1
|
Millán-García A, Álvarez-Fernández L, Blanco-Paniagua E, Álvarez AI, Merino G. The ABCG2 Transporter Affects Plasma Levels, Tissue Distribution and Milk Secretion of Lumichrome, a Natural Derivative of Riboflavin. Int J Mol Sci 2024; 25:9884. [PMID: 39337371 PMCID: PMC11431963 DOI: 10.3390/ijms25189884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/30/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
The ABCG2 membrane transporter affects bioavailability and milk secretion of xenobiotics and natural compounds, including vitamins such as riboflavin. We aimed to characterize the in vitro and in vivo interaction of ABCG2 with lumichrome, the main photodegradation product of riboflavin, which has proven in vitro anti-cancer activity and a therapeutical role in antibacterial photodynamic therapy as an efficient photosensitizer. Using MDCK-II polarized cells overexpressing murine Abcg2 and human ABCG2 we found that lumichrome was efficiently transported by both variants. After lumichrome administration to wild-type and Abcg2-/- mice, plasma AUC20-120 min was 1.8-fold higher in Abcg2-/- mice compared with wild-type mice. The liver and testis from Abcg2-/- mice showed significantly higher lumichrome levels compared with wild-type, whereas lumichrome accumulation in small intestine content of wild-type mice was 2.7-fold higher than in Abcg2-/- counterparts. Finally, a 4.1-fold-higher lumichrome accumulation in milk of wild-type versus Abcg2-/- mice was found. Globally, our results show that ABCG2 plays a crucial role in plasma levels, tissue distribution and milk secretion of lumichrome potentially conditioning its biological activity.
Collapse
Affiliation(s)
- Alicia Millán-García
- Department of Biomedical Sciences-Physiology, Faculty of Veterinary Medicine, Animal Health Institute (INDEGSAL), Campus de Vegazana, Universidad de León, 24071 León, Spain
| | - Laura Álvarez-Fernández
- Department of Biomedical Sciences-Physiology, Faculty of Veterinary Medicine, Animal Health Institute (INDEGSAL), Campus de Vegazana, Universidad de León, 24071 León, Spain
| | - Esther Blanco-Paniagua
- Department of Biomedical Sciences-Physiology, Faculty of Veterinary Medicine, Animal Health Institute (INDEGSAL), Campus de Vegazana, Universidad de León, 24071 León, Spain
| | - Ana I Álvarez
- Department of Biomedical Sciences-Physiology, Faculty of Veterinary Medicine, Animal Health Institute (INDEGSAL), Campus de Vegazana, Universidad de León, 24071 León, Spain
| | - Gracia Merino
- Department of Biomedical Sciences-Physiology, Faculty of Veterinary Medicine, Animal Health Institute (INDEGSAL), Campus de Vegazana, Universidad de León, 24071 León, Spain
| |
Collapse
|
2
|
Todini L, Fantuz F. Commentary: Invited review: glucosinolates might result in low methane emissions from ruminants fed brassica forages. Front Vet Sci 2023; 10:1227500. [PMID: 37869499 PMCID: PMC10588172 DOI: 10.3389/fvets.2023.1227500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
|
3
|
Borges CE, Von Dos Santos Veloso R, da Conceição CA, Mendes DS, Ramirez-Cabral NY, Shabani F, Shafapourtehrany M, Nery MC, da Silva RS. Forecasting Brassica napus production under climate change with a mechanistic species distribution model. Sci Rep 2023; 13:12656. [PMID: 37542082 PMCID: PMC10403512 DOI: 10.1038/s41598-023-38910-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/17/2023] [Indexed: 08/06/2023] Open
Abstract
Brassica napus, a versatile crop with significant socioeconomic importance, serves as a valuable source of nutrition for humans and animals while also being utilized in biodiesel production. The expansion potential of B. napus is profoundly influenced by climatic variations, yet there remains a scarcity of studies investigating the correlation between climatic factors and its distribution. This research employs CLIMEX to identify the current and future ecological niches of B. napus under the RCP 8.5 emission scenario, utilizing the Access 1.0 and CNRM-CM5 models for the time frame of 2040-2059. Additionally, a sensitivity analysis of parameters was conducted to determine the primary climatic factors affecting B. napus distribution and model responsiveness. The simulated outcomes demonstrate a satisfactory alignment with the known current distribution of B. napus, with 98% of occurrence records classified as having medium to high climatic suitability. However, the species displays high sensitivity to thermal parameters, thereby suggesting that temperature increases could trigger shifts in suitable and unsuitable areas for B. napus, impacting regions such as Canada, China, Brazil, and the United States.
Collapse
Affiliation(s)
- Cláudia Eduarda Borges
- Universidade Federal dos Vales Jequitinhonha e Mucuri, Campus JK, Rodovia MGT 367 - Km 583, nº 5.000, Alto da Jacuba, Diamantina, MG, CEP 39100-000, Brazil
| | - Ronnie Von Dos Santos Veloso
- Universidade Federal dos Vales Jequitinhonha e Mucuri, Campus JK, Rodovia MGT 367 - Km 583, nº 5.000, Alto da Jacuba, Diamantina, MG, CEP 39100-000, Brazil
| | - Crislaine Alves da Conceição
- Universidade Federal dos Vales Jequitinhonha e Mucuri, Campus JK, Rodovia MGT 367 - Km 583, nº 5.000, Alto da Jacuba, Diamantina, MG, CEP 39100-000, Brazil
| | - Débora Sampaio Mendes
- Universidade Federal dos Vales Jequitinhonha e Mucuri, Campus JK, Rodovia MGT 367 - Km 583, nº 5.000, Alto da Jacuba, Diamantina, MG, CEP 39100-000, Brazil
| | - Nadiezhda Yz Ramirez-Cabral
- Ecosystem Management, School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
- INIFAP, Campo Experimental Zacatecas, Km, 24.5 Carretera Zacatecas-Fresnillo, 98500, Calera de V.R., ZAC, Mexico
| | - Farzin Shabani
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Mahyat Shafapourtehrany
- Kandilli Observatory and Earthquake Research Institute, Department of Geodesy, Bogazici University, 34680, Cengelkoy, Istanbul, Turkey
| | - Marcela Carlota Nery
- Universidade Federal dos Vales Jequitinhonha e Mucuri, Campus JK, Rodovia MGT 367 - Km 583, nº 5.000, Alto da Jacuba, Diamantina, MG, CEP 39100-000, Brazil
| | - Ricardo Siqueira da Silva
- Universidade Federal dos Vales Jequitinhonha e Mucuri, Campus JK, Rodovia MGT 367 - Km 583, nº 5.000, Alto da Jacuba, Diamantina, MG, CEP 39100-000, Brazil
| |
Collapse
|
4
|
Zhou D, Abdelrahman M, Zhang X, Yang S, Yuan J, An Z, Niu K, Gao Y, Li J, Wang B, Zhou G, Yang L, Hua G. Milk Production Responses and Digestibility of Dairy Buffaloes ( Bubalus bubalis) Partially Supplemented with Forage Rape ( Brassica napus) Silage Replacing Corn Silage. Animals (Basel) 2021; 11:ani11102931. [PMID: 34679952 PMCID: PMC8532855 DOI: 10.3390/ani11102931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/02/2021] [Accepted: 10/07/2021] [Indexed: 11/21/2022] Open
Abstract
Simple Summary To develop alternative silage resources, we employed buffaloes as an animal model to evaluate the possibility and effects of forage rape silage in the dairy buffalo diet. We comprehensively assessed the nutrition value of forage rape silage by the apparent total-tract digestibility, rumen fermentation characteristics, blood metabolism and milk composition of lactating buffaloes. Our current results showed that the inclusion of forage rape silage in diets improved the milk quality, such as milk protein, milk fat, and total solid percentage. Furthermore, partial supplementation of forage rape silage also promotes buffaloes’ dry matter intake. These may be related to the favorable physiological and metabolic changes induced by the forage rape silage. Thus, our current data show the applicability of forage rape silage as a good feed resource for ruminants. Abstract Worldwide, silage is considered the main component in dairy animal diets; however, this portion is mainly dominated by corn silage, which raises availability challenges in some agricultural production systems. The present study evaluated a partial replacement of corn silage with forage rape silage (FRS) and its effect on feed intake, nutrient digestibility, rumen fermentation, milk production, and blood metabolites in buffalo. Thirty-six lactating buffaloes were randomly assigned to four different groups, according to supplementation of FRS (only corn silage, FRS0) or with 15% (FRS15), 25% (FRS25), and 35% (FRS35) of forage rape silage instead of corn silage. The results showed that, compared to corn silage, forage rape silage has a lower carbohydrate but a higher protein concentration. The buffalo intake of dry matter and organic matter were improved linearly with the FRS increasing in the diet. The apparent total-tract digestibility (ATTD) of dry matter, organic matter, nitrogen, neutral detergent fiber, and acid detergent fiber also increased by the FRS supplementation compared with FRS0. Conversely, FRS supplementation decreased the propionic, butyric, and valeric acid contents and increased the acetic:propionic ratio and microbial protein content. Furthermore, FRS inclusion led to a significantly higher milk urea and non-fat milk solid content, higher blood glucose, total globulins, blood urea nitrogen, and lower blood high-density lipoprotein. These results suggested that FRS has high a nutritional value and digestibility, is a good feed resource, and showed favorable effects when supplemented with dairy buffalo ration.
Collapse
Affiliation(s)
- Di Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.Z.); (M.A.); (X.Z.); (S.Y.); (J.Y.); (Z.A.); (K.N.)
| | - Mohamed Abdelrahman
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.Z.); (M.A.); (X.Z.); (S.Y.); (J.Y.); (Z.A.); (K.N.)
- Animal Production Department, Faculty of Agriculture, Assuit University, Asyut 71515, Egypt
| | - Xinxin Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.Z.); (M.A.); (X.Z.); (S.Y.); (J.Y.); (Z.A.); (K.N.)
| | - Shuai Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.Z.); (M.A.); (X.Z.); (S.Y.); (J.Y.); (Z.A.); (K.N.)
| | - Jing Yuan
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.Z.); (M.A.); (X.Z.); (S.Y.); (J.Y.); (Z.A.); (K.N.)
| | - Zhigao An
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.Z.); (M.A.); (X.Z.); (S.Y.); (J.Y.); (Z.A.); (K.N.)
| | - Kaifeng Niu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.Z.); (M.A.); (X.Z.); (S.Y.); (J.Y.); (Z.A.); (K.N.)
| | - Yanxia Gao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (Y.G.); (J.L.)
| | - Jianguo Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (Y.G.); (J.L.)
| | - Bo Wang
- Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (B.W.); (G.Z.)
| | - Guangsheng Zhou
- Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (B.W.); (G.Z.)
| | - Liguo Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.Z.); (M.A.); (X.Z.); (S.Y.); (J.Y.); (Z.A.); (K.N.)
- Hubei Province Buffalo Engineering Center, Wuhan 430070, China
- Correspondence: (L.Y.); (G.H.); Tel.: +86-138-7105-6592 (L.Y.); +86-136-3860-4846 (G.H.)
| | - Guohua Hua
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.Z.); (M.A.); (X.Z.); (S.Y.); (J.Y.); (Z.A.); (K.N.)
- Hubei Province Buffalo Engineering Center, Wuhan 430070, China
- Correspondence: (L.Y.); (G.H.); Tel.: +86-138-7105-6592 (L.Y.); +86-136-3860-4846 (G.H.)
| |
Collapse
|
5
|
Keim JP, Rodriguez JR, Balocchi OA, Pulido RG, Sepúlveda-Varas P, Pacheco D, Berthiaume R, Vargas-Bello-Pérez E. Effect of dietary inclusion of winter brassica crops on milk production, feeding behavior, rumen fermentation, and plasma fatty acid profile in dairy cows. J Dairy Sci 2021; 104:10699-10713. [PMID: 34253367 DOI: 10.3168/jds.2021-20215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/29/2021] [Indexed: 12/17/2022]
Abstract
This study determined feeding behavior, dry matter (DM) intake (DMI), rumen fermentation, and milk production responses of lactating dairy cows fed with kale (Brassica oleracea) or swede (Brassica napus ssp. napobrassica). Twelve multiparous lactating dairy cows (560 ± 22 kg of body weight, 30 ± 4 kg of milk/d, and 60 ± 11 d in milk at the beginning of the experiment; mean ± standard deviation) were randomly allocated to 3 dietary treatments in a replicated 3 × 3 Latin square design. The control diet comprised 10 kg of grass silage DM/d, 4 kg of ryegrass herbage DM/d, and 8.8 kg of concentrate DM/d. Then, 25% of herbage, silage, and concentrate (DM basis) was replaced with either kale or swede. Cows offered kale had decreased total DMI compared with cows fed the control and swede diets, whereas inclusion of swede increased eating time. Milk production, composition, and energy-corrected milk:DMI ratio were not affected. Cows fed with kale had a greater rumen acetate:propionate ratio, whereas swede inclusion increased the relative percentage of butyrate. Estimated microbial N was not affected by dietary treatments, but N excretion was reduced with inclusion of kale, improving N utilization. Cows fed kale tended to have increased nonesterified fatty acids and showed presence of Heinz-Ehrlich bodies, whereas hepatic enzymes such as aspartate aminotransferase, γ-glutamyl transferase, and glutamate dehydrogenase were not affected by dietary treatments. In plasma, compared with the control, swede and kale reduced total saturated fatty acids and increased total polyunsaturated fatty acids and total n-3 fatty acids. Overall, feeding cows with winter brassicas had no negative effect on production responses. However, mechanisms to maintain milk production were different. Inclusion of swede increased the time spent eating and maintained DMI with a greater relative rumen percentage of butyrate and propionate, whereas kale reduced DMI but increased triacylglycerides mobilization, which can negatively affect reproductive performance. Thus, the inclusion of swede may be more suitable for feeding early-lactating dairy cows during winter.
Collapse
Affiliation(s)
- Juan P Keim
- Institute of Animal Production, Faculty of Agricultural and Food Sciences, Universidad Austral de Chile, Independencia 641, Valdivia 5110566, Chile.
| | - José R Rodriguez
- Graduate School, Faculty of Agricultural and Food Sciences, Universidad Austral de Chile, Independencia 641, Valdivia 5110566, Chile
| | - Oscar A Balocchi
- Institute of Animal Production, Faculty of Agricultural and Food Sciences, Universidad Austral de Chile, Independencia 641, Valdivia 5110566, Chile
| | - Rubén G Pulido
- Institute of Animal Science, Faculty of Veterinary Sciences, Universidad Austral de Chile, Independencia 641, Valdivia 5110566, Chile
| | - Pilar Sepúlveda-Varas
- Veterinary Teaching Hospital, Faculty of Veterinary Sciences, Universidad Austral de Chile, Independencia 641, Valdivia 5110566, Chile
| | - David Pacheco
- Animal Science Group, Grasslands Research Centre, Private Bag 11008, Palmerston North 4442, New Zealand
| | - Robert Berthiaume
- Consultant expert in forage systems, 390 Moulton Hill, Sherbrooke, QC J1M 0A8, Canada
| | - Einar Vargas-Bello-Pérez
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Gr⊘nnegårdsvej 3, DK-1870 Frederiksberg C, Denmark.
| |
Collapse
|
6
|
Vargas-Bello-Pérez E, Geldsetzer-Mendoza C, Ibáñez RA, Rodríguez JR, Alvarado-Gillis C, Keim JP. Chemical Composition, Fatty Acid Profile and Sensory Characteristics of Chanco-Style Cheese from Early Lactation Dairy Cows Fed Winter Brassica Crops. Animals (Basel) 2021; 11:ani11010107. [PMID: 33430319 PMCID: PMC7825774 DOI: 10.3390/ani11010107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 12/30/2022] Open
Abstract
Simple Summary Brassica crops such as kales and swedes can be supplied to cow diets during winter. Little is known about the effects of feeding those forage brassicas to lactating cows on cheese nutritional characteristics. Thus, the objective of this study was to determine the effect of including kale or swedes in the diet of pasture-fed lactating dairy cows on chemical composition, fatty acid (FA) profile and sensory characteristics of Chanco-style cheese. Kale or swedes can be used in the diet of pasture-fed lactating dairy cows without negative effects on milk production, milk composition and cheese composition. However, with regard to cheese FA profiles, those elaborated from milks from kale and swedes increased total contents of saturated fatty acids. Abstract Brassica crops such as kale and swede can be supplied to cow diets during winter, however little is known about the effects of feeding those forage brassicas to lactating cows on cheese nutritional characteristics of milk and cheese. This study evaluated the effect of including kale or swede in pasture-fed lactating dairy cow diets on chemical composition, fatty acid (FA) profile, and sensory characteristics of Chanco-style cheese. Twelve early-lactation cows were used in a replicated (n = 4) 3 × 3 square Latin square design. The control diet consisted of (DM basis) 10.0 kg of grass silage, 4.0 kg of fresh grass pasture, 1.5 kg soybean meal, 1.0 kg of canola meal, and 4.0 kg of cereal-based concentrate. The other treatments replaced 25% of the diet with swede or kale. Milk yield, milkfat, and milk protein were similar between treatments as were cheese moisture, fat, and protein. Swede and kale increased total saturated cheese FA while thrombogenic index was greater in swede, but color homogeneity and salty flavor were greater while ripe cheese aroma less than for kale. Kale or swede can be used in the diet of pasture-fed lactating dairy cows without negative effects on milk production, milk composition, or cheese composition. However, kale and swede increased total cheese saturated FA.
Collapse
Affiliation(s)
- Einar Vargas-Bello-Pérez
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 3, DK-1870 Frederiksberg C, Denmark
- Departamento de Ciencias Animales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Macul, Santiago 7820436, Chile; (C.G.-M.); (R.A.I.)
- Correspondence: (E.V.-B.-P.); (J.P.K.)
| | - Carolina Geldsetzer-Mendoza
- Departamento de Ciencias Animales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Macul, Santiago 7820436, Chile; (C.G.-M.); (R.A.I.)
| | - Rodrigo A. Ibáñez
- Departamento de Ciencias Animales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Macul, Santiago 7820436, Chile; (C.G.-M.); (R.A.I.)
- Center for Dairy Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - José Ramón Rodríguez
- Escuela de Graduados, Facultad de Ciencias Agrarias y Alimentarias, Universidad Austral de Chile, Independencia 631, Valdivia 5110566, Chile;
| | - Christian Alvarado-Gillis
- Facultad de Ciencias Agrarias y Alimentarias, Instituto de Producción Animal, Universidad Austral de Chile, Independencia 631, Valdivia 5110566, Chile;
| | - Juan P. Keim
- Facultad de Ciencias Agrarias y Alimentarias, Instituto de Producción Animal, Universidad Austral de Chile, Independencia 631, Valdivia 5110566, Chile;
- Correspondence: (E.V.-B.-P.); (J.P.K.)
| |
Collapse
|
7
|
Sun X. Invited Review: Glucosinolates Might Result in Low Methane Emissions From Ruminants Fed Brassica Forages. Front Vet Sci 2020; 7:588051. [PMID: 33195622 PMCID: PMC7581797 DOI: 10.3389/fvets.2020.588051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/07/2020] [Indexed: 11/13/2022] Open
Abstract
Methane is formed from the microbial degradation of feeds in the digestive tract in ruminants. Methane emissions from ruminants not only result in a loss of feed energy but also contribute to global warming. Previous studies showed that brassica forages, such as forage rape, lead to less methane emitted per unit of dry matter intake than grass-based forages. Differences in rumen pH are proposed to partly explain these low emissions. Rumen microbial community differences are also observed, but the causes of these are unknown, although altered digesta flow has been proposed. This paper proposes a new mechanism underlying the lower methane emissions from sheep fed brassica forages. It is reported that feeding brassica forages to sheep can increase the concentration of free triiodothyronine (FT3) in serum, while the intramuscular injection of FT3 into sheep can reduce the mean retention time of digesta in the rumen. The short retention time of digesta is associated with low methane production. Glucosinolates (GSLs) are chemical components widely present in plants of the genus Brassica. After ruminants consume brassica forages, GSLs are broken down in the rumen. We hypothesize that GSLs or their breakdown products are absorbed into the blood and then may stimulate the secretion of thyroid hormone FT3 in ruminants, and the altered thyroid hormone concentration may change rumen physiology. As a consequence, the mean retention time of digesta in the rumen would be altered, resulting in a decrease in methane emissions. This hypothesis on mitigation mechanism is based on the manipulation of animal physiological parameters, which, if proven, will then support the expansion of this research area.
Collapse
Affiliation(s)
- Xuezhao Sun
- The Innovation Center of Ruminant Precision Nutrition and Smart and Ecological Farming, Jilin Agricultural Science and Technology University, Jilin City, China
- Jilin Inter-regional Cooperation Center for the Scientific and Technological Innovation of Ruminant Precision Nutrition and Smart and Ecological Farming, Jilin City, China
| |
Collapse
|