs in Diffuse Large B-Cell Lymphoma. Int J Mol Sci 2023; 24:ijms24076102. [PMID: 37047075 PMCID: PMC10094152 DOI: 10.3390/ijms24076102] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/05/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Epidemiological evidence supports an association between cow’s milk consumption and the risk of diffuse large B-cell lymphoma (DLBCL), the most common non-Hodgkin lymphoma worldwide. This narrative review intends to elucidate the potential impact of milk-related agents, predominantly milk-derived exosomes (MDEs) and their microRNAs (miRs) in lymphomagenesis. Upregulation of PI3K-AKT-mTORC1 signaling is a common feature of DLBCL. Increased expression of B cell lymphoma 6 (BCL6) and suppression of B lymphocyte-induced maturation protein 1 (BLIMP1)/PR domain-containing protein 1 (PRDM1) are crucial pathological deviations in DLBCL. Translational evidence indicates that during the breastfeeding period, human MDE miRs support B cell proliferation via epigenetic upregulation of BCL6 (via miR-148a-3p-mediated suppression of DNA methyltransferase 1 (DNMT1) and miR-155-5p/miR-29b-5p-mediated suppression of activation-induced cytidine deaminase (AICDA) and suppression of BLIMP1 (via MDE let-7-5p/miR-125b-5p-targeting of PRDM1). After weaning with the physiological termination of MDE miR signaling, the infant’s BCL6 expression and B cell proliferation declines, whereas BLIMP1-mediated B cell maturation for adequate own antibody production rises. Because human and bovine MDE miRs share identical nucleotide sequences, the consumption of pasteurized cow’s milk in adults with the continued transfer of bioactive bovine MDE miRs may de-differentiate B cells back to the neonatal “proliferation-dominated” B cell phenotype maintaining an increased BLC6/BLIMP1 ratio. Persistent milk-induced epigenetic dysregulation of BCL6 and BLIMP1 expression may thus represent a novel driving mechanism in B cell lymphomagenesis. Bovine MDEs and their miR cargo have to be considered potential pathogens that should be removed from the human food chain.
Collapse
|
4
|
Kameda K, Takahashi E, Kimoto T, Morita R, Sakai S, Nagao M, Fujisawa T, Kido H. A Murine Model of Food Allergy by Epicutaneous Adjuvant-Free Allergen Sensitization Followed by Oral Allergen Challenge Combined with Aspirin for Enhanced Detection of Hypersensitivity Manifestations and Immunotherapy Monitoring. Nutrients 2023; 15:nu15030757. [PMID: 36771462 PMCID: PMC9920581 DOI: 10.3390/nu15030757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Food allergy is one of the major existing health problems, but no effective treatment is available. In the current work, a murine model that closely mimics pathogenesis of human food allergy and its quantifiable diagnostic parameter design, even for mild hypersensitivity reactions, were established. BALB/c mice were epicutaneously sensitized with 1 mg chicken egg ovomucoid (OVM) or cow's milk casein, free of adjuvants, five times a week for two consecutive weeks. Eleven days later, allergen-specific IgG1 and IgE in serum were measured by ELISA. On day 25, 20 mg OVM or 12 mg α-casein was administered orally, and allergic reactions such as the fall in rectal temperature, symptom scores during 90-120 min, serum mast cell protease-1 and cytokine levels were monitored. The detection of mild allergic reactions due to adjuvant-free allergen sensitization and oral allergen challenge routes was amplified by the combination of oral allergen and aspirin administration simultaneously or aspirin administration within 15-30 min before an allergen challenge. Quantification of the maximum symptom score and the frequency of symptoms during the monitoring period improved evaluation accuracy of food allergy signals. Based on these results, efficacy of casein oral immunotherapy for cow's milk allergies, which are generally difficult to detect, was monitored adequately.
Collapse
Affiliation(s)
- Keiko Kameda
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Tokushima 770-8503, Japan
- Allergy Center and Institute for Clinical Research, Mie National Hospital, Tsu 514-0125, Japan
| | - Etsuhisa Takahashi
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Tokushima 770-8503, Japan
| | - Takashi Kimoto
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Tokushima 770-8503, Japan
| | - Ryoko Morita
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Tokushima 770-8503, Japan
| | - Satoko Sakai
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Tokushima 770-8503, Japan
| | - Mizuho Nagao
- Allergy Center and Institute for Clinical Research, Mie National Hospital, Tsu 514-0125, Japan
| | - Takao Fujisawa
- Allergy Center and Institute for Clinical Research, Mie National Hospital, Tsu 514-0125, Japan
| | - Hiroshi Kido
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Tokushima 770-8503, Japan
- Correspondence: ; Tel.: +81-88-633-7423
| |
Collapse
|
5
|
Juste-Dolz A, Fernández E, Puchades R, Avella-Oliver M, Maquieira Á. Patterned Biolayers of Protein Antigens for Label-Free Biosensing in Cow Milk Allergy. BIOSENSORS 2023; 13:214. [PMID: 36831980 PMCID: PMC9953870 DOI: 10.3390/bios13020214] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
This paper focuses on creating one-dimensional diffractive grooved structures of antigen proteins on glass substrates for the label-free detection of antibodies to dairy allergens. In particular, the fabrication of protein structures is carried out by combining microcontact printing with physisorption, imines coupling, and thiol-ene click chemistry. The work first sets up these patterning methods and discusses and compares the main aspects involved in them (structure, biolayer thickness, functionality, stability). Homogeneous periodic submicron structures of proteins are created and characterized by diffractive measurements, AFM, FESEM, and fluorescence scanning. Then, this patterning method is applied to proteins involved in cow milk allergy, and the resulting structures are implemented as optical transducers to sense specific immunoglobulins G. In particular, gratings of bovine serum albumin, casein, and β-lactoglobulin are created and assessed, reaching limits of detection in the range of 30-45 ng·mL-1 of unlabeled antibodies by diffractive biosensing.
Collapse
Affiliation(s)
- Augusto Juste-Dolz
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain
| | - Estrella Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain
| | - Rosa Puchades
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain
- Departamento de Química, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Miquel Avella-Oliver
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain
- Departamento de Química, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Ángel Maquieira
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain
- Departamento de Química, Universitat Politècnica de València, 46022 Valencia, Spain
| |
Collapse
|
6
|
Sienkiewicz M, Szymańska P, Fichna J. Supplementation of Bovine Colostrum in Inflammatory Bowel Disease: Benefits and Contraindications. Adv Nutr 2021; 12:533-545. [PMID: 33070186 PMCID: PMC8009748 DOI: 10.1093/advances/nmaa120] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/06/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a group of chronic relapsing disorders whose etiology has not been fully explained. Therefore, available therapeutic approaches for IBD patients are still insufficient. Current treatment strategies are targeted to immune system dysfunctions, often associated with alternations in the microbiota, which contribute to the development of chronic intestinal inflammation. Therapeutics include anti-inflammatory drugs such as aminosalicylates and corticosteroids, immunosuppressive agents, antibiotics, and biological agents such as infliximab and vedolizumab. Auxiliary therapies involve a balanced and personalized diet, healthy lifestyle, avoiding stress, as well as dietary supplements. In this review, we discuss the use of bovine colostrum (BC) as a therapeutic agent, including its advantages and contraindications. We summarize our knowledge on well-researched BC constituents and their effects on the gastrointestinal tract as evidenced in in vitro and in vivo studies.
Collapse
Affiliation(s)
- Michał Sienkiewicz
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Patrycja Szymańska
- Department of Hemostasis and Hemostatic Disorders, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
7
|
Złotkowska D, Stachurska E, Fuc E, Wróblewska B, Mikołajczyk A, Wasilewska E. Differences in Regulatory Mechanisms Induced by β-Lactoglobulin and κ-Casein in Cow's Milk Allergy Mouse Model-In Vivo and Ex Vivo Studies. Nutrients 2021; 13:nu13020349. [PMID: 33503831 PMCID: PMC7911159 DOI: 10.3390/nu13020349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/14/2022] Open
Abstract
The presence of various proteins, including modified ones, in food which exhibit diverse immunogenic and sensitizing properties increases the difficulty of predicting host immune responses. Still, there is a lack of sufficiently reliable and comparable data and research models describing allergens in dietary matrices. The aim of the study was to estimate the immunomodulatory effects of β-lactoglobulin (β-lg) in comparison to those elicited by κ-casein (κ-CN), in vivo and ex vivo, using naïve splenocytes and a mouse sensitization model. Our results revealed that the humoral and cellular responses triggered by β-lg and κ-CN were of diverse magnitudes and showed different dynamics in the induction of control mechanisms. β-Lg turned out to be more immunogenic and induced a more dominant Th1 response than κ-CN, which triggered a significantly higher IgE response. For both proteins, CD4+ lymphocyte profiles correlated with CD4+CD25+ and CD4+CD25+Foxp3+ T cells induction and interleukin 10 secretion, but β-lg induced more CD4+CD25+Foxp3- Tregs. Moreover, ex vivo studies showed the risk of interaction of immune responses to different milk proteins, which may exacerbate allergy, especially the one caused by β-lg. In conclusion, the applied model of in vivo and ex vivo exposure to β-lg and κ-CN showed significant differences in immunoreactivity of the tested proteins (κ-CN demonstrated stronger allergenic potential than β-lg), and may be useful for the estimation of allergenic potential of various food proteins, including those modified in technological processes.
Collapse
Affiliation(s)
- Dagmara Złotkowska
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10 Str., 10-748 Olsztyn, Poland; (E.S.); (E.F.); (B.W.)
- Correspondence: (D.Z.); (E.W.); Tel.: +48-89-523-46-75 (D.Z.); +48-89-523-46-03 (E.W.)
| | - Emilia Stachurska
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10 Str., 10-748 Olsztyn, Poland; (E.S.); (E.F.); (B.W.)
| | - Ewa Fuc
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10 Str., 10-748 Olsztyn, Poland; (E.S.); (E.F.); (B.W.)
| | - Barbara Wróblewska
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10 Str., 10-748 Olsztyn, Poland; (E.S.); (E.F.); (B.W.)
| | - Anita Mikołajczyk
- Department of Public Health, Faculty of Health Sciences, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland;
| | - Ewa Wasilewska
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10 Str., 10-748 Olsztyn, Poland; (E.S.); (E.F.); (B.W.)
- Correspondence: (D.Z.); (E.W.); Tel.: +48-89-523-46-75 (D.Z.); +48-89-523-46-03 (E.W.)
| |
Collapse
|
8
|
Wróblewska B, Kaliszewska-Suchodoła A, Fuc E, Markiewicz LH, Ogrodowczyk AM, Złotkowska D, Wasilewska E. Effect of Low-Immunogenic Yogurt Drinks and Probiotic Bacteria on Immunoreactivity of Cow's Milk Proteins and Tolerance Induction-In Vitro and In Vivo Studies. Nutrients 2020; 12:E3390. [PMID: 33158132 PMCID: PMC7694189 DOI: 10.3390/nu12113390] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/28/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
There is no effective therapy for milk allergy. The role of lactic acid bacteria (LAB) and probiotics in protection against allergy-related outcomes is still under investigation. The aim of the study was to evaluate the immunomodulative and therapeutic potential of yogurt drinks in cow's milk allergy (CMA) management. We compared immunoreactivity of α-casein (α-CN), β-casein (β-CN), κ-casein (κ-CN), α-lactalbumin (α-LA), and β-lactoglobulin (β-LG) in 27 yogurt drinks fermented with different basic yogurt cultures, or yogurt cultures enriched with Lactobacillus plantarum and/or Bifidobacterium lactis strains, by competitive ELISA assay. Drinks with the lowest antigenic potential were used as allergoids for CMA therapy. BALB/c mice were sensitized via intraperitoneal injection of α-CN + β-LG mixture with aluminum adjuvant, and gavaged with increasing doses of selected low-immunogenic drinks (YM-basic, or YM-LB-enriched with L. plantarum and B. lactis) to induce tolerance. Milk- or phosphate-buffered saline (PBS)-dosed mice served as controls. Compared to milk, the immunoreactivity of proteins in drinks increased or decreased, depending on the bacterial sets applied for fermentation. Only a few sets acted synergistically in reducing immunoreactivity. The selected low-immunogenic drinks stimulated allergic mice for profiling Th2 to Th1 response and acquire tolerance, and the effect was greater with YM-LB drink, which during long-lasting interventional feeding strongly increased the secretion of regulatory cytokines, i.e., IL-10 and TGF-β, and IgA and decreased IL-4, IgE, and anti-(α-CN + β-LG) IgG1. The studies revealed variations in the potency of yogurt bacteria to change allergenicity of milk proteins and the need for their strict selection to obtain a safe product for allergy sufferers. The YM-LB drink with reduced antigenic potential may be a source of allergoids used in the immunotherapy of IgE mediated CMA, but further clinical or volunteer studies are required.
Collapse
Affiliation(s)
- Barbara Wróblewska
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10 Str., 10-748 Olsztyn, Poland; (B.W.); (E.F.); (L.H.M.); (A.M.O.); (D.Z.)
| | | | - Ewa Fuc
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10 Str., 10-748 Olsztyn, Poland; (B.W.); (E.F.); (L.H.M.); (A.M.O.); (D.Z.)
| | - Lidia Hanna Markiewicz
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10 Str., 10-748 Olsztyn, Poland; (B.W.); (E.F.); (L.H.M.); (A.M.O.); (D.Z.)
| | - Anna Maria Ogrodowczyk
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10 Str., 10-748 Olsztyn, Poland; (B.W.); (E.F.); (L.H.M.); (A.M.O.); (D.Z.)
| | - Dagmara Złotkowska
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10 Str., 10-748 Olsztyn, Poland; (B.W.); (E.F.); (L.H.M.); (A.M.O.); (D.Z.)
| | - Ewa Wasilewska
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10 Str., 10-748 Olsztyn, Poland; (B.W.); (E.F.); (L.H.M.); (A.M.O.); (D.Z.)
| |
Collapse
|
9
|
Chudzik-Kozłowska J, Wasilewska E, Złotkowska D. Evaluation of Immunoreactivity of Pea ( Pisum sativum) Albumins in BALB/c and C57BL/6 Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3891-3902. [PMID: 32178513 DOI: 10.1021/acs.jafc.0c00297] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Green pea (Pisum sativum) is a component of European cuisine; however, an estimated 0.8% of Europeans suffer from allergies to pea proteins. We examined the immunoreactive potential of pea albumins (PA) in BALB/c and C57BL/6 mice. Mice were orally gavaged with PA or glycated pea albumins (G-PA) for 10 consecutive days, in combination with an adjuvant. Both PA and G-PA increased PA-specific serum antibody titers to about 212 for anti-PA IgG, ∼27 for anti-PA IgA, and ∼27.8 for anti-PA IgA in fecal extracts (p < 0.001). On day 42 postexposure, the antibodies titers decreased and were greater in BALB/c compared to C57BL/6 mice (p < 0.05). Distribution of CD4+ and CD8+ T cells in lymphoid tissues presented strain-specific differences. PA was found to induce lymphocyte proliferation; however, G-PA did not. Both PA and G-PA changed CD4+ and CD8+ T cells percentages in some lymphoid tissues; however, this did not impact cytokines production by splenocyte cultures evidenced by the stimulation of Th1, Th2, and Th17 cells. The observed immunomodulatory properties of PA and G-PA and lack of a sign of allergic reaction render them suitable for supplements in personalized diets, but further research is needed to precisely understand this activity.
Collapse
Affiliation(s)
- Justyna Chudzik-Kozłowska
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, J. Tuwima 10 str., 10-748 Olsztyn, Poland
| | - Ewa Wasilewska
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, J. Tuwima 10 str., 10-748 Olsztyn, Poland
| | - Dagmara Złotkowska
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, J. Tuwima 10 str., 10-748 Olsztyn, Poland
| |
Collapse
|
10
|
Fuc E, Złotkowska D, Wróblewska B. Milk and Meat Allergens from Bos taurus β-Lactoglobulin, α-Casein, and Bovine Serum Albumin: An In-Vivo Study of the Immune Response in Mice. Nutrients 2019; 11:E2095. [PMID: 31487844 PMCID: PMC6769769 DOI: 10.3390/nu11092095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/30/2019] [Accepted: 09/01/2019] [Indexed: 01/14/2023] Open
Abstract
The mechanism of food allergy may vary. This study aimed to compare the effects of milk, yogurt, or beef meat supplementation on humoral and cellular immune responses in a mice model. Mice were divided into four groups: The "Milk group" was sensitized with a β-lactoglobulin (β-lg)/α-casein (α-CN) mixture and supplemented cow milk; the "Yogurt group" was sensitized with β-lg/α-CN and supplemented yogurt; the "Beef group" was immunized with bovine serum albumin (BSA) and supplemented beef meat; and the "PBS group" received PBS in all procedures. ELISA was used to measure humoral response, including: Total IgE, specific IgG, and IgA. Cellular response was determined by phenotyping lymphocyte from lymphoid tissue and measuring the Th1/Th2 cytokine concentration with flow cytometry. The qPCR method was used for quantification of the fecal microbiota. The results obtained revealed a lower IgE level for the Yogurt group than for the Milk one. In the Yogurt group, the contribution of regulatory T cells to MLN and PP was higher compared to the other groups. We confirmed that diet supplementation with yogurt modulates the immune response to the prime allergen, and changes the activity of serum antibodies to milk proteins and BSA. Based on a specific antibodies level, we cannot exclude the possibility of CMA mice reaction against BSA.
Collapse
Affiliation(s)
- Ewa Fuc
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Tuwima 10 Str., 10-748 Olsztyn, Poland.
| | - Dagmara Złotkowska
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Tuwima 10 Str., 10-748 Olsztyn, Poland.
| | - Barbara Wróblewska
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Tuwima 10 Str., 10-748 Olsztyn, Poland.
| |
Collapse
|