1
|
Arioli S, Mangieri N, Zanchetta Y, Russo P, Mora D. Substitution of Asp29 with Asn29 in the metallochaperone UreE of Streptococcus thermophilus DSM 20617 T increases the urease activity and anticipates urea hydrolysis during milk fermentation. Int J Food Microbiol 2024; 416:110684. [PMID: 38513545 DOI: 10.1016/j.ijfoodmicro.2024.110684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
Urease operon is highly conserved within the species Streptococcus thermophilus and urease-negative strains are rare in nature. S. thermophilus MIMO1, isolated from commercial yogurt, was previously characterized as urease-positive Ni-dependent strain. Beside a mutation in ureQ, coding for a nickel ABC transporter permease, the strain MIMO1 showed a mutation in ureE gene which code for a metallochaperone involved in Ni delivery to the urease catalytic site. The single base mutation in ureE determined a substitution of Asp29 with Asn29 in the metallochaperone in a conserved protein region not involved in the catalytic activity. With the aim to investigate the role Asp29vs Asn29 substitution in UreE on the urease activity of S. thermophilus, ureE gene of the reference strain DSM 20617T (ureEDSM20617) was replaced by ureE gene of strain MIMO1 (ureEMIMO1) to obtain the recombinant ES3. In-gel detection of urease activity revealed that the substitution of Asp29 with Asn29 in UreE resulted in a higher stability of the enzyme complexes. Moreover, the recombinant ES3 showed higher level of urease activity compared to the wildtype without any detectable increase in the expression level of ureC gene, thus highlighting the role of UreE not only in Ni assembly but also on the level of urease activity. During the growth in milk, the recombinant ES3 showed an anticipated urease activity compared to the wildtype, and analogous milk fermentation performance. The overall data obtained by comparing urease-positive and urease-negative strains/mutants confirmed that urease activity strongly impacts on the milk fermentation process and specifically on the yield of the homolactic fermentation.
Collapse
Affiliation(s)
- Stefania Arioli
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Nicola Mangieri
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Ylenia Zanchetta
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Pasquale Russo
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Diego Mora
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy.
| |
Collapse
|
2
|
Hou C, Song X, Xiong Z, Wang G, Xia Y, Ai L. Investigating the Role of β-Disodium Glycerophosphate and Urea in Promoting Growth of Streptococcus thermophilus from Omics-Integrated Genome-Scale Models. Foods 2024; 13:1006. [PMID: 38611312 PMCID: PMC11011449 DOI: 10.3390/foods13071006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/20/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
This study investigates the impact of urea and β-GP on the growth of Streptococcus thermophilus S-3, a bacterium commonly used in industrial fermentation processes. Through a series of growth experiments, transcriptome, metabolome, and omics-based analyses, the research demonstrates that both urea and β-GP can enhance the biomass of S. thermophilus, with urea showing a more significant effect. The optimal urea concentration for growth was determined to be 3 g/L in M17 medium. The study also highlights the metabolic pathways influenced by urea and β-GP, particularly the galactose metabolism pathway, which is crucial for cell growth when lactose is the substrate. The integration of omics data into the genome-scale metabolic model of S. thermophilus, iCH502, allowed for a more accurate prediction of metabolic fluxes and growth rates. The study concludes that urea can serve as a viable substitute for β-GP in the cultivation of S. thermophilus, offering potential cost and efficiency benefits in industrial fermentation processes. The findings are supported by validation experiments with 11 additional strains of S. thermophilus, which showed increased biomass in UM17 medium.
Collapse
Affiliation(s)
| | | | | | | | | | - Lianzhong Ai
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (C.H.); (X.S.); (Z.X.); (G.W.); (Y.X.)
| |
Collapse
|
3
|
Hou C, Song X, Xiong Z, Wang G, Xia Y, Ai L. Genome-scale reconstruction of the metabolic network in Streptococcus thermophilus S-3 and assess urea metabolism. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1458-1469. [PMID: 37814322 DOI: 10.1002/jsfa.13026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/16/2023] [Accepted: 10/01/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND Streptococcus thermophilus is an important strain widely used in dairy fermentation, with distinct urea metabolism characteristics compared to other lactic acid bacteria. The conversion of urea by S. thermophilus has been shown to affect the flavor and acidification characteristics of milk. Additionally, urea metabolism has been found to significantly increase the number of cells and reduce cell damage under acidic pH conditions, resulting in higher activity. However, the physiological role of urea metabolism in S. thermophilus has not been fully evaluated. A deep understanding of this metabolic feature is of great significance for its production and application. Genome-scale metabolic network models (GEMs) are effective tools for investigating the metabolic network of organisms using computational biology methods. Constructing an organism-specific GEM can assist us in comprehending its characteristic metabolism at a systemic level. RESULTS In the present study, we reconstructed a high-quality GEM of S. thermophilus S-3 (iCH492), which contains 492 genes, 608 metabolites and 642 reactions. Growth phenotyping experiments were employed to validate the model both qualitatively and quantitatively, yielding satisfactory predictive accuracy (95.83%), sensitivity (93.33%) and specificity (100%). Subsequently, a systematic evaluation of urea metabolism in S. thermophilus was performed using iCH492. The results showed that urea metabolism reduces intracellular hydrogen ions and creates membrane potential by producing and transporting ammonium ions. This activation of glycolytic fluxes and ATP synthase produces more ATP for biomass synthesis. The regulation of fluxes of reactions involving NAD(P)H by urea metabolism improves redox balance. CONCLUSION Model iCH492 represents the most comprehensive knowledge-base of S. thermophilus to date, serving as a potent tool. The evaluation of urea metabolism led to novel insights regarding the role of urease. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chengjie Hou
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xin Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Zhiqiang Xiong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Guangqiang Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yongjun Xia
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Lianzhong Ai
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
4
|
Yang S, Bai M, Kwok LY, Zhong Z, Sun Z. The intricate symbiotic relationship between lactic acid bacterial starters in the milk fermentation ecosystem. Crit Rev Food Sci Nutr 2023; 65:728-745. [PMID: 37983125 DOI: 10.1080/10408398.2023.2280706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Fermentation is one of the most effective methods of food preservation. Since ancient times, food has been fermented using lactic acid bacteria (LAB). Fermented milk is a very intricate fermentation ecosystem, and the microbial metabolism of fermented milk largely determines its metabolic properties. The two most frequently used dairy starter strains are Streptococcus thermophilus (S. thermophilus) and Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus). To enhance both the culture growth rate and the flavor and quality of the fermented milk, it has long been customary to combine S. thermophilus and L. bulgaricus in milk fermentation due to their mutually beneficial and symbiotic relationship. On the one hand, the symbiotic relationship is reflected by the nutrient co-dependence of the two microbes at the metabolic level. On the other hand, more complex interaction mechanisms, such as quorum sensing between cells, are involved. This review summarizes the application of LAB in fermented dairy products and discusses the symbiotic mechanisms and interactions of milk LAB starter strains from the perspective of nutrient supply and intra- and interspecific quorum sensing. This review provides updated information and knowledge on microbial interactions in a fermented milk ecosystem.
Collapse
Affiliation(s)
- Shujuan Yang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Mei Bai
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Zhi Zhong
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| |
Collapse
|
5
|
Duan X, Luan S. Efficient secreted expression of natural intracellular β-galactosidase from Bacillus aryabhattai via non-classical protein secretion pathway in Bacillus subtilis. Int J Biol Macromol 2023; 248:125758. [PMID: 37453640 DOI: 10.1016/j.ijbiomac.2023.125758] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/20/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
In this study, the natural intracellular β-galactosidase (lacZBa) from Bacillus aryabhattai was expressed extracellularly in Bacillus subtilis. Sec and Tat signal peptides from different secretion pathways were incorporated to facilitate extracellular secretion of lacZBa, resulting in a yield of only 0.54 U/mL. Interestingly, it was discovered that lacZBa could be efficiently expressed and secreted in B. subtilis via a non-classical secretory pathway without the need for a signal peptide. The extracellular activity and secretion ratio were 5.3 U/mL and 65 %, respectively. Compared to E. coli, the expression of lacZBa in B. subtilis resulted in increased acid resistance and higher pH stability and thermostability, with a 1.7-fold increase in half-life at 50 °C and pH 6.0. Additionally, we combined single-factor experiments and response surface methodology to enhance extracellular expression of β-galactosidase in shake-flasks. The resulting optimal medium contained 4.46 % glucose, 1.47 % corn steep liquor, 1.5 % beef extract, 0.82 % CaCl2, and 0.1 % MgSO4. Under optimal conditions, the yield of extracellularly secreted β-galactosidase at the shake flask level was 17.41 U/mL, representing a 32.2-fold increase in initial extracellular enzyme activity. This study represents the first successful report of natural intracellular β-galactosidase being expressed through the non-classical secretory pathway in B. subtilis.
Collapse
Affiliation(s)
- Xuguo Duan
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Shuyue Luan
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
6
|
The protective effect of lactose on the bile salt stress response of Streptococcus thermophilus is strain dependent. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
7
|
Han M, Wu Y, Guo X, Jiang L, Wang X, Gai Z. Milk fermentation by monocultures or co-cultures of Streptococcus thermophilus strains. Front Bioeng Biotechnol 2022; 10:1097013. [PMID: 36578511 PMCID: PMC9791054 DOI: 10.3389/fbioe.2022.1097013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
Direct vat-set starter cultures are the key ingredient for the production of fermented dairy products. The characteristics of the strains used for fermentation determine the fermentation time, texture and flavor of the fermented milk products. In this study, a large-scale analysis of the acid production rate, texture, carbon source utilization characteristics of Streptococcus thermophilus strains was conducted. All 100 S. thermophilus strains were divided into six groups according to the acid production rate and into two groups according to the consistency texture. A universal medium, basing on the carbon sources metabolic properties were optimized (0.5% lactose and 3.5% glucose), to culture all of the tested strains. Among them 40 strains were used to test pH-controlled conditions using this universal culture medium. After 5-7 h of fermentation, the optical density (OD) values of all fermented products exceeded 10, suggesting the potential for high-density cultivation of S. thermophilus. Although the OD could be further increased by adding more glucose, this may have hindered subsequent lyophilization because of high residual lactic acid in the fermented product. Next, the application of Streptococcus thermophilus strains in fermented milk was studied. Monocultures and co-cultures of strains were evaluated and compared. The results revealed the existence of symbiotic or competitive relationships between different S. thermophilus strains. Based on the findings, the mixing ratio of three symbiotic S. thermophilus strains was optimized. A co-culture of these three strains yielded fermented milk with high viscosity, low post-acidification, good sensory properties and processability.
Collapse
Affiliation(s)
- Mei Han
- Shanghai Business School, Shanghai, China
| | - Yanfeng Wu
- Department of Research and Development, Wecare Probiotics Co., Ltd., Suzhou, China
| | - Xiaojuan Guo
- Department of Research and Development, Wecare Probiotics Co., Ltd., Suzhou, China
| | - Lili Jiang
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Wang
- Department of Research and Development, Wecare Probiotics Co., Ltd., Suzhou, China
| | - Zhonghui Gai
- Department of Research and Development, Wecare Probiotics Co., Ltd., Suzhou, China,*Correspondence: Zhonghui Gai,
| |
Collapse
|
8
|
Zhou Y, Cui Y, Qu X. Comparative transcriptome analysis for the biosynthesis of antioxidant exopolysaccharide in Streptococcus thermophilus CS6. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5321-5332. [PMID: 35318677 DOI: 10.1002/jsfa.11886] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/21/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Food grade Streptococcus thermophilus produces biological exopolysaccharides (EPSs) with great potential with respect to catering for higher health-promoting demands; however, how S. thermophilus regulates the biosynthesis of EPS is not completely understood, decelerating the application of these polymers. In our previous study, maltose, soy peptone and initial pH were three key factors of enhancing EPS yield in S. thermophilus CS6. Therefore, we aimed to investigate the regulating mechanisms of EPS biosynthesis in S. thermophilus CS6 via the method of comparative transcriptome and differential carbohydrate metabolism. RESULTS Soy peptone addition (58.6 g L-1 ) and a moderate pH (6.5) contributed to a high bacterial biomass and a high EPS yield (407 mg L-1 ). Maltose, soy peptone and initial pH greatly influenced lactose utilization in CS6. Soy peptone addition induced a high accumulation of mannose and arabinose in intracellular CS6, differential monosaccharide composition (mannose, glucose and arabinose) in EPS and high radical [2,2-diphenyl-1-picrylhydrazyl, superoxide and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)] scavenging activities. Carbohydrate transportation, sugar activation and eps cluster-associated genes were differentially expressed to regulate EPS biosynthesis. Correlation analysis indicated high production of EPSs depended on high expression of lacS, galPMKUTE, pgm, gt2-5&4-1 and epsLM. CONCLUSION The production of antioxidant EPS in S. thermophilus CS6 depended on the regulation of galactose metabolism cluster and eps cluster. The present study recommends a new approach for enhancing EPS production by transcriptomic regulation for further food and health application of EPS. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, China
| | - Yanhua Cui
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, China
| | - Xiaojun Qu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, China
| |
Collapse
|
9
|
Song X, Hou C, Yang Y, Ai L, Xia Y, Wang G, Yi H, Xiong Z. Effects of different carbon sources on metabolic profiles of carbohydrates in Streptococcus thermophilus during fermentation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4820-4829. [PMID: 35229301 DOI: 10.1002/jsfa.11845] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Streptococcus thermophilus is a major starter used in the dairy industry and it could improve the flavor of fermented products. It is necessary to improve biomass of S. thermophilus for its application and industrialization. The utilization of carbon sources directly affects the biomass of S. thermophilus. Therefore, the carbohydrate metabolism of S. thermophilus should be investigated. RESULTS In the present study, metabolic parameters and gene expression of S. thermophilus S-3 with different carbon sources were investigated. The physicochemical results showed that S. thermophilus S-3 had high lactose utilization. Transcriptome analysis found that approximately 104 genes were annotated onto 15 carbohydrate metabolic pathways, of which 15 unigenes were involved in the phosphotransferase system and 75 were involved in the ATP-binding cassette transporter system. In addition, 171 differentially expressed genes related to carbohydrate metabolism were identified. Expression of the galactose metabolism genes lacSZ and galKTEM increased significantly from the lag phase to the mid-exponential growth phase as a result of the global regulator protein, catabolite control protein A (CcpA). The high expression of galK in the mid- to late- phases indicated that the metabolite galactose is re-transported for intracellular utilization. CcpA regulation may also induce high expressions of glycolytic pathway regulated-genes related to lactose utilization, including ldh, fba, eno, pfkA, bglA, pgi, pgm and pyk, producing optimal glycolytic flux and S. thermophilus S-3 growth. CONCLUSION The present study provides new insights into the carbon metabolism regulation and provide theoretical support for high-density fermentation of S. thermophilus S-3. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xin Song
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Chengjie Hou
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yong Yang
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Liangzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yongjun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Guangqiang Wang
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zhiqiang Xiong
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
10
|
Muelas R, Romero G, Díaz JR, Monllor P, Fernández-López J, Viuda-Martos M, Cano-Lamadrid M, Sendra E. Quality and Functional Parameters of Fermented Milk Obtained from Goat Milk Fed with Broccoli and Artichoke Plant By-Products. Foods 2022; 11:foods11172601. [PMID: 36076787 PMCID: PMC9455734 DOI: 10.3390/foods11172601] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/12/2022] [Accepted: 08/21/2022] [Indexed: 11/23/2022] Open
Abstract
Large amount of vegetal by-products are generated during production and processing steps. Introducing silage from vegetable by-products into dairy goat feed would be of great interest from the point of view of reducing costs and supporting the circular economy. The aim of this research was to study the effect of 40% inclusion of silage broccoli by-products and artichoke plant by-products in the diet of Murciano-Granadina goats throughout the lactation to establish milk suitability for fermented milks production. The novelty of this study is the use of milk from goats fed for a long term with a high inclusion of silages from artichoke plant and broccoli by-products, being the first one on broccoli inclusion. Two starter cultures thermophilic (YO-MIXTM300), and, mesophilic (MA400) were used and fermented milks were analyzed at two storage times after fermentation. Fermentation enhances antioxidant properties of fermented milks from all diets (p < 0.05), especially when mesophilic starter cultures are used. The main findings are that long term inclusion of 40% silage from broccoli and artichoke plant by-products in balanced diets of dairy goats yields milk suitable for fermentation by yogurt and cheese cultures, the inclusion of broccoli silage enhances antioxidant properties (p < 0.05), and, the inclusion of plant artichoke enhances fatty acids health indexes (p < 0.05).
Collapse
|
11
|
Kong L, Xiong Z, Song X, Xia Y, Ai L. CRISPR/dCas9-based metabolic pathway engineering for the systematic optimization of exopolysaccharide biosynthesis in Streptococcus thermophilus. J Dairy Sci 2022; 105:6499-6512. [PMID: 35691751 DOI: 10.3168/jds.2021-21409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/05/2022] [Indexed: 12/23/2022]
Abstract
Streptococcus thermophilus is used extensively in the dairy industry and has shown great promise as a chassis cell for the biosynthesis of high-value metabolites. However, metabolic engineering in S. thermophilus lacks effective genetic modification tools to modulate gene expression to relieve metabolic burden and maximize the production of desired compounds. Here, we developed a clustered regularly interspaced short palindromic repeats interference (CRISPRi) system for efficient gene transcriptional modulation in S. thermophilus. Our CRISPRi system typically achieved 66 to 98% knockdown of single or multiple gene expression. We used CRISPRi for the biosynthesis of a new exopolysaccharide (EPS) as a paradigm model. Repression of galK at module of uridine diphosphate glucose sugar metabolism and overexpression of epsA and epsE at EPS synthesis module resulted in an approximately 2-fold increase in EPS titer (277 mg/L) when compared with a control strain. This study demonstrated the effectiveness of CRISPRi as a powerful metabolic engineering tool and synthetic biology strategy for S. thermophilus.
Collapse
Affiliation(s)
- Linghui Kong
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; School of Pharmacy (School of Enology), Binzhou Medical University, Yantai, 264003, Shandong Province, China
| | - Zhiqiang Xiong
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xin Song
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yongjun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
12
|
Fermentation of whey protein concentrate by Streptococcus thermophilus strains releases peptides with biological activities. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Gu X, Zhang R, Zhao J, Li C, Guo T, Yang S, Han T, Kong J. Fast-acidification promotes GABA synthesis in response to acid stress in Streptococcus thermophilus. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
14
|
In Streptococcus thermophilus, Ammonia from Urea Hydrolysis Paradoxically Boosts Acidification and Reveals a New Regulatory Mechanism of Glycolysis. Microbiol Spectr 2022; 10:e0276021. [PMID: 35467410 PMCID: PMC9241937 DOI: 10.1128/spectrum.02760-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus thermophilus is widely used in the dairy industry for the manufacturing of fermented milk and cheeses and probiotic formulations. S. thermophilus evolved from closely phylogenetically related pathogenic streptococci through loss-of-function events counterbalanced by the acquisition of relevant traits, such as lactose and urea utilization for the adaptation to the milk environment. In the context of regressive evolution, the urease gene cluster accounts for 0.9% of the total coding sequence belonging to known functional categories. The fate of ammonia and carbon dioxide derived by urea hydrolysis in several biosynthetic pathways have been depicted, and the positive effect of urease activity on S. thermophilus growth fitness and lactic acid fermentation in milk has been already addressed by several authors. However, the mechanistic effect of urea hydrolysis on the energetic metabolisms of S. thermophilus is still unclear. This study aimed to assess the effect of urease activity on the growth and energy metabolism of Streptococcus thermophilus in milk. In milk, 13C-urea was completely hydrolyzed in the first 150 min of S. thermophilus growth, and urea hydrolysis was accompanied by an increase in cell density and a reduction in the generation time. By using energetically discharged cells with gene transcription and translation blocked, we showed that in the presence of fermentable carbon sources, urease activity, specifically the production of ammonia, could dramatically boost glycolysis and, in cascade, homolactic fermentation. Furthermore, we showed that ammonia, specifically ammonium ions, were potent effectors of phosphofructokinase, a key glycolytic enzyme. IMPORTANCE Finding that ammonia-generating enzymes, such as urease, and exogenous ammonia act on phosphofructokinase activity shed new light on the regulatory mechanisms that govern glycolysis. Phosphofructokinase is the key enzyme known to exert a regulatory role on glycolytic flux and, therefore, ammonia as an effector of phosphofructokinase acts, in cascade, modulating the glycolytic pathway. Apart from S. thermophilus, due to the high conservation of glycolytic enzymes in all branches of the tree of life and being aware of the role of ammonia as an effector of phosphofructokinase, we propose to reevaluate the physiological role of the ammonia production pathways in all organisms whose energy metabolism is supported by glycolysis.
Collapse
|
15
|
Xu ZS, Liang Y, Kong J, Zhang SS, Liu XL, Wang T. A food-grade vector for Streptococcus thermophilus based on the α-complementation of β-galactosidase. J Dairy Sci 2022; 105:5641-5653. [PMID: 35599030 DOI: 10.3168/jds.2021-21699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/15/2022] [Indexed: 11/19/2022]
Abstract
Streptococcus thermophilus is a common yogurt starter that consumes lactose as its primary carbon source. The enzyme β-galactosidase is essential for the lactose metabolism and the growth of this species. Streptococcus thermophilus appears to be a promising cell factory. Food-grade vectors have advantages in heterologous protein expression. This study aimed to determine whether the β-galactosidase of S. thermophilus has the α-complementary characteristic and to develop a novel food-grade vector based on this phenomenon. The N-terminal 7 to 36 AA residues of the β-galactosidase in S. thermophilus were deleted. The obtained mutant S. thermophilus Δα lost β-galactosidase activity and growth ability in the lactose medium. Subsequently, plasmids expressing α-fragments with different lengths of 1 to 36 (Sα1), 1 to 53 (Sα2), and 1 to 88 (Sα3) AA were constructed and transformed into S. thermophilus Δα. Recombinant S. thermophilus Δα expressing Sα2 or Sα3 recovered the ability to grow in the lactose medium, and their β-galactosidase activity accounted for 24.5% or 11.5% of the wild strain, respectively. These results indicated that the α-complementation system of β-galactosidase existed in S. thermophilus. Based on the characteristic, a food-grade vector pSEα was constructed. Except for Sα2, vector pSEα expressed the α-donor derived from E. coli β-galactosidase. This facilitated the construction of recombinant plasmids in E. coli DH5α and thus improved the transformation efficiency of S. thermophilus. Green fluorescent protein as a reporter protein could be highly expressed in S. thermophilus using this vector. As a result, pSEα is an efficient and safe vector for S. thermophilus with potential food applications.
Collapse
Affiliation(s)
- Z S Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China; School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China
| | - Y Liang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China; School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China
| | - J Kong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - S S Zhang
- College of Life Science, Shandong Normal University, Jinan 250014, P. R. China
| | - X L Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China; School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China.
| | - T Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China; School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China.
| |
Collapse
|